0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRFE6VS25NR1

MRFE6VS25NR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO270AA

  • 描述:

    RF Mosfet LDMOS 50V 10mA 512MHz 25.4dB 25W TO-270-2

  • 数据手册
  • 价格&库存
MRFE6VS25NR1 数据手册
NXP Semiconductors Technical Data Document Number: MRFE6VS25N Rev. 2, 03/2019 RF Power LDMOS Transistors MRFE6VS25NR1 MRFE6VS25GNR1 High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs RF power transistors designed for both narrowband and broadband ISM, broadcast and aerospace applications operating at frequencies from 1.8 to 2000 MHz. These devices are fabricated using NXP’s enhanced ruggedness platform and are suitable for use in applications where high VSWRs are encountered. Typical Performance: VDD = 50 Volts Frequency (MHz) Signal Type Pout (W) Gps (dB) D (%) IMD (1) (dBc) 1.8 to 30 (2,6) Two--Tone (10 kHz spacing) 25 PEP 25 51 --30 30--512 (3,6) Two--Tone (200 kHz spacing) 25 PEP 17.1 30.1 --32 512 (4) Pulse (100 sec, 20% Duty Cycle) 25 Peak 25.4 74.5 — 512 (4) CW 25 25.5 74.7 — CW 25 22.5 60 — 1030 (5) 1.8--2000 MHz, 25 W, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS TO--270--2 PLASTIC MRFE6VS25NR1 Load Mismatch/Ruggedness Frequency (MHz) Signal Type VSWR Pin (W) Test Voltage 30 (2) CW >65:1 at all Phase Angles 0.23 (3 dB Overdrive) 50 512 (3) CW 1.6 (3 dB Overdrive) 512 (4) Pulse (100 sec, 20% Duty Cycle) 0.14 Peak (3 dB Overdrive) 512 (4) CW 0.14 (3 dB Overdrive 1030 1. 2. 3. 4. 5. 6. (5) CW Result No Device Degradation 0.34 (3 dB Overdrive Distortion products are referenced to one of two tones. See p. 13, 20. Measured in 1.8--30 MHz broadband reference circuit. Measured in 30--512 MHz broadband reference circuit. Measured in 512 MHz narrowband test circuit. Measured in 1030 MHz narrowband test circuit. The values shown are the minimum measured performance numbers across the indicated frequency range. TO--270G--2 PLASTIC MRFE6VS25GNR1 Gate 2 1 Drain (Top View) Note: The backside of the package is the source terminal for the transistor. Figure 1. Pin Connections Features       Wide operating frequency range Extreme ruggedness Unmatched, capable of very broadband operation Integrated stability enhancements Low thermal resistance Extended ESD protection circuit  2012, 2019 NXP B.V. RF Device Data NXP Semiconductors MRFE6VS25NR1 MRFE6VS25GNR1 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +133 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg --65 to +150 C Case Operating Temperature TC --40 to +150 C Operating Junction Temperature (1,2) TJ --40 to +225 C Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 80C, 25 W CW, 50 Vdc, IDQ = 10 mA, 512 MHz RJC 1.2 C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 77C, 25 W Peak, 100 sec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ = 10 mA, 512 MHz ZJC 0.29 C/W Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) B, passes 250 V Charge Device Model (per JESD22--C101) IV, passes 2000 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 400 nAdc 133 142 — Vdc Off Characteristics Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 50 mA) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 2 Adc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 7 Adc Gate Threshold Voltage (VDS = 10 Vdc, ID = 85 Adc) VGS(th) 1.5 2.0 2.5 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 10 mAdc, Measured in Functional Test) VGS(Q) 2.0 2.4 3.0 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 210 mAdc) VDS(on) — 0.28 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.26 — pF Output Capacitance (VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 14.2 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz) Ciss — 39.2 — pF On Characteristics Dynamic Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.nxp.com/RF/calculators. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. (continued) MRFE6VS25NR1 MRFE6VS25GNR1 2 RF Device Data NXP Semiconductors Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Functional Tests (1) (In NXP Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 10 mA, Pout = 25 W Peak (5 W Avg.), f = 512 MHz, 100 sec Pulse Width, 20% Duty Cycle Power Gain Gps 24.0 25.4 27.0 dB Drain Efficiency D 70.0 74.5 — % Input Return Loss IRL — --16 --10 dB Load Mismatch/Ruggedness (In NXP Test Fixture, 50 ohm system) IDQ = 10 mA Frequency (MHz) Signal Type VSWR Pin (W) 512 Pulse (100 sec, 20% Duty Cycle) >65:1 at all Phase Angles 0.14 Peak (3 dB Overdrive) CW Test Voltage, VDD Result 50 No Device Degradation 0.14 (3 dB Overdrive) Table 6. Ordering Information Device MRFE6VS25NR1 MRFE6VS25GNR1 Shipping Information R1 Suffix = 500 Units, 24 mm Tape Width, 13--Inch Reel Package TO--270--2 TO--270G--2 1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 3 TYPICAL CHARACTERISTICS 1.06 100 Ciss IDQ = 10 mA 1.04 NORMALIZED VGS(Q) C, CAPACITANCE (pF) Coss 10 1 VDD = 50 Vdc 1.02 1 100 mA 0.98 150 mA Crss 0.96 Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 0.1 0 10 20 30 40 0.94 --40 60 50 50 mA --20 0 20 40 60 80 100 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) TC, CASE TEMPERATURE (C) Figure 2. Capacitance versus Drain--Source Voltage Figure 3. Normalized VGS and Quiescent Current versus Case Temperature IDQ (mA) Slope (mV/C) 10 --2.160 50 --1.790 100 --1.760 150 --1.680 108 VDD = 50 Vdc ID = 0.6 Amps MTTF (HOURS) 107 0.7 Amps 106 0.9 Amps 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. Figure 4. MTTF versus Junction Temperature — CW MRFE6VS25NR1 MRFE6VS25GNR1 4 RF Device Data NXP Semiconductors 512 MHz NARROWBAND PRODUCTION TEST FIXTURE C1 C13 B2 C14 B1 C2 C3 L3 C4 C5* L1 C7 C8 CUT OUT AREA C6 C15 C12 L2 C10* C11 C9* MRFE6VS25N Rev. 1 *C5, C9 and C10 are mounted vertically. Figure 5. MRFE6VS25NR1 Narrowband Test Circuit Component Layout — 512 MHz Table 7. MRFE6VS25NR1 Narrowband Test Circuit Component Designations and Values — 512 MHz Part Description Part Number Manufacturer B1, B2 Long Ferrite Beads 2743021447 Fair-Rite C1 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet C2, C13 0.1 F Chip Capacitors CDR33BX104AKWY AVX C3, C14 0.01 F Chip Capacitors C0805C103K5RAC Kemet C4, C11, C12 180 pF Chip Capacitors ATC100B181JT300XT ATC C5 18 pF Chip Capacitor ATC100B180JT500XT ATC C6 2.7 pF Chip Capacitor ATC100B2R7BT500XT ATC C7 15 pF Chip Capacitor ATC100B150JT500XT ATC C8 36 pF Chip Capacitor ATC100B360JT500XT ATC C9 4.3 pF Chip Capacitor ATC100B4R3CT500XT ATC C10 13 pF Chip Capacitor ATC100B130JT500XT ATC C15 470 F, 63 V Electrolytic Capacitor MCGPR63V477M13X26-RH Multicomp L1 33 nH Inductor 1812SMS-33NJLC Coilcraft L2 12.5 nH Inductor A04TJLC Coilcraft L3 82 nH Inductor 1812SMS-82NJLC Coilcraft PCB 0.030, r = 2.55 AD255A Arlon MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 5 L3 B2 B1 VBIAS C12 + C1 C2 C3 C4 C13 C14 C15 L2 L1 RF INPUT Z11 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z12 Z13 Z14 Z15 Z16 C5 C7 C8 Z17 Z18 Z19 RF OUTPUT C11 Z10 C9 C6 VSUPPLY + C10 DUT Figure 6. MRFE6VS25NR1 Narrowband Test Circuit Schematic — 512 MHz Table 8. MRFE6VS25NR1 Narrowband Test Circuit Microstrips — 512 MHz Microstrip Description Microstrip Description Z1 0.235  0.082 Microstrip Z11 0.475  0.270 Microstrip Z2 0.042  0.082 Microstrip Z12 0.091  0.082 Microstrip Z3 0.682  0.082 Microstrip Z13 0.170  0.082 Microstrip Z4* 0.200  0.060 Microstrip Z14* 0.670  0.082 Microstrip Z5 0.324  0.060 Microstrip Z15 0.280  0.082 Microstrip Z6* 0.200  0.060 Microstrip Z16* 0.413  0.082 Microstrip Z7 0.067  0.082 Microstrip Z17* 0.259  0.082 Microstrip Z8 0.142  0.082 Microstrip Z18 0.761  0.082 Microstrip Z9 0.481  0.082 Microstrip Z19 0.341  0.082 Microstrip Z10 0.190  0.270 Microstrip * Line length includes microstrip bends MRFE6VS25NR1 MRFE6VS25GNR1 6 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS — 512 MHz 50 VDD = 50 Vdc Pin = 0.07 W f = 512 MHz 30 25 20 15 10 5 0 0 1 VDD = 50 Vdc IDQ = 10 mA f = 512 MHz 45 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) 35 2 3 40 35 30 25 20 15 4 0 5 VGS, GATE--SOURCE VOLTAGE (VOLTS) 10 15 20 25 Pin, INPUT POWER (dBm) Figure 7. CW Output Power versus Gate--Source Voltage at a Constant Input Power f (MHz) P1dB (W) P3dB (W) 512 27.8 31.4 Figure 8. CW Output Power versus Input Power 27 25 80 25_C Gps 24 60 23 22 21 50 85_C TC = --30_C 40 85_C 25_C D 30 20 20 19 0.3 70 D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 26 90 --30_C VDD = 50 Vdc IDQ = 10 mA f = 512 MHz 10 1 10 50 Pout, OUTPUT POWER (WATTS) Figure 9. Power Gain and Drain Efficiency versus CW Output Power MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 7 512 MHz NARROWBAND PRODUCTION TEST FIXTURE VDD = 50 Vdc, IDQ = 10 mA, Pout = 25 W Peak f MHz Zsource  Zload  512 1.56 + j11.6 9.5 + j18.3 Zsource = Test circuit impedance as measured from gate to ground. Zload 50  Input Matching Network = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Zsource 50  Zload Figure 10. Narrowband Series Equivalent Source and Load Impedance — 512 MHz MRFE6VS25NR1 MRFE6VS25GNR1 8 RF Device Data NXP Semiconductors 1.8--30 MHz BROADBAND REFERENCE CIRCUIT Table 9. 1.8--30 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system) VDD = 50 Volts, IDQ = 100 mA Signal Type Two-Tone (10 kHz spacing) Pout (W) f (MHz) Gps (dB) D (%) IMD (dBc) 25 PEP 1.8 25.7 51.5 --30.7 10 25.8 50.7 --34.8 30 24.8 50.7 --33.0 Table 10. Load Mismatch/Ruggedness (In NXP Reference Circuit) Frequency (MHz) Signal Type VSWR 30 CW >65:1 at all Phase Angles Pin (W) 0.23 (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 9 1.8--30 MHz BROADBAND REFERENCE CIRCUIT C2 C3 C4 C6 C7 C5 C8 + R1 E1, L1 C10 C9 C1* E2, L2 C11* CUT OUT AREA Q1 MRFE6VS25L/N Rev. 0 *C1 and C11 are mounted vertically. Figure 11. MRFE6VS25NR1 Broadband Reference Circuit Component Layout — 1.8--30 MHz Table 11. MRFE6VS25NR1 Broadband Reference Circuit Component Designations and Values — 1.8--30 MHz Part Description Part Number Manufacturer C1, C5, C6, C9, C11 20K pF Chip Capacitors ATC200B203KT50XT ATC C2 10 F, 35 V Tantalum Capacitor T491D106K035AT Kemet C3 0.1 F Chip Capacitor CDR33BX104AKWY AVX C4 2.2 F Chip Capacitor C3225X7R1H225KT TDK C7 0.1 F Chip Capacitor GRM319R72A104KA01D Murata C8 2.2 F Chip Capacitor G2225X7R225KT3AB ATC C10 220 F, 100 V Electolytic Capacitor MCGPR100V227M16X26-RH Multicomp E1 #43 Ferrite Toroid 5943001101 Fair--Rite E2 #61 Ferrite Toroid 5961001101 Fair--Rite L1 4 Turns, 22 AWG, Toroid Transformer with Ferrite E1 8077 Copper Magnetic Wire Belden L2 26 Turns, 22 AWG, Toroid Transformer with Ferrite E2 8077 Copper Magnetic Wire Belden Q1 RF Power LDMOS Transistor MRFE6VS25NR1 NXP R1 1 k, 3 W Axial Leaded Resistor CPF31K0000FKE14 Vishay PCB 0.030, r = 4.8 S1000 Shenzhen Multilayer PCB Technology MRFE6VS25NR1 MRFE6VS25GNR1 10 RF Device Data NXP Semiconductors VBIAS Z4 E1, L1 R1 + C2 C3 C4 C5 Z8 Z3 + C6 C7 C8 VSUPPLY C10 C9 E2, L2 Z7 RF INPUT Z6 Z1 Z2 Z5 C1 Z9 Z10 RF OUTPUT C11 DUT Figure 12. MRFE6VS25NR1 Broadband Reference Circuit Schematic — 1.8--30 MHz Table 12. MRFE6VS25NR1 Broadband Reference Test Circuit Microstrips — 1.8--30 MHz Microstrip Description Microstrip Description Z1, Z10 0.141  0.047 Microstrip Z4, Z8 Z2, Z9 0.625  0.047 Microstrip Z5, Z6 0.422  0.241 Microstrip 0.469  0.263 Microstrip Z3 0.119  0.219 Microstrip Z7 0.119  0.063 Microstrip MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 11 TYPICAL CHARACTERISTICS — 1.8--30 MHz BROADBAND REFERENCE CIRCUIT 28 72 26 69 D 25 66 Gps 24 63 28 23 Pout 22 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) 27 D, DRAIN EFFICIENCY (%) 75 VDD = 50 Vdc, Pin = 0.1 W IDQ = 25 mA 26 21 24 20 0 5 10 15 20 30 25 22 f, FREQUENCY (MHz) Figure 13. Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power 46 f = 10 MHz 30 f = 10 MHz 25 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) 35 20 1.8 MHz 15 10 30 MHz VDD = 50 Vdc Pin = 0.1 W 5 0 0 0.5 1 1.5 2 2.5 3 44 1.8 MHz 42 30 MHz 40 VDD = 50 Vdc IDQ = 25 mA 38 36 12 3.5 14 16 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 14. CW Output Power versus Gate--Source Voltage at a Constant Input Power 18 20 22 Pin, INPUT POWER (dBm) 24 f (MHz) P1dB (W) P3dB (W) 1.8 10 30 23 25 25 28 30 30 26 28 Figure 15. CW Output Power versus Input Power 26 90 1.8 MHz 24 70 30 MHz 23 10 MHz 30 MHz 22 D 21 80 1.8 MHz Gps 10 MHz 60 50 40 20 30 VDD = 50 Vdc IDQ = 25 mA 19 18 5 10 D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 25 20 10 15 20 25 30 35 Pout, OUTPUT POWER (WATTS) Figure 16. Power Gain and Drain Efficiency versus CW Output Power MRFE6VS25NR1 MRFE6VS25GNR1 12 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS — 1.8--30 MHz BROADBAND REFERENCE CIRCUIT — TWO--TONE (1) --25 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) --20 VDD = 50 Vdc, IDQ = 100 mA f1 = 1.795 MHz, f2 = 1.805 MHz Two--Tone Measurements --30 3rd Order --40 --50 --60 7th Order 5th Order --70 --35 3rd Order --40 --45 5th Order --50 --55 7th Order --60 30 10 2 VDD = 50 Vdc, IDQ = 100 mA f1 = 9.995 MHz, f2 = 10.005 MHz Two--Tone Measurements --30 10 2 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 17. Intermodulation Distortion Products versus Output Power — 1.8 MHz Figure 18. Intermodulation Distortion Products versus Output Power — 10 MHz IMD, INTERMODULATION DISTORTION (dBc) --25 30 VDD = 50 Vdc, IDQ = 100 mA f1 = 29.995 MHz, f2 = 30.005 MHz Two--Tone Measurements --30 --35 --40 3rd Order --45 --50 5th Order --55 7th Order --60 2 10 30 Pout, OUTPUT POWER (WATTS) PEP Figure 19. Intermodulation Distortion Products versus Output Power — 30 MHz 1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone. MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 13 1.8--30 MHz BROADBAND REFERENCE CIRCUIT Zo = 50  f = 1.8 MHz Zsource f = 1.8 MHz f = 30 MHz f = 30 MHz Zload VDD = 50 Vdc, IDQ = 25 mA, Pout = 25 W CW f MHz Zsource  Zload  1.8 44.4 + j12.8 50.8 - j0.70 5 47.2 + j4.40 50.0 - j0.70 10 46.4 + j1.50 49.7 - j0.90 15 46.0 + j0.70 49.4 - j1.60 20 45.7 - j0.40 48.8 - j2.90 25 45.1 - j1.60 47.9 - j4.30 30 44.6 - j2.90 47.0 - j5.70 Zsource = Test circuit impedance as measured from gate to ground. Zload 50  Input Matching Network = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Zsource 50  Zload Figure 20. Broadband Series Equivalent Source and Load Impedance — 1.8--30 MHz MRFE6VS25NR1 MRFE6VS25GNR1 14 RF Device Data NXP Semiconductors 30--512 MHz BROADBAND REFERENCE CIRCUIT Table 13. 30--512 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system) VDD = 50 Volts, IDQ = 100 mA Signal Type Two-Tone (200 kHz spacing) Pout (W) f (MHz) Gps (dB) D (%) IMD (dBc) 25 PEP 30 17.1 34.8 --32.4 100 18.1 37.7 --33.3 512 17.3 30.1 --38.5 Table 14. Load Mismatch/Ruggedness (In NXP Reference Circuit) Frequency (MHz) Signal Type VSWR 512 CW >65:1 at all Phase Angles Pin (W) 1.6 (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 15 30--512 MHz BROADBAND REFERENCE CIRCUIT D1 C5 C6 C10 E2, L2 R3 R1 C9 C11 C8 T2 C7 E3 L1 R2 C2 C4 C3 C1 Q1 E4 E1 T1 T3 MRFE6VS25L/N Rev. 0 Note: See Figure 21a for a more detailed view of the semi--flex cables with shields and #61 multi--aperture cores. Figure 21. MRFE6VS25NR1 Broadband Reference Circuit Component Layout — 30--512 MHz Table 15. MRFE6VS25NR1 Broadband Reference Circuit Component Designations and Values — 30--512 MHz Part Description Part Number Manufacturer C1, C3, C6, C7, C8 1,000 pF Chip Capacitors ATC100B102JT50XT ATC C2 2.7 pF Chip Capacitor ATC100B2R7BT500XT ATC C4 15 nF Chip Capacitor C3225CH2A153JT TDK C5, C9 10 nF Chip Capacitors GRM3195C1E103JA01 Murata C10 1 F Chip Capacitor C3225JB2A105KT TDK C11 220 F, 100 V Electrolytic Capacitor MCGPR100V227M16X26-RH Multicomp D1 8.2 V, 1 W Zener Diode 1N4738A Fairchild Semiconductor E1, E3, E4 #61 Multi-aperture Cores 2861001502 Fair-Rite E2 Ferrite Core Bead 21-201-J Ferronics L1 47 nH Inductor 1812SMS-47NJLC Coilcraft L2 4 Turns, 20 AWG, Toroid Transformer with Ferrite E2 8076 Copper Magnetic Wire Belden Q1 RF Power LDMOS Transistor MRFE6VS25NR1 NXP R1 5.6 k, 1/4 W Chip Resistor CRCW12065K60FKEA Vishay R2 15 , 1/4 W Chip Resistor CRCW120615R0FKEA Vishay R3 5 k Potentiometer CMS Cermet Multi--turn 3224W-1-502E Bourns T1 25  Semi-flex Cable, 0.945 Shield Length D260-4118-0000 Microdot T2, T3 25  Semi-flex Cables, 1.340 Shield Length D260-4118-0000 Microdot PCB 0.030, r = 3.5 TC350 Arlon MRFE6VS25NR1 MRFE6VS25GNR1 16 RF Device Data NXP Semiconductors Center conductor connection to PCB T2 E3 C2 Shield connection to PCB C3 C4 E1 T2 E3 S T1 Z12 T3 T3 E1 S T1 E4 S S E4 S NOT TO SCALE T3 S S = Shield Figure 21a. Detailed View of Semi--flex Cables with Shields and #61 Multi--aperture Cores L1 D1 C5 C6 Z2 Z3 Z4 Z6 T1 E1 C1 C2 C9 C10 C11 T2 Z8 E3 Z9 R2 Z1 C8 L2, E2 R3 C7 RF INPUT VSUPPLY + R1 Z12 Z10 Z7 Z11 Z14 Z15 Z16 T3 RF OUTPUT E4 C4 Z13 C3 DUT Z5 Figure 22. MRFE6VS25NR1 Broadband Reference Circuit Schematic — 30--512 MHz Table 16. MRFE6VS25NR1 Broadband Reference Circuit Microstrips — 30--512 MHz Microstrip Description Microstrip Description Z1 0.180  0.080 Microstrip Z9 0.080  0.310 Microstrip Z2 0.080  0.190 Microstrip Z10 0.260  0.260 Microstrip Z3 0.230  0.190 Microstrip Z11 0.140  0.190 Microstrip Z4 0.150  0.190 Microstrip Z12 0.170  0.080 Microstrip Z5 0.180  0.190 Microstrip Z13 0.210  0.060 Microstrip Z6 0.220  0.190 Microstrip Z14 0.420  0.190 Microstrip Z7 0.230  0.260 Microstrip Z15 0.070  0.140 Microstrip Z8 0.140  0.150 Microstrip Z16 0.190  0.080 Microstrip MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 17 TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT 100 VDD = 50 Vdc, Pin = 0.8 W IDQ = 25 mA 90 Gps Gps, POWER GAIN (dB) 16 80 14 70 12 60 10 50 D 8 40 30 6 4 20 Pout D, DRAIN EFFICIENCY (%) 18 Pout, OUTPUT POWER (WATTS) 20 10 2 0 0 50 100 150 200 250 300 350 400 450 0 500 550 f, FREQUENCY (MHz) Figure 23. Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power 45 40 35 30 VDD = 50 Vdc Pin = 0.325 W 35 30 MHz Pout, OUTPUT POWER (WATTS) 40 Pout, OUTPUT POWER (WATTS) f = 100 MHz VDD = 50 Vdc Pin = 0.65 W 512 MHz 25 20 15 10 5 0 30 f = 512 MHz 25 20 15 100 MHz 10 30 MHz 5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1 1.5 2 2.5 3 3.5 4 VGS, GATE--SOURCE VOLTAGE (VOLTS) VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 24. CW Output Power versus Gate--Source Voltage at a Constant Input Power — 0.65 W Figure 25. CW Output Power versus Gate--Source Voltage at a Constant Input Power — 0.325 W MRFE6VS25NR1 MRFE6VS25GNR1 18 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT 48 VDD = 50 Vdc IDQ = 25 mA Pout, OUTPUT POWER (WATTS) 46 44 42 40 f = 100 MHz 38 36 30 MHz 512 MHz 34 32 30 16 18 20 22 24 26 28 30 32 Pin, INPUT POWER (dBm) f (MHz) P1dB (W) P3dB (W) 30 34.4 52.5 100 37.2 47.8 512 30.1 34.3 Figure 26. CW Output Power versus Input Power 19 70 VDD = 50 Vdc IDQ = 25 mA 60 Gps 17 50 f = 100 MHz 16 40 30 MHz 15 30 30 MHz 512 MHz 14 100 MHz 512 MHz 13 20 D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 18 10 D 12 0 1 10 60 Pout, OUTPUT POWER (WATTS) Figure 27. Power Gain and Drain Efficiency versus CW Output Power MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 19 TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT — TWO--TONE (1) --20 VDD = 50 Vdc, IDQ = 100 mA f1 = 29.9 MHz, f2 = 30.1 MHz, Two--Tone Measurements --25 --30 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) --20 --35 3rd Order --40 --45 --50 --55 5th Order --60 --65 7th Order --70 --75 10 1 40 VDD = 50 Vdc, IDQ = 100 mA f1 = 99.9 MHz, f2 = 100.1 MHz, Two--Tone Measurements --25 --30 --35 --40 3rd Order --45 --50 --55 5th Order --60 --65 7th Order --70 --75 10 1 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 28. Intermodulation Distortion Products versus Output Power — 30 MHz Figure 29. Intermodulation Distortion Products versus Output Power — 100 MHz IMD, INTERMODULATION DISTORTION (dBc) --20 40 VDD = 50 Vdc, IDQ = 100 mA f1 = 511.9 MHz, f2 = 512.1 MHz, Two--Tone Measurements --25 --30 --35 3rd Order --40 --45 --50 --55 5th Order --60 --65 7th Order --70 --75 1 10 40 Pout, OUTPUT POWER (WATTS) PEP Figure 30. Intermodulation Distortion Products versus Output Power — 512 MHz 1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone. MRFE6VS25NR1 MRFE6VS25GNR1 20 RF Device Data NXP Semiconductors 30--512 MHz BROADBAND REFERENCE CIRCUIT Zo = 50  f = 512 MHz f = 30 MHz Zload Zsource f = 512 MHz f = 30 MHz VDD = 50 Vdc, IDQ = 25 mA, Pout = 25 W CW f MHz Zsource  Zload  30 7.60 - j0.40 18.3 + j9.40 64 9.30 + j1.40 21.9 + j4.00 88 10.3 + j1.40 22.2 + j1.90 98 10.6 + j1.20 22.2 + j1.40 100 10.7 + j1.20 22.3 + j1.30 108 10.9 + j0.90 22.5 + j0.50 144 10.7 - j0.40 21.2 - j1.50 170 9.70 - j0.60 19.8 - j1.80 230 8.10 + j0.30 17.4 - j0.80 352 7.20 + j4.30 17.0 + j2.80 450 7.40 + j5.00 21.3 + j4.60 512 8.10 + j7.60 25.2 + j5.90 Zsource = Test circuit impedance as measured from gate to ground. Zload 50  Input Matching Network = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Zsource 50  Zload Figure 31. Broadband Series Equivalent Source and Load Impedance — 30--512 MHz MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 21 1030 MHz NARROWBAND REFERENCE CIRCUIT Table 17. 1030 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system) VDD = 50 Volts, IDQ = 25 mA Signal Type Pout (W) f (MHz) Gps (dB) D (%) CW 25 1030 22.5 60.0 Table 18. Load Mismatch/Ruggedness (In NXP Reference Circuit) Frequency (MHz) Signal Type VSWR 1030 CW >65:1 at all Phase Angles Pin (W) 0.34 (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation MRFE6VS25NR1 MRFE6VS25GNR1 22 RF Device Data NXP Semiconductors 1030 MHz NARROWBAND REFERENCE TEST FIXTURE C4 C5 C7 C8 B1 MRFE6VS25N Rev. 0 C6 C9 C14 C10 C11 C12 C13 L1 C1 C15 C17 Q1 C2 C20 L2 C3 C18 C19 CUT OUT AREA C16 Figure 32. MRFE6VS25NR1 Narrowband Reference Circuit Component Layout — 1030 MHz Table 19. MRFE6VS25NR1 Narrowband Reference Circuit Component Designations and Values — 1030 MHz Part Description Part Number Manufacturer B1 Short Ferrite Bead 2743019447 Fair-Rite C1, C3 22 pF Chip Capacitors ATC100B220JT500XT ATC C2 6.2 pF Chip Capacitor ATC100B6R2BT500XT ATC C4 10 F Chip Capacitor GRM55DR61H106KA88L Murata C5 0.01 F Chip Capacitor GRM319R72A103KA01D Murata C6 43 pF Chip Capacitor ATC100B430JT500XT ATC C7 0.1 F Chip Capacitor GRM32MR71H104JA01L Murata C8 1.0 F Chip Capacitor GRM31MR71H105KA88L Murata C9 0.1 F Chip Capacitor C1206C104K1RAC-TU Kemet C10 20K pF Chip Capacitor ATC200B203KT50XT ATC C11 470 pF Chip Capacitor ATC100B471JT200XT ATC C12, C13 22 F Chip Capacitors C5750KF1H226ZT TDK C14 470 pF, 63 V Electrolytic Capacitor MCGPR63V477M13X26-RH Multicomp C15, C17 4.3 pF Chip Capacitors ATC100B4R3CT500XT ATC C16, C19 0.6-4.5 pF Tuning Capacitors 27271SL Johanson Components C18 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C20 20 pF Chip Capacitor ATC100B200JT500XT ATC L1 43 nH, 10 Turn Inductor B10TJLC Coilcraft L2 2.5 nH, 1 Turn Inductor A01TKLC Coilcraft Q1 RF Power LDMOS Transistor MRFE6VS25NR1 NXP PCB 0.030, r = 3.5 TL350 Arlon MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 23 B1 Z10 VBIAS Z9 C11 C4 C5 C7 C8 VSUPPLY + C6 C10 C9 C12 C13 C14 L1 Z8 RF INPUT Z11 Z1 Z2 Z3 Z4 Z5 Z6 Z12 Z13 L2 Z15 C1 C3 Z16 C20 Z7 C16 C2 Z14 RF OUTPUT C17 C15 C18 C19 DUT Figure 33. MRFE6VS25NR1 Narrowband Reference Circuit Schematic — 1030 MHz Table 20. MRFE6VS25NR1 Narrowband Reverence Test Circuit Microstrips — 1030 MHz Microstrip Description Microstrip Description Z1 0.200  0.080 Microstrip Z9 0.350  0.378 Microstrip Z2 0.569  0.120 Microstrip Z10 0.151  0.108 Microstrip Z3 0.339  0.320 Microstrip Z11 0.699  0.620 Microstrip Z4 0.272  0.320 Microstrip Z13 0.243  0.320 Microstrip Z5, Z12 0.160  0.320  0.620 Taper Z14 0.350  0.320 Microstrip Z6 0.522  0.620 Microstrip Z15 0.450  0.107 Microstrip Z7 0.218  0.620 Microstrip Z16 0.200  0.107 Microstrip Z8* 0.094  1.121 Microstrip * Line length includes microstrip bends MRFE6VS25NR1 MRFE6VS25GNR1 24 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS — 1030 MHz NARROWBAND REFERENCE CIRCUIT 46 VDD = 50 Vdc Pin = 0.14 W f = 1030 MHz 25 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) 30 20 15 10 5 0 0 0.5 1 1.5 2 2.5 3 42 40 38 36 16 4 3.5 VDD = 50 Vdc IDQ = 25 mA f = 1030 MHz 44 18 22 20 VGS, GATE--SOURCE VOLTAGE (VOLTS) 24 26 Pin, INPUT POWER (dBm) Figure 34. CW Output Power versus Gate--Source Voltage at a Constant Input Power f (MHz) P1dB (W) P3dB (W) 1030 29 31 Figure 35. CW Output Power versus Input Power 23 65 VDD = 50 Vdc IDQ = 25 mA f = 1030 MHz 22 60 55 50 21.5 21 45 Gps 20.5 40 20 35 19.5 D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 22.5 30 D 19 25 0 5 10 15 20 25 30 35 Pout, OUTPUT POWER (WATTS) Figure 36. Power Gain and Drain Efficiency versus CW Output Power MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 25 1030 MHz NARROWBAND REFERENCE CIRCUIT VDD = 50 Vdc, IDQ = 25 mA, Pout = 25 W CW f MHz Zsource  Zload  1030 0.74 + j4.53 3.08 + j7.78 Zsource = Test circuit impedance as measured from gate to ground. Zload 50  Input Matching Network = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Zsource 50  Zload Figure 37. Narrowband Series Equivalent Source and Load Impedance — 1030 MHz MRFE6VS25NR1 MRFE6VS25GNR1 26 RF Device Data NXP Semiconductors PACKAGE DIMENSIONS MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 27 MRFE6VS25NR1 MRFE6VS25GNR1 28 RF Device Data NXP Semiconductors MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 29 MRFE6VS25NR1 MRFE6VS25GNR1 30 RF Device Data NXP Semiconductors MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 31 MRFE6VS25NR1 MRFE6VS25GNR1 32 RF Device Data NXP Semiconductors PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes  AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages  AN1955: Thermal Measurement Methodology of RF Power Amplifiers  AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages  AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices  EB38: Measuring the Intermodulation Distortion of Linear Amplifiers Software  Electromigration MTTF Calculator  RF High Power Model  .s2p File Development Tools  Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.nxp.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 June 2012  Initial Release of Data Sheet 1 Dec. 2012  Added part number MRFE6VS25GNR1, p. 1  Added 1265A--03 (TO--270--2 Gull) package isometric, p. 1, and Mechanical Outline, p. 30--32  Load Mismatch/Ruggedness tables: changed output power to input power to clarify the conditions used during test, p. 1, 3, 9, 22  Figs. 17, 18 and 19, Intermodulation Distortion Products versus Output Power (1.8, 10, 30 MHz): corrected x--axis data to show Watts (PEP) measurement, p. 13  Added 30--512 MHz Broadband Reference Circuit as follows: -- Typical Performance table, p. 1 -- Table 12, Broadband Performance, p. 15 -- Table 13, Load Mismatch/Ruggedness, p. 15 -- Fig. 21, Broadband Reference Circuit Component Layout, p. 16 -- Table 14, Broadband Reference Circuit Component Designations and Values, p. 16 -- Fig. 21a, Detailed View of Semi--flex Cables with Shields and #61 Multi--aperture Cores, p. 17 -- Fig. 22, Broadband Reference Circuit Schematic, p. 17 -- Table 15, Broadband Reference Circuit Microstrips, p. 17 -- Fig. 23, Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power, p. 18 -- Fig. 24, CW Output Power versus Gate--Source Voltage at a Constant Input Power, Pin = 0.65 W, p. 18 -- Fig. 25, CW Output Power versus Gate--Source Voltage at a Constant Input Power, Pin = 0.325 W, p. 18 -- Fig. 26, CW Output Power versus Input Power, p. 19 -- Fig. 27, Power Gain and Drain Efficiency versus CW Output Power, p. 19 -- Fig. 28, Intermodulation Distortion Products versus Output Power -- 30 MHz, p. 20 -- Fig. 29, Intermodulation Distortion Products versus Output Power -- 100 MHz, p. 20 -- Fig. 30, Intermodulation Distortion Products versus Output Power -- 512 MHz, p. 20 -- Fig. 31, Broadband Series Equivalent Source and Load Impedance, p. 21 2 Mar. 2019  Fig. 1, Pin Connections, corrected Drain (Pin 1) and Gate (Pin 2) to reflect correct pin numbers, p. 1  Table 6, Ordering Information, added table, p. 3  Package Outline Drawings: TO--270--2 package outline updated to Rev. R, pp. 27–29. TO--270G--2 package outline updated to Rev. D, pp. 30–32. MRFE6VS25NR1 MRFE6VS25GNR1 RF Device Data NXP Semiconductors 33 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, Freescale and the Freescale logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2012, 2019 NXP B.V. MRFE6VS25NR1 MRFE6VS25GNR1 Document Number: MRFE6VS25N Rev. 2, 03/2019 34 RF Device Data NXP Semiconductors
MRFE6VS25NR1 价格&库存

很抱歉,暂时无法提供与“MRFE6VS25NR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货