NXP Semiconductors
Technical Data
Document Number: MRFE6VS25N
Rev. 2, 03/2019
RF Power LDMOS Transistors
MRFE6VS25NR1
MRFE6VS25GNR1
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFETs
RF power transistors designed for both narrowband and broadband ISM,
broadcast and aerospace applications operating at frequencies from 1.8 to
2000 MHz. These devices are fabricated using NXP’s enhanced ruggedness
platform and are suitable for use in applications where high VSWRs are
encountered.
Typical Performance: VDD = 50 Volts
Frequency
(MHz)
Signal Type
Pout
(W)
Gps
(dB)
D
(%)
IMD (1)
(dBc)
1.8 to 30 (2,6)
Two--Tone
(10 kHz spacing)
25 PEP
25
51
--30
30--512 (3,6)
Two--Tone
(200 kHz spacing)
25 PEP
17.1
30.1
--32
512 (4)
Pulse (100 sec,
20% Duty Cycle)
25 Peak
25.4
74.5
—
512 (4)
CW
25
25.5
74.7
—
CW
25
22.5
60
—
1030
(5)
1.8--2000 MHz, 25 W, 50 V
WIDEBAND
RF POWER LDMOS TRANSISTORS
TO--270--2
PLASTIC
MRFE6VS25NR1
Load Mismatch/Ruggedness
Frequency
(MHz)
Signal Type
VSWR
Pin
(W)
Test
Voltage
30 (2)
CW
>65:1
at all Phase
Angles
0.23
(3 dB
Overdrive)
50
512 (3)
CW
1.6
(3 dB
Overdrive)
512 (4)
Pulse
(100 sec, 20%
Duty Cycle)
0.14 Peak
(3 dB
Overdrive)
512 (4)
CW
0.14
(3 dB
Overdrive
1030
1.
2.
3.
4.
5.
6.
(5)
CW
Result
No Device
Degradation
0.34
(3 dB
Overdrive
Distortion products are referenced to one of two tones. See p. 13, 20.
Measured in 1.8--30 MHz broadband reference circuit.
Measured in 30--512 MHz broadband reference circuit.
Measured in 512 MHz narrowband test circuit.
Measured in 1030 MHz narrowband test circuit.
The values shown are the minimum measured performance numbers across the indicated frequency range.
TO--270G--2
PLASTIC
MRFE6VS25GNR1
Gate 2
1 Drain
(Top View)
Note: The backside of the package is the
source terminal for the transistor.
Figure 1. Pin Connections
Features
Wide operating frequency range
Extreme ruggedness
Unmatched, capable of very broadband operation
Integrated stability enhancements
Low thermal resistance
Extended ESD protection circuit
2012, 2019 NXP B.V.
RF Device Data
NXP Semiconductors
MRFE6VS25NR1 MRFE6VS25GNR1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +133
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
--65 to +150
C
Case Operating Temperature
TC
--40 to +150
C
Operating Junction Temperature (1,2)
TJ
--40 to +225
C
Symbol
Value (2,3)
Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 80C, 25 W CW, 50 Vdc, IDQ = 10 mA, 512 MHz
RJC
1.2
C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 77C, 25 W Peak, 100 sec Pulse Width,
20% Duty Cycle, 50 Vdc, IDQ = 10 mA, 512 MHz
ZJC
0.29
C/W
Table 2. Thermal Characteristics
Characteristic
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
B, passes 250 V
Charge Device Model (per JESD22--C101)
IV, passes 2000 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
400
nAdc
133
142
—
Vdc
Off Characteristics
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 50 mA)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
2
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
7
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 85 Adc)
VGS(th)
1.5
2.0
2.5
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 10 mAdc, Measured in Functional Test)
VGS(Q)
2.0
2.4
3.0
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 210 mAdc)
VDS(on)
—
0.28
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.26
—
pF
Output Capacitance
(VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
14.2
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc 30 mV(rms)ac @ 1 MHz)
Ciss
—
39.2
—
pF
On Characteristics
Dynamic Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.nxp.com/RF/calculators.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.
(continued)
MRFE6VS25NR1 MRFE6VS25GNR1
2
RF Device Data
NXP Semiconductors
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1) (In NXP Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 10 mA, Pout = 25 W Peak (5 W Avg.), f = 512 MHz,
100 sec Pulse Width, 20% Duty Cycle
Power Gain
Gps
24.0
25.4
27.0
dB
Drain Efficiency
D
70.0
74.5
—
%
Input Return Loss
IRL
—
--16
--10
dB
Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) IDQ = 10 mA
Frequency
(MHz)
Signal
Type
VSWR
Pin
(W)
512
Pulse
(100 sec, 20% Duty Cycle)
>65:1
at all Phase Angles
0.14 Peak
(3 dB Overdrive)
CW
Test Voltage, VDD
Result
50
No Device Degradation
0.14
(3 dB Overdrive)
Table 6. Ordering Information
Device
MRFE6VS25NR1
MRFE6VS25GNR1
Shipping Information
R1 Suffix = 500 Units, 24 mm Tape Width, 13--Inch Reel
Package
TO--270--2
TO--270G--2
1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
3
TYPICAL CHARACTERISTICS
1.06
100
Ciss
IDQ = 10 mA
1.04
NORMALIZED VGS(Q)
C, CAPACITANCE (pF)
Coss
10
1
VDD = 50 Vdc
1.02
1
100 mA
0.98
150 mA
Crss
0.96
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
0.1
0
10
20
30
40
0.94
--40
60
50
50 mA
--20
0
20
40
60
80
100
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
TC, CASE TEMPERATURE (C)
Figure 2. Capacitance versus Drain--Source Voltage
Figure 3. Normalized VGS and Quiescent Current
versus Case Temperature
IDQ (mA)
Slope (mV/C)
10
--2.160
50
--1.790
100
--1.760
150
--1.680
108
VDD = 50 Vdc
ID = 0.6 Amps
MTTF (HOURS)
107
0.7 Amps
106
0.9 Amps
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
Figure 4. MTTF versus Junction Temperature — CW
MRFE6VS25NR1 MRFE6VS25GNR1
4
RF Device Data
NXP Semiconductors
512 MHz NARROWBAND PRODUCTION TEST FIXTURE
C1
C13
B2
C14
B1
C2 C3
L3
C4
C5*
L1
C7
C8
CUT OUT AREA
C6
C15
C12
L2
C10*
C11
C9*
MRFE6VS25N
Rev. 1
*C5, C9 and C10 are mounted vertically.
Figure 5. MRFE6VS25NR1 Narrowband Test Circuit Component Layout — 512 MHz
Table 7. MRFE6VS25NR1 Narrowband Test Circuit Component Designations and Values — 512 MHz
Part
Description
Part Number
Manufacturer
B1, B2
Long Ferrite Beads
2743021447
Fair-Rite
C1
22 F, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C2, C13
0.1 F Chip Capacitors
CDR33BX104AKWY
AVX
C3, C14
0.01 F Chip Capacitors
C0805C103K5RAC
Kemet
C4, C11, C12
180 pF Chip Capacitors
ATC100B181JT300XT
ATC
C5
18 pF Chip Capacitor
ATC100B180JT500XT
ATC
C6
2.7 pF Chip Capacitor
ATC100B2R7BT500XT
ATC
C7
15 pF Chip Capacitor
ATC100B150JT500XT
ATC
C8
36 pF Chip Capacitor
ATC100B360JT500XT
ATC
C9
4.3 pF Chip Capacitor
ATC100B4R3CT500XT
ATC
C10
13 pF Chip Capacitor
ATC100B130JT500XT
ATC
C15
470 F, 63 V Electrolytic Capacitor
MCGPR63V477M13X26-RH
Multicomp
L1
33 nH Inductor
1812SMS-33NJLC
Coilcraft
L2
12.5 nH Inductor
A04TJLC
Coilcraft
L3
82 nH Inductor
1812SMS-82NJLC
Coilcraft
PCB
0.030, r = 2.55
AD255A
Arlon
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
5
L3
B2
B1
VBIAS
C12
+
C1
C2
C3
C4
C13
C14
C15
L2
L1
RF
INPUT
Z11
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z12
Z13 Z14 Z15 Z16
C5
C7
C8
Z17 Z18
Z19
RF
OUTPUT
C11
Z10
C9
C6
VSUPPLY
+
C10
DUT
Figure 6. MRFE6VS25NR1 Narrowband Test Circuit Schematic — 512 MHz
Table 8. MRFE6VS25NR1 Narrowband Test Circuit Microstrips — 512 MHz
Microstrip
Description
Microstrip
Description
Z1
0.235 0.082 Microstrip
Z11
0.475 0.270 Microstrip
Z2
0.042 0.082 Microstrip
Z12
0.091 0.082 Microstrip
Z3
0.682 0.082 Microstrip
Z13
0.170 0.082 Microstrip
Z4*
0.200 0.060 Microstrip
Z14*
0.670 0.082 Microstrip
Z5
0.324 0.060 Microstrip
Z15
0.280 0.082 Microstrip
Z6*
0.200 0.060 Microstrip
Z16*
0.413 0.082 Microstrip
Z7
0.067 0.082 Microstrip
Z17*
0.259 0.082 Microstrip
Z8
0.142 0.082 Microstrip
Z18
0.761 0.082 Microstrip
Z9
0.481 0.082 Microstrip
Z19
0.341 0.082 Microstrip
Z10
0.190 0.270 Microstrip
* Line length includes microstrip bends
MRFE6VS25NR1 MRFE6VS25GNR1
6
RF Device Data
NXP Semiconductors
TYPICAL CHARACTERISTICS — 512 MHz
50
VDD = 50 Vdc
Pin = 0.07 W
f = 512 MHz
30
25
20
15
10
5
0
0
1
VDD = 50 Vdc
IDQ = 10 mA
f = 512 MHz
45
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS)
35
2
3
40
35
30
25
20
15
4
0
5
VGS, GATE--SOURCE VOLTAGE (VOLTS)
10
15
20
25
Pin, INPUT POWER (dBm)
Figure 7. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
f
(MHz)
P1dB
(W)
P3dB
(W)
512
27.8
31.4
Figure 8. CW Output Power versus Input Power
27
25
80
25_C
Gps
24
60
23
22
21
50
85_C
TC = --30_C
40
85_C
25_C
D
30
20
20
19
0.3
70
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
26
90
--30_C
VDD = 50 Vdc
IDQ = 10 mA
f = 512 MHz
10
1
10
50
Pout, OUTPUT POWER (WATTS)
Figure 9. Power Gain and Drain Efficiency
versus CW Output Power
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
7
512 MHz NARROWBAND PRODUCTION TEST FIXTURE
VDD = 50 Vdc, IDQ = 10 mA, Pout = 25 W Peak
f
MHz
Zsource
Zload
512
1.56 + j11.6
9.5 + j18.3
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50
Zload
Figure 10. Narrowband Series Equivalent Source and Load Impedance — 512 MHz
MRFE6VS25NR1 MRFE6VS25GNR1
8
RF Device Data
NXP Semiconductors
1.8--30 MHz BROADBAND REFERENCE CIRCUIT
Table 9. 1.8--30 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system)
VDD = 50 Volts, IDQ = 100 mA
Signal Type
Two-Tone
(10 kHz spacing)
Pout
(W)
f
(MHz)
Gps
(dB)
D
(%)
IMD
(dBc)
25 PEP
1.8
25.7
51.5
--30.7
10
25.8
50.7
--34.8
30
24.8
50.7
--33.0
Table 10. Load Mismatch/Ruggedness (In NXP Reference Circuit)
Frequency
(MHz)
Signal Type
VSWR
30
CW
>65:1
at all Phase
Angles
Pin
(W)
0.23
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device
Degradation
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
9
1.8--30 MHz BROADBAND REFERENCE CIRCUIT
C2
C3
C4
C6 C7
C5
C8
+
R1
E1, L1
C10
C9
C1*
E2, L2
C11*
CUT OUT AREA
Q1
MRFE6VS25L/N
Rev. 0
*C1 and C11 are mounted vertically.
Figure 11. MRFE6VS25NR1 Broadband Reference Circuit Component Layout — 1.8--30 MHz
Table 11. MRFE6VS25NR1 Broadband Reference Circuit Component Designations and Values — 1.8--30 MHz
Part
Description
Part Number
Manufacturer
C1, C5, C6, C9, C11
20K pF Chip Capacitors
ATC200B203KT50XT
ATC
C2
10 F, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C3
0.1 F Chip Capacitor
CDR33BX104AKWY
AVX
C4
2.2 F Chip Capacitor
C3225X7R1H225KT
TDK
C7
0.1 F Chip Capacitor
GRM319R72A104KA01D
Murata
C8
2.2 F Chip Capacitor
G2225X7R225KT3AB
ATC
C10
220 F, 100 V Electolytic Capacitor
MCGPR100V227M16X26-RH Multicomp
E1
#43 Ferrite Toroid
5943001101
Fair--Rite
E2
#61 Ferrite Toroid
5961001101
Fair--Rite
L1
4 Turns, 22 AWG, Toroid Transformer with Ferrite E1
8077 Copper Magnetic Wire
Belden
L2
26 Turns, 22 AWG, Toroid Transformer with Ferrite E2
8077 Copper Magnetic Wire
Belden
Q1
RF Power LDMOS Transistor
MRFE6VS25NR1
NXP
R1
1 k, 3 W Axial Leaded Resistor
CPF31K0000FKE14
Vishay
PCB
0.030, r = 4.8
S1000
Shenzhen Multilayer
PCB Technology
MRFE6VS25NR1 MRFE6VS25GNR1
10
RF Device Data
NXP Semiconductors
VBIAS
Z4
E1, L1
R1
+
C2
C3
C4
C5
Z8
Z3
+
C6
C7
C8
VSUPPLY
C10
C9
E2, L2
Z7
RF
INPUT
Z6
Z1
Z2
Z5
C1
Z9
Z10
RF
OUTPUT
C11
DUT
Figure 12. MRFE6VS25NR1 Broadband Reference Circuit Schematic — 1.8--30 MHz
Table 12. MRFE6VS25NR1 Broadband Reference Test Circuit Microstrips — 1.8--30 MHz
Microstrip
Description
Microstrip
Description
Z1, Z10
0.141 0.047 Microstrip
Z4, Z8
Z2, Z9
0.625 0.047 Microstrip
Z5, Z6
0.422 0.241 Microstrip
0.469 0.263 Microstrip
Z3
0.119 0.219 Microstrip
Z7
0.119 0.063 Microstrip
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
11
TYPICAL CHARACTERISTICS — 1.8--30 MHz
BROADBAND REFERENCE CIRCUIT
28
72
26
69
D
25
66
Gps
24
63
28
23
Pout
22
Pout, OUTPUT
POWER (WATTS)
Gps, POWER GAIN (dB)
27
D, DRAIN
EFFICIENCY (%)
75
VDD = 50 Vdc, Pin = 0.1 W
IDQ = 25 mA
26
21
24
20
0
5
10
15
20
30
25
22
f, FREQUENCY (MHz)
Figure 13. Power Gain, CW Output Power and Drain
Efficiency versus Frequency at a Constant Input Power
46
f = 10 MHz
30
f = 10 MHz
25
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS)
35
20
1.8 MHz
15
10
30 MHz
VDD = 50 Vdc
Pin = 0.1 W
5
0
0
0.5
1
1.5
2
2.5
3
44
1.8 MHz
42
30 MHz
40
VDD = 50 Vdc
IDQ = 25 mA
38
36
12
3.5
14
16
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 14. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
18
20
22
Pin, INPUT POWER (dBm)
24
f
(MHz)
P1dB
(W)
P3dB
(W)
1.8
10
30
23
25
25
28
30
30
26
28
Figure 15. CW Output Power versus Input Power
26
90
1.8 MHz
24
70
30 MHz
23
10 MHz
30 MHz
22
D
21
80
1.8 MHz
Gps
10 MHz
60
50
40
20
30
VDD = 50 Vdc
IDQ = 25 mA
19
18
5
10
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
25
20
10
15
20
25
30
35
Pout, OUTPUT POWER (WATTS)
Figure 16. Power Gain and Drain Efficiency versus CW Output Power
MRFE6VS25NR1 MRFE6VS25GNR1
12
RF Device Data
NXP Semiconductors
TYPICAL CHARACTERISTICS — 1.8--30 MHz
BROADBAND REFERENCE CIRCUIT — TWO--TONE (1)
--25
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
--20
VDD = 50 Vdc, IDQ = 100 mA
f1 = 1.795 MHz, f2 = 1.805 MHz
Two--Tone Measurements
--30
3rd Order
--40
--50
--60
7th Order
5th Order
--70
--35
3rd Order
--40
--45
5th Order
--50
--55
7th Order
--60
30
10
2
VDD = 50 Vdc, IDQ = 100 mA
f1 = 9.995 MHz, f2 = 10.005 MHz
Two--Tone Measurements
--30
10
2
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 17. Intermodulation Distortion
Products versus Output Power — 1.8 MHz
Figure 18. Intermodulation Distortion
Products versus Output Power — 10 MHz
IMD, INTERMODULATION DISTORTION (dBc)
--25
30
VDD = 50 Vdc, IDQ = 100 mA
f1 = 29.995 MHz, f2 = 30.005 MHz
Two--Tone Measurements
--30
--35
--40
3rd Order
--45
--50
5th Order
--55
7th Order
--60
2
10
30
Pout, OUTPUT POWER (WATTS) PEP
Figure 19. Intermodulation Distortion
Products versus Output Power — 30 MHz
1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone.
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
13
1.8--30 MHz BROADBAND REFERENCE CIRCUIT
Zo = 50
f = 1.8 MHz
Zsource
f = 1.8 MHz
f = 30 MHz
f = 30 MHz
Zload
VDD = 50 Vdc, IDQ = 25 mA, Pout = 25 W CW
f
MHz
Zsource
Zload
1.8
44.4 + j12.8
50.8 - j0.70
5
47.2 + j4.40
50.0 - j0.70
10
46.4 + j1.50
49.7 - j0.90
15
46.0 + j0.70
49.4 - j1.60
20
45.7 - j0.40
48.8 - j2.90
25
45.1 - j1.60
47.9 - j4.30
30
44.6 - j2.90
47.0 - j5.70
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50
Zload
Figure 20. Broadband Series Equivalent Source and Load Impedance — 1.8--30 MHz
MRFE6VS25NR1 MRFE6VS25GNR1
14
RF Device Data
NXP Semiconductors
30--512 MHz BROADBAND REFERENCE CIRCUIT
Table 13. 30--512 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system)
VDD = 50 Volts, IDQ = 100 mA
Signal Type
Two-Tone
(200 kHz spacing)
Pout
(W)
f
(MHz)
Gps
(dB)
D
(%)
IMD
(dBc)
25 PEP
30
17.1
34.8
--32.4
100
18.1
37.7
--33.3
512
17.3
30.1
--38.5
Table 14. Load Mismatch/Ruggedness (In NXP Reference Circuit)
Frequency
(MHz)
Signal Type
VSWR
512
CW
>65:1
at all Phase
Angles
Pin
(W)
1.6
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device
Degradation
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
15
30--512 MHz BROADBAND REFERENCE CIRCUIT
D1
C5
C6
C10
E2, L2
R3
R1
C9
C11
C8
T2
C7
E3
L1
R2
C2
C4
C3
C1
Q1
E4
E1
T1
T3
MRFE6VS25L/N
Rev. 0
Note: See Figure 21a for a more detailed view of the semi--flex cables with shields and #61 multi--aperture cores.
Figure 21. MRFE6VS25NR1 Broadband Reference Circuit Component Layout — 30--512 MHz
Table 15. MRFE6VS25NR1 Broadband Reference Circuit Component Designations and Values — 30--512 MHz
Part
Description
Part Number
Manufacturer
C1, C3, C6, C7, C8
1,000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C2
2.7 pF Chip Capacitor
ATC100B2R7BT500XT
ATC
C4
15 nF Chip Capacitor
C3225CH2A153JT
TDK
C5, C9
10 nF Chip Capacitors
GRM3195C1E103JA01
Murata
C10
1 F Chip Capacitor
C3225JB2A105KT
TDK
C11
220 F, 100 V Electrolytic Capacitor
MCGPR100V227M16X26-RH
Multicomp
D1
8.2 V, 1 W Zener Diode
1N4738A
Fairchild Semiconductor
E1, E3, E4
#61 Multi-aperture Cores
2861001502
Fair-Rite
E2
Ferrite Core Bead
21-201-J
Ferronics
L1
47 nH Inductor
1812SMS-47NJLC
Coilcraft
L2
4 Turns, 20 AWG, Toroid Transformer with
Ferrite E2
8076 Copper Magnetic Wire
Belden
Q1
RF Power LDMOS Transistor
MRFE6VS25NR1
NXP
R1
5.6 k, 1/4 W Chip Resistor
CRCW12065K60FKEA
Vishay
R2
15 , 1/4 W Chip Resistor
CRCW120615R0FKEA
Vishay
R3
5 k Potentiometer CMS Cermet Multi--turn
3224W-1-502E
Bourns
T1
25 Semi-flex Cable, 0.945 Shield Length
D260-4118-0000
Microdot
T2, T3
25 Semi-flex Cables, 1.340 Shield Length
D260-4118-0000
Microdot
PCB
0.030, r = 3.5
TC350
Arlon
MRFE6VS25NR1 MRFE6VS25GNR1
16
RF Device Data
NXP Semiconductors
Center conductor
connection to PCB
T2
E3
C2
Shield connection
to PCB
C3
C4
E1
T2
E3
S
T1
Z12
T3
T3
E1
S
T1
E4
S
S
E4
S
NOT TO SCALE
T3
S
S = Shield
Figure 21a. Detailed View of Semi--flex Cables with Shields and #61 Multi--aperture Cores
L1
D1
C5
C6
Z2
Z3
Z4
Z6
T1
E1
C1
C2
C9
C10
C11
T2
Z8
E3
Z9
R2
Z1
C8
L2, E2
R3
C7
RF
INPUT
VSUPPLY
+
R1
Z12
Z10
Z7
Z11
Z14 Z15 Z16
T3
RF
OUTPUT
E4
C4
Z13
C3
DUT
Z5
Figure 22. MRFE6VS25NR1 Broadband Reference Circuit Schematic — 30--512 MHz
Table 16. MRFE6VS25NR1 Broadband Reference Circuit Microstrips — 30--512 MHz
Microstrip
Description
Microstrip
Description
Z1
0.180 0.080 Microstrip
Z9
0.080 0.310 Microstrip
Z2
0.080 0.190 Microstrip
Z10
0.260 0.260 Microstrip
Z3
0.230 0.190 Microstrip
Z11
0.140 0.190 Microstrip
Z4
0.150 0.190 Microstrip
Z12
0.170 0.080 Microstrip
Z5
0.180 0.190 Microstrip
Z13
0.210 0.060 Microstrip
Z6
0.220 0.190 Microstrip
Z14
0.420 0.190 Microstrip
Z7
0.230 0.260 Microstrip
Z15
0.070 0.140 Microstrip
Z8
0.140 0.150 Microstrip
Z16
0.190 0.080 Microstrip
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
17
TYPICAL CHARACTERISTICS — 30--512 MHz
BROADBAND REFERENCE CIRCUIT
100
VDD = 50 Vdc, Pin = 0.8 W
IDQ = 25 mA
90
Gps
Gps, POWER GAIN (dB)
16
80
14
70
12
60
10
50
D
8
40
30
6
4
20
Pout
D, DRAIN EFFICIENCY (%)
18
Pout, OUTPUT POWER (WATTS)
20
10
2
0
0
50
100
150 200
250 300 350 400 450
0
500 550
f, FREQUENCY (MHz)
Figure 23. Power Gain, CW Output Power and Drain
Efficiency versus Frequency at a Constant Input Power
45
40
35
30
VDD = 50 Vdc
Pin = 0.325 W
35
30 MHz
Pout, OUTPUT POWER (WATTS)
40
Pout, OUTPUT POWER (WATTS)
f = 100 MHz
VDD = 50 Vdc
Pin = 0.65 W
512 MHz
25
20
15
10
5
0
30
f = 512 MHz
25
20
15
100 MHz
10
30 MHz
5
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0
0.5
1
1.5
2
2.5
3
3.5
4
VGS, GATE--SOURCE VOLTAGE (VOLTS)
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 24. CW Output Power versus Gate--Source
Voltage at a Constant Input Power — 0.65 W
Figure 25. CW Output Power versus Gate--Source
Voltage at a Constant Input Power — 0.325 W
MRFE6VS25NR1 MRFE6VS25GNR1
18
RF Device Data
NXP Semiconductors
TYPICAL CHARACTERISTICS — 30--512 MHz
BROADBAND REFERENCE CIRCUIT
48
VDD = 50 Vdc
IDQ = 25 mA
Pout, OUTPUT POWER (WATTS)
46
44
42
40
f = 100 MHz
38
36
30 MHz
512 MHz
34
32
30
16
18
20
22
24
26
28
30
32
Pin, INPUT POWER (dBm)
f
(MHz)
P1dB
(W)
P3dB
(W)
30
34.4
52.5
100
37.2
47.8
512
30.1
34.3
Figure 26. CW Output Power versus Input Power
19
70
VDD = 50 Vdc
IDQ = 25 mA
60
Gps
17
50
f = 100 MHz
16
40
30 MHz
15
30
30 MHz
512 MHz
14
100 MHz
512 MHz
13
20
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
18
10
D
12
0
1
10
60
Pout, OUTPUT POWER (WATTS)
Figure 27. Power Gain and Drain Efficiency
versus CW Output Power
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
19
TYPICAL CHARACTERISTICS — 30--512 MHz
BROADBAND REFERENCE CIRCUIT — TWO--TONE (1)
--20
VDD = 50 Vdc, IDQ = 100 mA
f1 = 29.9 MHz, f2 = 30.1 MHz, Two--Tone Measurements
--25
--30
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
--20
--35
3rd Order
--40
--45
--50
--55
5th Order
--60
--65
7th Order
--70
--75
10
1
40
VDD = 50 Vdc, IDQ = 100 mA
f1 = 99.9 MHz, f2 = 100.1 MHz, Two--Tone Measurements
--25
--30
--35
--40
3rd Order
--45
--50
--55
5th Order
--60
--65
7th Order
--70
--75
10
1
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 28. Intermodulation Distortion
Products versus Output Power — 30 MHz
Figure 29. Intermodulation Distortion
Products versus Output Power — 100 MHz
IMD, INTERMODULATION DISTORTION (dBc)
--20
40
VDD = 50 Vdc, IDQ = 100 mA
f1 = 511.9 MHz, f2 = 512.1 MHz, Two--Tone Measurements
--25
--30
--35
3rd Order
--40
--45
--50
--55
5th Order
--60
--65
7th Order
--70
--75
1
10
40
Pout, OUTPUT POWER (WATTS) PEP
Figure 30. Intermodulation Distortion
Products versus Output Power — 512 MHz
1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone.
MRFE6VS25NR1 MRFE6VS25GNR1
20
RF Device Data
NXP Semiconductors
30--512 MHz BROADBAND REFERENCE CIRCUIT
Zo = 50
f = 512 MHz
f = 30 MHz
Zload
Zsource
f = 512 MHz
f = 30 MHz
VDD = 50 Vdc, IDQ = 25 mA, Pout = 25 W CW
f
MHz
Zsource
Zload
30
7.60 - j0.40
18.3 + j9.40
64
9.30 + j1.40
21.9 + j4.00
88
10.3 + j1.40
22.2 + j1.90
98
10.6 + j1.20
22.2 + j1.40
100
10.7 + j1.20
22.3 + j1.30
108
10.9 + j0.90
22.5 + j0.50
144
10.7 - j0.40
21.2 - j1.50
170
9.70 - j0.60
19.8 - j1.80
230
8.10 + j0.30
17.4 - j0.80
352
7.20 + j4.30
17.0 + j2.80
450
7.40 + j5.00
21.3 + j4.60
512
8.10 + j7.60
25.2 + j5.90
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50
Zload
Figure 31. Broadband Series Equivalent Source and Load Impedance — 30--512 MHz
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
21
1030 MHz NARROWBAND REFERENCE CIRCUIT
Table 17. 1030 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system)
VDD = 50 Volts, IDQ = 25 mA
Signal Type
Pout
(W)
f
(MHz)
Gps
(dB)
D
(%)
CW
25
1030
22.5
60.0
Table 18. Load Mismatch/Ruggedness (In NXP Reference Circuit)
Frequency
(MHz)
Signal Type
VSWR
1030
CW
>65:1
at all Phase
Angles
Pin
(W)
0.34
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device
Degradation
MRFE6VS25NR1 MRFE6VS25GNR1
22
RF Device Data
NXP Semiconductors
1030 MHz NARROWBAND REFERENCE TEST FIXTURE
C4
C5
C7
C8
B1
MRFE6VS25N
Rev. 0
C6
C9
C14
C10
C11
C12 C13
L1
C1
C15
C17
Q1
C2
C20
L2
C3
C18
C19
CUT OUT AREA
C16
Figure 32. MRFE6VS25NR1 Narrowband Reference Circuit Component Layout — 1030 MHz
Table 19. MRFE6VS25NR1 Narrowband Reference Circuit Component Designations and Values — 1030 MHz
Part
Description
Part Number
Manufacturer
B1
Short Ferrite Bead
2743019447
Fair-Rite
C1, C3
22 pF Chip Capacitors
ATC100B220JT500XT
ATC
C2
6.2 pF Chip Capacitor
ATC100B6R2BT500XT
ATC
C4
10 F Chip Capacitor
GRM55DR61H106KA88L
Murata
C5
0.01 F Chip Capacitor
GRM319R72A103KA01D
Murata
C6
43 pF Chip Capacitor
ATC100B430JT500XT
ATC
C7
0.1 F Chip Capacitor
GRM32MR71H104JA01L
Murata
C8
1.0 F Chip Capacitor
GRM31MR71H105KA88L
Murata
C9
0.1 F Chip Capacitor
C1206C104K1RAC-TU
Kemet
C10
20K pF Chip Capacitor
ATC200B203KT50XT
ATC
C11
470 pF Chip Capacitor
ATC100B471JT200XT
ATC
C12, C13
22 F Chip Capacitors
C5750KF1H226ZT
TDK
C14
470 pF, 63 V Electrolytic Capacitor
MCGPR63V477M13X26-RH
Multicomp
C15, C17
4.3 pF Chip Capacitors
ATC100B4R3CT500XT
ATC
C16, C19
0.6-4.5 pF Tuning Capacitors
27271SL
Johanson Components
C18
2.2 pF Chip Capacitor
ATC100B2R2JT500XT
ATC
C20
20 pF Chip Capacitor
ATC100B200JT500XT
ATC
L1
43 nH, 10 Turn Inductor
B10TJLC
Coilcraft
L2
2.5 nH, 1 Turn Inductor
A01TKLC
Coilcraft
Q1
RF Power LDMOS Transistor
MRFE6VS25NR1
NXP
PCB
0.030, r = 3.5
TL350
Arlon
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
23
B1 Z10
VBIAS
Z9
C11
C4
C5
C7
C8
VSUPPLY
+
C6
C10
C9
C12
C13
C14
L1
Z8
RF
INPUT
Z11
Z1
Z2
Z3
Z4
Z5
Z6
Z12
Z13
L2
Z15
C1
C3
Z16
C20
Z7
C16
C2
Z14
RF
OUTPUT
C17
C15
C18
C19
DUT
Figure 33. MRFE6VS25NR1 Narrowband Reference Circuit Schematic — 1030 MHz
Table 20. MRFE6VS25NR1 Narrowband Reverence Test Circuit Microstrips — 1030 MHz
Microstrip
Description
Microstrip
Description
Z1
0.200 0.080 Microstrip
Z9
0.350 0.378 Microstrip
Z2
0.569 0.120 Microstrip
Z10
0.151 0.108 Microstrip
Z3
0.339 0.320 Microstrip
Z11
0.699 0.620 Microstrip
Z4
0.272 0.320 Microstrip
Z13
0.243 0.320 Microstrip
Z5, Z12
0.160 0.320 0.620 Taper
Z14
0.350 0.320 Microstrip
Z6
0.522 0.620 Microstrip
Z15
0.450 0.107 Microstrip
Z7
0.218 0.620 Microstrip
Z16
0.200 0.107 Microstrip
Z8*
0.094 1.121 Microstrip
* Line length includes microstrip bends
MRFE6VS25NR1 MRFE6VS25GNR1
24
RF Device Data
NXP Semiconductors
TYPICAL CHARACTERISTICS — 1030 MHz
NARROWBAND REFERENCE CIRCUIT
46
VDD = 50 Vdc
Pin = 0.14 W
f = 1030 MHz
25
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS)
30
20
15
10
5
0
0
0.5
1
1.5
2
2.5
3
42
40
38
36
16
4
3.5
VDD = 50 Vdc
IDQ = 25 mA
f = 1030 MHz
44
18
22
20
VGS, GATE--SOURCE VOLTAGE (VOLTS)
24
26
Pin, INPUT POWER (dBm)
Figure 34. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
f
(MHz)
P1dB
(W)
P3dB
(W)
1030
29
31
Figure 35. CW Output Power versus Input Power
23
65
VDD = 50 Vdc
IDQ = 25 mA
f = 1030 MHz
22
60
55
50
21.5
21
45
Gps
20.5
40
20
35
19.5
D, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
22.5
30
D
19
25
0
5
10
15
20
25
30
35
Pout, OUTPUT POWER (WATTS)
Figure 36. Power Gain and Drain Efficiency
versus CW Output Power
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
25
1030 MHz NARROWBAND REFERENCE CIRCUIT
VDD = 50 Vdc, IDQ = 25 mA, Pout = 25 W CW
f
MHz
Zsource
Zload
1030
0.74 + j4.53
3.08 + j7.78
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50
Input
Matching
Network
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Zsource
50
Zload
Figure 37. Narrowband Series Equivalent Source and Load Impedance — 1030 MHz
MRFE6VS25NR1 MRFE6VS25GNR1
26
RF Device Data
NXP Semiconductors
PACKAGE DIMENSIONS
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
27
MRFE6VS25NR1 MRFE6VS25GNR1
28
RF Device Data
NXP Semiconductors
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
29
MRFE6VS25NR1 MRFE6VS25GNR1
30
RF Device Data
NXP Semiconductors
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
31
MRFE6VS25NR1 MRFE6VS25GNR1
32
RF Device Data
NXP Semiconductors
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages
AN1955: Thermal Measurement Methodology of RF Power Amplifiers
AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages
AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
EB212: Using Data Sheet Impedances for RF LDMOS Devices
EB38: Measuring the Intermodulation Distortion of Linear Amplifiers
Software
Electromigration MTTF Calculator
RF High Power Model
.s2p File
Development Tools
Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.nxp.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
June 2012
Initial Release of Data Sheet
1
Dec. 2012
Added part number MRFE6VS25GNR1, p. 1
Added 1265A--03 (TO--270--2 Gull) package isometric, p. 1, and Mechanical Outline, p. 30--32
Load Mismatch/Ruggedness tables: changed output power to input power to clarify the conditions used
during test, p. 1, 3, 9, 22
Figs. 17, 18 and 19, Intermodulation Distortion Products versus Output Power (1.8, 10, 30 MHz): corrected
x--axis data to show Watts (PEP) measurement, p. 13
Added 30--512 MHz Broadband Reference Circuit as follows:
-- Typical Performance table, p. 1
-- Table 12, Broadband Performance, p. 15
-- Table 13, Load Mismatch/Ruggedness, p. 15
-- Fig. 21, Broadband Reference Circuit Component Layout, p. 16
-- Table 14, Broadband Reference Circuit Component Designations and Values, p. 16
-- Fig. 21a, Detailed View of Semi--flex Cables with Shields and #61 Multi--aperture Cores, p. 17
-- Fig. 22, Broadband Reference Circuit Schematic, p. 17
-- Table 15, Broadband Reference Circuit Microstrips, p. 17
-- Fig. 23, Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input
Power, p. 18
-- Fig. 24, CW Output Power versus Gate--Source Voltage at a Constant Input Power, Pin = 0.65 W, p. 18
-- Fig. 25, CW Output Power versus Gate--Source Voltage at a Constant Input Power, Pin = 0.325 W, p. 18
-- Fig. 26, CW Output Power versus Input Power, p. 19
-- Fig. 27, Power Gain and Drain Efficiency versus CW Output Power, p. 19
-- Fig. 28, Intermodulation Distortion Products versus Output Power -- 30 MHz, p. 20
-- Fig. 29, Intermodulation Distortion Products versus Output Power -- 100 MHz, p. 20
-- Fig. 30, Intermodulation Distortion Products versus Output Power -- 512 MHz, p. 20
-- Fig. 31, Broadband Series Equivalent Source and Load Impedance, p. 21
2
Mar. 2019
Fig. 1, Pin Connections, corrected Drain (Pin 1) and Gate (Pin 2) to reflect correct pin numbers, p. 1
Table 6, Ordering Information, added table, p. 3
Package Outline Drawings: TO--270--2 package outline updated to Rev. R, pp. 27–29. TO--270G--2
package outline updated to Rev. D, pp. 30–32.
MRFE6VS25NR1 MRFE6VS25GNR1
RF Device Data
NXP Semiconductors
33
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the information
in this document. NXP reserves the right to make changes without further notice to any
products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.
NXP, the NXP logo, Freescale and the Freescale logo are trademarks of NXP B.V.
All other product or service names are the property of their respective owners.
E 2012, 2019 NXP B.V.
MRFE6VS25NR1 MRFE6VS25GNR1
Document Number: MRFE6VS25N
Rev. 2, 03/2019
34
RF Device Data
NXP Semiconductors