0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRF8P20160HSR5

MRF8P20160HSR5

  • 厂商:

    NXP(恩智浦)

  • 封装:

    NI-780S-4

  • 描述:

    FET RF 2CH 65V 1.92GHZ

  • 数据手册
  • 价格&库存
MRF8P20160HSR5 数据手册
Freescale Semiconductor Technical Data Document Number: MRF8P2160H Rev. 1, 7/2010 RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs MRF8P20160HR3 MRF8P20160HSR3 Designed for CDMA base station applications with frequencies from 1880 to 2025 MHz. Can be used in Class AB and Class C for all typical cellular base station modulation formats. • Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Volts, IDQA = 550 mA, VGSB = 1.6 Vdc, Pout = 37 Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) ηD (%) Output PAR (dB) ACPR (dBc) 1880 MHz 16.5 44.8 7.0 --29.8 1900 MHz 16.6 45.3 6.9 --30.1 1920 MHz 16.5 45.8 6.9 --30.6 1880--2025 MHz, 37 W AVG., 28 V SINGLE W--CDMA LATERAL N--CHANNEL RF POWER MOSFETs CASE 465M--01, STYLE 1 NI--780--4 MRF8P20160HR3 • Capable of Handling 10:1 VSWR, @ 32 Vdc, 1900 MHz, 150 Watts CW Output Power (3 dB Input Overdrive from Rated Pout) • Typical Pout @ 3 dB Compression Point ≃ 160 Watts CW 2025 MHz • Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Volts, IDQA = 550 mA, VGSB = 1.6 Vdc, Pout = 37 Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. Frequency Gps (dB) ηD (%) Output PAR (dB) ACPR (dBc) 2025 MHz 15.3 44.0 6.8 --30.0 CASE 465H--02, STYLE 1 NI--780S--4 MRF8P20160HSR3 Features • Production Tested in a Symmetrical Doherty Configuration • 100% PAR Tested for Guaranteed Output Power Capability • Characterized with Large--Signal Load--Pull Parameters and Common Source S--Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • Designed for Digital Predistortion Error Correction Systems • RoHS Compliant • NI--780--4 in Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. NI--780S--4 in Tape and Reel. R3 Suffix = 250 Units per 32 mm, 13 inch Reel. RFinA/VGSA 3 1 RFoutA/VDSA RFinB/VGSB 4 2 RFoutB/VDSB (Top View) Figure 1. Pin Connections Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +65 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg -- 65 to +150 °C TC 150 °C TJ 225 °C Case Operating Temperature Operating Junction Temperature (1,2) 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. © Freescale Semiconductor, Inc., 2010. All rights reserved. RF Device Data Freescale Semiconductor MRF8P20160HR3 MRF8P20160HSR3 1 Table 2. Thermal Characteristics Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case Case Temperature 81°C, 37 W CW, 28 Vdc, IDQA = 550 mA, VGSB = 1.3 Vdc, 1900 MHz RθJC 0.75 °C/W Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 (Minimum) Machine Model (per EIA/JESD22--A115) A (Minimum) Charge Device Model (per JESD22--C101) IV (Minimum) Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 116 μAdc) VGS(th) 1.2 1.8 2.7 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, IDA = 550 mAdc, Measured in Functional Test) VGS(Q) 1.9 2.7 3.4 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1.5 Adc) VDS(on) 0.1 0.27 0.5 Vdc Characteristic Off Characteristics (3) On Characteristics (3) Functional Tests (4,5) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 550 mA, VGSB = 1.6 Vdc, Pout = 37 W Avg., f = 1920 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Power Gain Drain Efficiency Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Gps 15.5 16.5 18.5 dB ηD 43.5 45.8 — % PAR 6.4 6.9 — dB ACPR — --30.6 --28.5 dBc Typical Broadband Performance (5) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 550 mA, VGSB = 1.6 Vdc, Pout = 37 W Avg., f = 1920 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Frequency Gps (dB) ηD (%) Output PAR (dB) ACPR (dBc) 1880 MHz 16.5 44.8 7.0 --29.8 1900 MHz 16.6 45.3 6.9 --30.1 1920 MHz 16.5 45.8 6.9 --30.6 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 3. Each side of device measured separately. 4. Part internally matched both on input and output. 5. Measurement made with device in a Symmetrical Doherty configuration. (continued) MRF8P20160HR3 MRF8P20160HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performance (1) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 550 mA, VGSB = 1.6 Vdc, 1880--1920 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 107 — W Pout @ 3 dB Compression Point, CW P3dB — 160 — W — 13 — IMD Symmetry @ 40 W PEP, Pout where IMD Third Order Intermodulation  30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) IMDsym VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) VBWres — 50 — MHz Gain Flatness in 40 MHz Bandwidth @ Pout = 37 W Avg. GF — 0.2 — dB Gain Variation over Temperature (--30°C to +85°C) ∆G — 0.01 — dB/°C ∆P1dB — 0.009 — dB/°C Output Power Variation over Temperature (--30°C to +85°C) MHz Typical Broadband Performance — 2025 MHz (1) (In Freescale 2025 Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQA = 550 mA, VGSB = 1.6 Vdc, Pout = 37 W Avg., f = 2025 MHz, Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Frequency Gps (dB) ηD (%) Output PAR (dB) ACPR (dBc) 2025 MHz 15.3 44.0 6.8 --30.0 1. Measurement made with device in a Symmetrical Doherty configuration. MRF8P20160HR3 MRF8P20160HSR3 RF Device Data Freescale Semiconductor 3 VGA C20 C22 C8 C10 Z1 C1 R1 C2 C18 C16 CUT OUT AREA C3 C5 C24 VDA R2 C6 C4 C C14 C15 P C12 C26 C13 C17 R3 C7 C11 C19 C9 VDB C25 MRF8P20160H Rev. 1 C21 C23 VGB Figure 2. MRF8P20160HR3(HSR3) Test Circuit Component Layout Table 5. MRF8P20160HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2, C12, C13 10 pF Chip Capacitors ATC600F100JT250XT ATC C3 0.3 pF Chip Capacitor ATC600F0R3BT250XT ATC C4, C5 1.1 pF Chip Capacitors ATC600F1R1BT250XT ATC C6, C7, C18, C19 12 pF Chip Capacitors ATC600F120JT250XT ATC C8, C9, C20, C21, C22, C23 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C10, C11 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C14, C15 2.0 pF Chip Capacitors ATC600F2R0BT250XT ATC C16, C17 2.2 pF Chip Capacitors ATC600F2R2BT250XT ATC C24, C25 220 μF, 50 V Electrolytic Capacitors 227CKS505M Illinois Cap C26 0.8 pF Chip Capacitor ATC600F0R8BT250XT ATC R1 50 Ω, 4 W Chip Resistor CW12010T0050GBK ATC R2, R3 8.25 Ω, 1/4 W Chip Resistors CRCW12068R25FKEA Vishay Z1 1900 MHz Band 90°, 3 dB Chip Hybrid Coupler GCS351--HYB1900 Soshin PCB 0.020″, εr = 3.5 RO4350B Rogers MRF8P20160HR3 MRF8P20160HSR3 4 RF Device Data Freescale Semiconductor Single--ended λ 4 λ Quadrature combined 4 λ 4 λ λ 2 2 Doherty Push--pull Figure 3. Possible Circuit Topologies MRF8P20160HR3 MRF8P20160HSR3 RF Device Data Freescale Semiconductor 5 47 46 16.5 3.84 MHz Channel Bandwidth Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 16 15.5 45 Gps 15 PARC --28 --10 --29 --13 14.5 --30 14 --31 IRL 13.5 --32 ACPR 13 1850 1875 1900 1925 1950 1975 2000 2025 --33 2050 --16 --19 --22 --25 --2.5 --3 --3.5 --4 --4.5 PARC (dB) 48 ηD IRL, INPUT RETURN LOSS (dB) 49 ACPR (dBc) Gps, POWER GAIN (dB) 18 V = 28 Vdc, P = 37 W (Avg.), IDQA = 550 mA 17.5 VDD = 1.6 Vdc, out Single--Carrier W--CDMA GSB 17 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS --5 f, FREQUENCY (MHz) IMD, INTERMODULATION DISTORTION (dBc) Figure 4. Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 37 Watts Avg. --20 IM3--U --30 IM3--L --40 IM5--U IM5--L --50 IM7--L IM7--U --60 VDD = 28 Vdc, Pout = 40 W (PEP) IDQA = 550 mA, VGSB = 1.6 Vdc, Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 1900 MHz --70 1 10 100 TWO--TONE SPACING (MHz) Figure 5. Intermodulation Distortion Products versus Two--Tone Spacing ηD Gps, POWER GAIN (dB) 16 15 14 13 12 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) --1 dB = 16 W 17 --1 --2 Gps --2 dB = 26 W 60 0 50 --10 40 ACPR --3 30 --3 dB = 36 W --4 --5 --6 20 VDD = 28 Vdc, IDQA = 550 mA VGSB = 1.6 Vdc, f = 1900 MHz Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 0 20 40 60 --30 --40 10 --50 0 --60 PARC 80 --20 ACPR (dBc) 0 ηD, DRAIN EFFICIENCY (%) 18 100 Pout, OUTPUT POWER (WATTS) Figure 6. Output Peak--to--Average Ratio Compression (PARC) versus Output Power MRF8P20160HR3 MRF8P20160HSR3 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 16 1920 MHz ACPR 1900 MHz 15 14 1880 MHz 1920 MHz 1 50 --10 40 20 Gps 1900 MHz 10 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 12 0 30 1880 MHz 13 60 0 300 100 10 --20 --30 --40 ACPR (dBc) 17 Gps, POWER GAIN (dB) ηD VDD = 28 Vdc, IDQA = 550 mA, VGSB = 1.6 Vdc Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth ηD, DRAIN EFFICIENCY (%) 18 --50 --60 Pout, OUTPUT POWER (WATTS) AVG. Figure 7. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 0 18 Gain 15 --7 GAIN (dB) IRL 9 --21 6 VDD = 28 Vdc Pin = 0 dBm IDQA = 550 mA VGSB = 1.6 Vdc 3 0 1660 1720 1780 1840 1900 1960 2020 2080 IRL (dB) --14 12 --28 --35 --42 2140 f, FREQUENCY (MHz) Figure 8. Broadband Frequency Response W--CDMA TEST SIGNAL 10 100 0 --10 --30 Input Signal 0.1 0.01 0 2 4 6 --40 --50 --60 W--CDMA. ACPR Measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 0.001 0.0001 3.84 MHz Channel BW --20 1 (dB) PROBABILITY (%) 10 +ACPR in 3.84 MHz Integrated BW --ACPR in 3.84 MHz Integrated BW --70 --80 8 10 PEAK--TO--AVERAGE (dB) Figure 9. CCDF W--CDMA IQ Magnitude Clipping, Single--Carrier Test Signal 12 --90 --100 --9 --7.2 --5.4 --3.6 --1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 10. Single--Carrier W--CDMA Spectrum MRF8P20160HR3 MRF8P20160HSR3 RF Device Data Freescale Semiconductor 7 VDD = 28 Vdc, IDQA = 550 mA Max Pout (1) f MHz Watts dBm Zsource Ω Zload Ω 1880 98 49.9 5.14 -- j9.41 1.56 -- j5.24 1900 98 49.9 7.59 -- j9.88 1.58 -- j5.37 1920 97 49.9 8.90 -- j9.65 1.57 -- j5.48 (1) Maximum output power measurement reflects pulsed 1 dB gain compression. Zsource = Test circuit impedance as measured from gate contact to ground. Zload = Test circuit impedance as measured from drain contact to ground. Output Matching Network Device Under Test Input Matching Network Z Z source load Figure 11. Maximum Output Power — Doherty Load Pull Optimization for Carrier Side VDD = 28 Vdc, IDQA = 550 mA f MHz Max Eff. (1) % Zsource Ω Zload Ω 1880 65.1 5.14 -- j9.41 3.04 -- j3.65 1900 64.6 7.59 -- j9.88 4.13 -- j2.87 1920 64.6 8.90 -- j9.65 4.12 -- j3.15 (1) Maximum efficiency measurement reflects pulsed 1 dB gain compression. Zsource = Test circuit impedance as measured from gate contact to ground. Zload = Test circuit impedance as measured from drain contact to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 12. Maximum Efficiency — Doherty Load Pull Optimization for Carrier Side MRF8P20160HR3 MRF8P20160HSR3 8 RF Device Data Freescale Semiconductor ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS VDD = 28 Vdc, IDQA = 550 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle 56 Pout, OUTPUT POWER (dBm) 55 Ideal 54 1920 MHz 53 52 1880 MHz 51 Actual 50 1900 MHz 49 1900 MHz 1920 MHz 48 1880 MHz 47 46 45 26 27 28 29 30 32 31 33 34 35 36 37 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V P1dB P3dB f (MHz) Watts dBm Watts dBm 1880 103 50.1 122 50.9 1900 104 50.2 120 50.8 1920 104 50.2 118 50.7 Test Impedances per Compression Level f (MHz) Zsource Ω Zload Ω 1880 P1dB 5.14 -- j9.41 1.65 -- j5.46 1900 P1dB 7.59 -- j9.88 1.67 -- j5.43 1920 P1dB 8.90 -- j9.65 1.66 -- j5.50 Figure 13. Pulsed CW Output Power versus Input Power @ 28 V NOTE: Measurement made on the Class AB, carrier side of the device. MRF8P20160HR3 MRF8P20160HSR3 RF Device Data Freescale Semiconductor 9 ALTERNATE CHARACTERIZATION — 2025 MHz VGA C8 C10 C22 C24 C20 C4 Z1 C1 C2 R1 C18* C14 CUT OUT AREA C3 C26 VGA R2 C6 C5 C C12 C16 C28 C15 C17 C13 P C19* R3 C11 C7 C21 C9 VGB C27 MRF8P20160H Rev. 1 C23 C25 VGB * Stacked Figure 14. MRF8P20160HR3(HSR3) Test Circuit Component Layout — 2025 MHz Table 6. MRF8P20160HR3(HSR3) Test Circuit Component Designations and Values — 2025 MHz Part Description Part Number Manufacturer C1, C2, C6, C7, C12, C13, C20, C21 15 pF Chip Capacitors ATC600F150JT250XT ATC C3, C14, C15 0.3 pF Chip Capacitors ATC600F0R3BT250XT ATC C4, C5 2.4 pF Chip Capacitors ATC600F2R4BT250XT ATC C8, C9, C22, C23, C24, C25 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C10, C11 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C16, C17 0.6 pF Chip Capacitors ATC600F0R6BT250XT ATC C18, C19 1.1 pF Chip Capacitors ATC600F1R1BT250XT ATC C26, C27 220 μF, 50 V Electrolytic Capacitors 227CKS505M Illinois Cap C28 0.8 pF Chip Capacitors ATC600F0R8BT250XT ATC R1 50 Ω, 4 W Chip Resistor CW12010T0050GBK ATC R2, R3 8.25 Ω, 1/4 W Chip Resistors CRCW12068R25FKEA Vishay Z1 1900 MHz Band 90°, 3 dB Chip Hybrid Coupler GCS351--HYB1900 Soshin PCB 0.020″, εr = 3.5 RO4350B Rogers MRF8P20160HR3 MRF8P20160HSR3 10 RF Device Data Freescale Semiconductor 43 42 41 Gps 15.2 PARC 15.1 15 40 --29 --16 --30 --16.5 --31 IRL 14.9 --32 14.8 --33 ACPR 14.7 1995 2000 2005 2010 2015 2020 2025 2030 --17 --17.5 --18 --34 2035 --18.5 --2.5 --3 --3.5 --4 --4.5 PARC (dB) 15.6 V = 28 Vdc, P = 37 W (Avg.), I DD out DQA = 550 mA 15.5 VGSB = 1.6 Vdc, Single--Carrier W--CDMA 3.84 MHz Channel Bandwidth Input Signal 15.4 PAR = 9.9 dB @ 0.01% Probability on CCDF 15.3 IRL, INPUT RETURN LOSS (dB) 44 ηD ACPR (dBc) Gps, POWER GAIN (dB) 15.7 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS — 2025 MHz --5 f, FREQUENCY (MHz) Figure 15. Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 20 Watts Avg. 15 0 50 --10 40 2025 MHz ACPR 2010 MHz 14 ηD 60 13 30 20 2010 MHz 12 2025 MHz 10 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF 11 1 --30 --40 --50 Gps 100 10 --20 ACPR (dBc) Gps, POWER GAIN (dB) VDD = 28 Vdc, IDQA = 550 mA, VGSB = 1.6 Vdc Single--Carrier W--CDMA, 3.84 MHz Channel 16 Bandwidth ηD, DRAIN EFFICIENCY (%) 17 0 300 --60 Pout, OUTPUT POWER (WATTS) AVG. Figure 16. Single--Carrier W--CDMA Power Gain, Drain Efficiency and ACPR versus Output Power 0 18 15 --5 12 --10 9 --15 6 3 0 1850 IRL --20 VDD = 28 Vdc Pin = 0 dBm IDQA = 550 mA VGSB = 1.6 Vdc 1900 1950 IRL (dB) GAIN (dB) Gain --25 2000 2050 2100 2150 --30 2200 f, FREQUENCY (MHz) Figure 17. Broadband Frequency Response MRF8P20160HR3 MRF8P20160HSR3 RF Device Data Freescale Semiconductor 11 PACKAGE DIMENSIONS MRF8P20160HR3 MRF8P20160HSR3 12 RF Device Data Freescale Semiconductor MRF8P20160HR3 MRF8P20160HSR3 RF Device Data Freescale Semiconductor 13 MRF8P20160HR3 MRF8P20160HSR3 14 RF Device Data Freescale Semiconductor MRF8P20160HR3 MRF8P20160HSR3 RF Device Data Freescale Semiconductor 15 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents, tools and software to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Apr. 2010 • Initial Release of Data Sheet 1 July 2010 • Added part number MRF8P20160HR3 (NI--780--4), p. 1 • Corrected IDQ1A value from 554 to 550 mA in Thermal Characteristics table and changed thermal resistance value from 0.95 to 0.75°C/W. Thermal value now reflects the use of the combined dissipated power from the carrier amplifier and peaking amplifier, p. 2 • Changed VDS(on) values from 0.05 to 0.1 Min, 0.11 to 0.27 Typ and 0.15 to 0.5 Max. Revised numbers reflect per side measurement versus previous combined measurements, p. 2 • Replaced Fig. 4, Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 37 Watts Avg. to show a wider bandwidth capability, p. 6 • Replaced Fig. 15, Output Peak--to--Average Ratio Compression (PARC) Broadband Performance @ Pout = 20 Watts Avg. to show more detailed RF performance capability, p. 11 MRF8P20160HR3 MRF8P20160HSR3 16 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010. All rights reserved. MRF8P20160HR3 MRF8P20160HSR3 Document Number: RF Device Data MRF8P2160H Rev. 1, 7/2010 Freescale Semiconductor 17 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: NXP: MRF8P20160HSR5
MRF8P20160HSR5 价格&库存

很抱歉,暂时无法提供与“MRF8P20160HSR5”相匹配的价格&库存,您可以联系我们找货

免费人工找货