0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRFE6VP5300NR1

MRFE6VP5300NR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO270AB

  • 描述:

    RF Mosfet LDMOS (Dual) 50V 100mA 230MHz 27dB 300W TO-270 WB-4

  • 数据手册
  • 价格&库存
MRFE6VP5300NR1 数据手册
Freescale Semiconductor Technical Data Document Number: MRFE6VP5300N Rev. 1, 6/2014 RF Power LDMOS Transistors MRFE6VP5300NR1 MRFE6VP5300GNR1 High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs These high ruggedness devices are designed for use in high VSWR industrial (including laser and plasma exciters), broadcast (analog and digital), aerospace and radio/land mobile applications. They are unmatched input and output designs allowing wide frequency range utilization, between 1.8 and 600 MHz. 1.8–600 MHz, 300 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS Typical Performance: VDD = 50 Vdc Frequency (MHz) 87.5--108 Signal Type Pout (W) Gps (dB) D (%) (1,3) CW 361 23.8 80.1 230 (2) CW 300 25.0 70.0 230 (2) Pulse (100 sec, 20% Duty Cycle) 300 Peak 27.0 71.0 Result TO--270WB--4 PLASTIC MRFE6VP5300NR1 Load Mismatch/Ruggedness Frequency (MHz) Signal Type VSWR Pin (W) Test Voltage 98 (1) CW > 65:1 at all Phase Angles 3 (3 dB Overdrive) 50 230 (2) Pulse (100 sec, 20% Duty Cycle) No Device Degradation 1.16 Peak (3 dB Overdrive) 1. Measured in 87.5–108 MHz broadband reference circuit. 2. Measured in 230 MHz narrowband test circuit. 3. The values shown are the minimum measured performance numbers across the indicated frequency range. TO--270WBG--4 PLASTIC MRFE6VP5300GNR1 Gate A 3 2 Drain A Gate B 4 1 Drain B Features        Wide Operating Frequency Range Extreme Ruggedness Unmatched Input and Output Allowing Wide Frequency Range Utilization Integrated Stability Enhancements Low Thermal Resistance Integrated ESD Protection Circuitry In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel.  Freescale Semiconductor, Inc., 2014. All rights reserved. RF Device Data Freescale Semiconductor, Inc. (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections MRFE6VP5300NR1 MRFE6VP5300GNR1 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +133 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C Operating Junction Temperature Range (1,2) TJ –40 to +225 C Total Device Dissipation @ TC = 25C Derate above 25C PD 909 4.55 W W/C Table 2. Thermal Characteristics Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 81C, 305 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz RJC 0.22 C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 59C, 300 W Peak, 100 sec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz ZJC 0.034 C/W Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) A, passes 150 V Charge Device Model (per JESD22--C101) IV, passes 2000 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Characteristic Off Characteristics Symbol Min Typ Max Unit IGSS — — 1 Adc 133 140 — Vdc (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 50 mA) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 5 Adc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 960 Adc) VGS(th) 1.8 2.3 2.8 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test) VGS(Q) 2.2 2.7 3.2 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 2 Adc) VDS(on) — 0.26 — Vdc On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 4. Each side of device measured separately. (continued) MRFE6VP5300NR1 MRFE6VP5300GNR1 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 1.4 — pF Output Capacitance (VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 63 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz) Ciss — 168 — pF Dynamic Characteristics (1) Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 300 W Peak (60 W Avg.), f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle Power Gain Gps 26.0 27.0 28.5 dB Drain Efficiency D 69.0 71.0 — % Input Return Loss IRL — –20 –9 dB Table 6. Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) 230 Signal Type VSWR Pin (W) Pulse (100 sec, 20% Duty Cycle) > 65:1 at all Phase Angles 1.16 Peak (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation 1. Each side of device measured separately. 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 3 TYPICAL CHARACTERISTICS Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc Ciss 100 NORMALIZED VGS(Q) C, CAPACITANCE (pF) 500 Coss 10 1 10 20 30 40 1.01 1 0.99 50 VDD = 50 Vdc IDQ(A+B) = 100 mA 2500 mA 0.98 0.97 0.96 0.95 0.94 --50 Crss 0 1.06 1.05 500 mA 1.04 1.03 1.02 1500 mA --25 0 25 50 75 100 TC, CASE TEMPERATURE (C) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. IDQ (mA) Figure 2. Capacitance versus Drain--Source Voltage Slope (mV/C) 100 –2.651 500 –2.158 1500 –1.977 2500 –1.787 Figure 3. Normalized VGS versus Quiescent Current and Case Temperature 108 MTTF (HOURS) VDD = 50 Vdc ID = 6.38 Amps 107 106 8.04 Amps 9.61 Amps 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http:/www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 4. MTTF versus Junction Temperature -- CW MRFE6VP5300NR1 MRFE6VP5300GNR1 4 RF Device Data Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE C3 C5 B1 MRFE6VP5300N Rev. 2 C7 C1 D49840 L1 COAX1 CUT OUT AREA L5 C20 C2 C8 C17 C14 C16 C15 C12 B2 COAX3 C13 L3 C29 C25 L4 C10 L2 C19 C11 C9 COAX2 C27 C21 C23 C18 COAX4 C26 C22 C24 C28 C30 C4 C6 Figure 5. MRFE6VP5300NR1 Narrowband Test Circuit Component Layout — 230 MHz MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 5 230 MHz NARROWBAND PRODUCTION TEST FIXTURE Table 7. MRFE6VP5300NR1 Narrowband Test Circuit Component Designations and Values — 230 MHz Part Description Part Number Manufacturer B1, B2 Small Ferrite Beads, Surface Mount 2743019447 Fair-Rite C1, C2 22 F, 35 V Tantulum Capacitors T491X226K035AT Kemet C3, C4 0.1 F Chip Capacitors CDR33BX104AKWS AVX C5, C6 220 nF Chip Capacitors C1812C224K5RACTU Kemet C7, C8 2.2 F Chip Capacitors C1825C225J5RACTU Kemet C9, C10, C11, C12 1000 pF Chip Capacitors ATC100B102JT50XT ATC C13 75 pF Chip Capacitor ATC100B750JT500XT ATC C14, C15 680 pF Chip Capacitors ATC100B681JT200XT ATC C16 82 pF Chip Capacitor ATC100B820JT500XT ATC C17 8.2 pF Chip Capacitor ATC100B8R2CT500XT ATC C18 11 pF Chip Capacitor ATC100B110JT500XT ATC C19, C20 240 pF Chip Capacitors ATC100B241JT200XT ATC C21, C22 0.10 F Chip Capacitors C1812F104K1RACTU Kemet C23, C24 0.1 F Chip Capacitors CDR33BX104AKWS AVX C25, C26 2.2 F Chip Capacitors 2225X7R225KJT3AB ATC C27, C28, C29, C30 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp Coax1, 2, 3, 4 25  Semi Rigid Coax, 2.4 UT-141C-25 Micro-Coax L1, L2 12 nH Inductors, 3 Turns GA3094-ALC Coilcraft L3 22 nH Inductor 1812SMS-22NJLC Coilcraft L4, L5 17.5 nH Inductors, 4 Turns GA3095-ALC Coilcraft PCB Arlon AD255A 0.030, r = 2.55 D49840 MTL MRFE6VP5300NR1 MRFE6VP5300GNR1 6 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 7 VGG RF INPUT Z1 VGG B1 B2 C4 C3 Z3 Z2 C8 Z9 Z7 Z5 Z4 Z6 Z8 C7 L2 C12 Z11 Z10 C11 L1 Z13 L3 Z12 DUT Z15 Z14 L5 Z19 Z17 Z21 Z20 Z16 Z18 C20 Z23 C13 Z22 C19 C22 C15 C14 C21 C24 Z25 Z24 C23 0.655  0.058 Microstrip 0.252  0.068 Microstrip 0.078  0.746 Microstrip Z8, Z9 Z10, Z11 0.432  0.120 Microstrip Z4, Z5 Z6*, Z7* 0.169  0.120 Microstrip Z2, Z3 Description 0.366  0.082 Microstrip Z1 Microstrip C26 Z27 C16 Z26 C25 C28 + C27 VDD C30 + Microstrip Z22, Z23 Z20, Z21 Z18, Z19 Z16, Z17 Z14, Z15 Z12, Z13 Description 1.040  0.230 Microstrip 0.060  0.230 Microstrip 0.329  0.150 Microstrip 0.347  0.150 Microstrip 0.289  0.522 Microstrip 0.361  0.746 Microstrip Microstrip C17 Z29 0.100  0.082 Microstrip 0.110  0.082 Microstrip 0.155  0.082 Microstrip 0.199  0.230 Microstrip 0.057  0.230 Microstrip * Line length include microstrip bends Z30 Z29 Z28 Z26, Z27 Z24, Z25 Z28 Description VDD COAX4 COAX3 C29 + Figure 6. MRFE6VP5300NR1 Narrowband Test Circuit Schematic — 230 MHz C6 C10 C9 C5 L4 Table 8. MRFE6VP5300NR1 Narrowband Test Circuit Microstrips — 230 MHz C2 + COAX2 COAX1 C1 + + C18 RF Z30 OUTPUT TYPICAL CHARACTERISTICS — 230 MHz Pout, OUTPUT POWER (WATTS) PEAK 350 VDD = 50 Vdc, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 300 250 Pin = 0.64 W 200 Pin = 0.32 W 150 100 50 0 0 0.5 1 1.5 2 2.5 3.5 3 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 7. Output Power versus Gate--Source Voltage at a Constant Input Power VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz 30 Pulse Width = 100 sec, 20% Duty Cycle 54 52 50 48 46 44 29 18 20 22 24 26 28 28 60 600 mA 27 50 300 mA 26 25 40 900 mA 100 mA 20 10 500 100 Pin, INPUT POWER (dBm) 30 Gps 600 mA 100 mA 300 mA 23 10 32 30 D 70 IDQ(A+B) = 900 mA 24 42 80 D, DRAIN EFFICIENCY (%) 56 40 16 90 31 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz 58 Pulse Width = 100 sec, 20% Duty Cycle Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 60 Pout, OUTPUT POWER (WATTS) PEAK f (MHz) P1dB (W) P3dB (W) 230 313 370 Figure 9. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 8. Output Power versus Input Power 25_C 70 TC = --40_C 60 50 26 D 25 25_C 85_C 24 85_C 40 Gps 23 22 10 28 80 28 27 29 90 --40_C 100 30 27 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 29 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle D, DRAIN EFFICIENCY (%) 30 26 25 24 45 V 23 40 V 22 35 V 21 20 20 10 500 19 50 V VDD = 30 V 0 50 100 IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 150 200 250 300 350 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 10. Power Gain and Drain Efficiency versus CW Output Power Figure 11. Power Gain versus Output Power and Drain--Source Voltage 400 MRFE6VP5300NR1 MRFE6VP5300GNR1 8 RF Device Data Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 300 W Peak f MHz Zsource  Zload  230 1.50 – j10.70 8.30 + j6.90 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50  Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50  + Zload Figure 12. Narrowband Series Equivalent Source and Load Impedance — 230 MHz MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 9 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Table 9. 87.5–108 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pin = 1.5 W, CW Frequency (MHz) Gps (dB) D (%) Pout (W) 87.5 24.4 80.1 415 98 24.3 81.8 404 108 23.8 80.5 361 Table 10. Load Mismatch/Ruggedness (In Freescale Reference Circuit, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) Signal Type VSWR Pin (W) 98 CW > 65:1 at all Phase Angles 3 (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation MRFE6VP5300NR1 MRFE6VP5300GNR1 10 RF Device Data Freescale Semiconductor, Inc. 87.5–108 MHz BROADBAND REFERENCE CIRCUIT R5* R6* COAX1 R4* C1* C3* D59349 R11* R10* C13 C12 R3* R8 R7* C2* R1* R2* U1* C14 C15 + C11 U2* C4 C6 R9 T1 C16 C5 Q1 C8 C17 C9 L1 C7 COAX3 MRFE6VP5300N Rev. 1 COAX2 Note: Component number C10 is not used. * Bias Regulator and Temperature Compensation. Refer to AN1643, RF LDMOS Power Modules for GSM Base Station Application: Optimum Biasing Circuit. Go to http://www.freescale.com/rf. Select Documentation/Application Notes – AN1643. Figure 13. MRFE6VP5300NR1 Broadband Reference Circuit Component Layout — 87.5–108 MHz MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 11 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Table 11. MRFE6VP5300NR1 Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz Part Description Part Number Manufacturer C1, C2 1 F Chip Capacitors GRM31CR72A105KA01L Murata C3 10 nF Chip Capacitor ATC200B103KT50XT ATC C4 150 pF Chip Capacitor ATC100B151JT300XT ATC C5 20 pF Chip Capacitor ATC100B200JT500XT ATC C6, C8, C9 1000 pF Chip Capacitors ATC200B102KT50XT ATC C7 560 pF Chip Capacitor ATC100B561KT50XT ATC C11 10 nF Chip Capacitor GCJ216R72A103KA01D Murata C12 47 nF Chip Capacitor GCJ21BR72A473KA01L Murata C13 470 nF Chip Capacitor GRM31MR72A474KA01L Murata C14, C15 10 F Chip Capacitors C5750X7S2A106M230KB TDK C16 470 F, 63 V Electrolytic Capacitor MCGPR63V477M13X26 Multicomp C17 20 pF Chip Capacitor ATC100B200JT500XT ATC Coax1, 2 35  Flex Cable, 4.72 HSF-141 Hongsen Cable Coax3 50  Flex Cable, 6.3 SM141 Huber Suhner L1 5 Turns, #16 AWG ID = 0.315/8 mm Inductor, Hand Wound Copper Wire Q1 RF Power LDMOS Transistor MRFE6VP5300NR1 Freescale R1 2.2 k, 1/8 W Chip Resistor CRCW08052K20FKEA Vishay R2 390 , 1/8 W Chip Resistor CRCW0805390RFKEA Vishay R3 10 , 1/8 W Chip Resistor CRCW080510R0FKEA Vishay R4 1.0 k, 1/8 W Chip Resistor CRCW08051K00FKEA Vishay R5 2.7 k, 1/8 W Chip Resistor CRCW08052K70FKEA Vishay R6 200 , 1/8 W Chip Resistor CRCW0805200RFKEA Vishay R7 5.0 k Multi-turn Cermet Trimmer Potentiometer 3224W-1-502E Bourns R8 10 , 1/4 W Chip Resistor CRCW120610R0FKEA Vishay R9 240 , 1/4 W Chip Resistor CRCW1206240RFKEA Vishay R10 4.7 k, 1/2 W Chip Resistor CRCW12104K70FKEA Vishay R11 5.1 k, 1/2 W Chip Resistor CRCW12105K10FKEA Vishay T1 61 Material Binocular Core Ferrite (9:1) with 24 AWG 1 Turn Primary, 24 AWG 3 Turns Secondary, Hand Wound 2861000202 Fair-Rite U1 Voltage Regulator 5 V, Micro8 LP2951ACDMR2G ON Semiconductor U2 NPN Bipolar Transistor BC847ALT1G ON Semiconductor PCB Rogers RO4350B, 0.030, r = 3.66 D59349 MTL Note: Component number C10 is not used. MRFE6VP5300NR1 MRFE6VP5300GNR1 12 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 13 Z1 C4 Z2 T1 Z6 Z5 C5 R9 Z8 Z7 DUT Z10 Z9 Z12 C17 Z11 COAX2 Z14 Z13 COAX1 C6 C7 L1 Z17 Z16 Z15 C9 C8 C11 Z19 Z18 C12 C13 C14 0.430  0.150 Microstrip 0.320  0.080 Microstrip 0.680  0.080 Microstrip 0.310  0.170 Microstrip 0.195  0.240 Microstrip 0.380  0.630 Microstrip 0.380  0.630 Microstrip Z2* Z3* Z4 Z5, Z6 Z7, Z8 Z9, Z10 Description Z1 Microstrip Description 0.190  0.170 Microstrip 0.230  0.300 Microstrip 0.200  0.100 Microstrip 0.680  0.140 Microstrip 0.170  0.210 Microstrip 0.400  0.240 Microstrip * Line length includes microstrip bends Z20 Z18, Z19 Z16*, Z17* Z15 Z13, Z14 Z11, Z12 Microstrip Table 12. MRFE6VP5300NR1 Broadband Reference Circuit Microstrips — 87.5–108 MHz Figure 14. MRFE6VP5300NR1 Broadband Reference Circuit Schematic — 87.5–108 MHz Note: Component number C10 is not used. RF INPUT Z4 Z3 R8 Bias Regulator and Temperature Compensation COAX3 C15 C16 + Z20 VDD RF OUTPUT TYPICAL CHARACTERISTICS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT 80 Gps, POWER GAIN (dB) 25.5 D 25 70 24.5 60 24 50 23.5 450 Gps 23 400 22.5 22 86 350 Pout 88 90 92 94 96 300 98 100 102 104 106 108 110 D, DRAIN EFFICIENCY (%) 90 VDD = 50 Vdc, Pin = 1.5 W, IDQ(A+B) = 100 mA Pout, OUTPUT POWER (WATTS) 26 f, FREQUENCY (MHz) Figure 15. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power 450 VDD = 50 Vdc Pin = 0.5 W 300 250 f = 98 MHz 108 MHz 200 150 100 87.5 MHz 50 0 VDD = 50 Vdc Pin = 1.0 W 400 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) 350 350 300 f = 98 MHz 200 150 100 87.5 MHz 50 0 0.5 1 1.5 2 2.5 3 3.5 108 MHz 250 0 0 0.5 1 1.5 2 2.5 3 3.5 VGS, GATE--SOURCE VOLTAGE (VOLTS) VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 16. CW Output Power versus Gate--Source Voltage at a Constant Input Power Figure 17. CW Output Power versus Gate--Source Voltage at a Constant Input Power MRFE6VP5300NR1 MRFE6VP5300GNR1 14 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT 60 VDD = 50 Vdc lDQ(A+B) = 100 mA Pout, OUTPUT POWER (dBm) 58 56 54 52 f = 98 MHz 50 48 87.5 MHz 46 44 108 MHz 20 22 24 26 28 30 32 34 Pin, INPUT POWER (dBm) f (MHz) P1dB (W) P3dB (W) 87.5 346 429 98 293 379 108 240 355 Figure 18. CW Output Power versus Input Power Gps, POWER GAIN (dB) 28 90 VDD = 50 Vdc lDQ(A+B) = 100 mA D f = 98 MHz 26 24 70 87.5 MHz 108 MHz 60 22 20 18 16 30 80 Gps 108 MHz 98 MHz 40 30 87.5 MHz 50 50 D, DRAIN EFFICIENCY (%) 30 100 200 20 500 300 Pout, OUTPUT POWER (WATTS) Figure 19. Power Gain and Drain Efficiency versus CW Output Power MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 15 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Zo = 25  Zsource f = 87.5 MHz f = 108 MHz f = 87.5 MHz Zload f = 108 MHz VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 300 W CW f MHz Zsource  Zload  87.5 10.3 + j14.4 13.7 + j8.15 92 11.5 + j15.8 14.2 + j8.09 96 12.6 + j17.0 14.7 + j8.04 100 13.9 + j18.2 15.2 + j7.99 104 15.5 + j19.6 15.7 + j7.94 108 17.2 + j20.9 16.2 + j7.89 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50  = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network 50  + Z load Figure 20. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz MRFE6VP5300NR1 MRFE6VP5300GNR1 16 RF Device Data Freescale Semiconductor, Inc. HARMONIC MEASUREMENTS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Sweep 10 of 10 10.0 0.0 F1 100 MHz H2 200 MHz --45.2 dB H3 300 MHz --17.7 dB H4 400 MHz --52.9 dB H5 500 MHz --29.0 dB Fundamental (F1) --10.0 H3 --20.0 H5 11.984 sps 11.851 fps --30.0 --40.0 H2 H4 --50.0 H5 H3 H4 H2 (200 MHz) (300 MHz) (400 MHz) (500 MHz) –45.2 dB –17.7 dB –52.9 dB –29.0 dB --60.0 --70.0 Center: 300 MHz Span: 600 MHz Figure 21. 100 MHz Harmonics @ 300 W CW MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 17 PACKAGE DIMENSIONS MRFE6VP5300NR1 MRFE6VP5300GNR1 18 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 19 MRFE6VP5300NR1 MRFE6VP5300GNR1 20 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 21 MRFE6VP5300NR1 MRFE6VP5300GNR1 22 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5300NR1 MRFE6VP5300GNR1 RF Device Data Freescale Semiconductor, Inc. 23 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes  AN1955: Thermal Measurement Methodology of RF Power Amplifiers  AN1643: RF LDMOS Power Modules for GSM Base Station Application: Optimum Biasing Circuit Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator  RF High Power Model Development Tools  Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Mar. 2014  Initial Release of Data Sheet 1 June 2014  Typical Performance table, 87.5–108 MHz: updated output power, gain and eff. values to reflect performance of circuit, p. 1  Functional Tests table, narrowband circuit: corrected output power from (30 W Avg.) to (60 W Avg.), p. 3  Table 9, 87.5–108 MHz Reference Circuit Broadband Performance table: updated all values to reflect performance of circuit, p. 10  Fig. 13, Broadband Reference Circuit Component Layout — 87.5–108 MHz: updated layout to increase ease of use, p. 11  Table 11, Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz: updated R2 and R11 resistors, p. 12  Fig. 14, Broadband Reference Circuit Schematic — 87.5–108 MHz: updated schematic to reflect temperature compensation, p. 13 MRFE6VP5300NR1 MRFE6VP5300GNR1 24 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. E 2014 Freescale Semiconductor, Inc. MRFE6VP5300NR1 MRFE6VP5300GNR1 Document Number: RF Device Data MRFE6VP5300N Rev. 1, 6/2014Semiconductor, Inc. Freescale 25
MRFE6VP5300NR1 价格&库存

很抱歉,暂时无法提供与“MRFE6VP5300NR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货