0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MRFX1K80NR5

MRFX1K80NR5

  • 厂商:

    NXP(恩智浦)

  • 封装:

    OM-1230-4L

  • 描述:

    RF MOSFET LDMOS 65V OM1230-4L

  • 数据手册
  • 价格&库存
MRFX1K80NR5 数据手册
NXP Semiconductors Technical Data Document Number: MRFX1K80N Rev. 0, 04/2018 RF Power LDMOS Transistors MRFX1K80N MRFX1K80GN High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs These high ruggedness devices are designed for use in high VSWR industrial, medical, broadcast, aerospace and mobile radio applications. Their unmatched input and output design supports frequency use from 1.8 to 400 MHz. Typical Performance Frequency (MHz) Signal Type VDD (V) 87.5–108 (1,2) CW 230 (3) Pulse (100 sec, 20% Duty Cycle) Pout (W) Gps (dB) D (%) 60 1670 CW 23.8 83.5 65 1800 Peak 24.4 75.7 Load Mismatch/Ruggedness Frequency (MHz) 230 (3) Signal Type VSWR Pulse (100 sec, 20% Duty Cycle) > 65:1 at all Phase Angles Pin (W) Test Voltage 14 W Peak (3 dB Overdrive) 65 No Device Degradation Features  Unmatched input and output allowing wide frequency range utilization  Device can be used single--ended or in a push--pull configuration  Qualified up to a maximum of 65 VDD operation  Characterized from 30 to 65 V for extended power range  Lower thermal resistance package  High breakdown voltage for enhanced reliability  Suitable for linear application with appropriate biasing  Integrated ESD protection with greater negative gate--source voltage range for improved Class C operation  Included in NXP product longevity program with assured supply for a minimum of 15 years after launch  2018 NXP B.V. RF Device Data NXP Semiconductors OM--1230--4L PLASTIC MRFX1K80N Result 1. Measured in 87.5–108 MHz broadband reference circuit (page 5). 2. The values shown are the center band performance numbers across the indicated frequency range. 3. Measured in 230 MHz narrowband production test fixture (page 11). Typical Applications  Industrial, scientific, medical (ISM) – Laser generation – Plasma generation – Particle accelerators – MRI, RF ablation and skin treatment – Industrial heating, welding and drying systems  Radio and VHF TV broadcast  Aerospace – HF communications – Radar 1.8–400 MHz, 1800 W CW, 65 V WIDEBAND RF POWER LDMOS TRANSISTORS OM--1230G--4L PLASTIC MRFX1K80GN Gate A 3 1 Drain A Gate B 4 2 Drain B (Top View) Note: Exposed backside of the package is the source terminal for the transistor. Figure 1. Pin Connections MRFX1K80N MRFX1K80GN 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +179 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Storage Temperature Range Tstg – 65 to +150 C Case Operating Temperature Range TC –40 to +150 C Operating Junction Temperature Range (1,2) TJ –40 to +225 C PD 3333 16.7 W W/C Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 112C, 1800 W CW, 65 Vdc, IDQ(A+B) = 150 mA, 98 MHz RJC 0.06 C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 77C, 1800 W Peak, 100 sec Pulse Width, 20% Duty Cycle, 65 Vdc, IDQ(A+B) = 100 mA, 230 MHz ZJC 0.009 C/W Total Device Dissipation @ TC = 25C Derate above 25C Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Charge Device Model (per JESD22--C101) C3, passes 1200 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 1 Adc 179 193 — Vdc Off Characteristics (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 100 mAdc) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Zero Gate Voltage Drain Leakage Current (VDS = 179 Vdc, VGS = 0 Vdc) IDSS — — 100 mAdc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 740 Adc) VGS(th) 2.1 2.5 2.9 Vdc Gate Quiescent Voltage (VDD = 65 Vdc, IDQ(A+B) = 100 mAdc, Measured in Functional Test) VGS(Q) 2.5 2.9 3.3 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 2.76 Adc) VDS(on) — 0.21 — Vdc gfs — 44.7 — S On Characteristics Forward Transconductance (4) (VDS = 10 Vdc, ID = 43 Adc) 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.nxp.com/RF/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. Each side of device measured separately. (continued) MRFX1K80N MRFX1K80GN 2 RF Device Data NXP Semiconductors Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 65 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 5.6 — pF Output Capacitance (VDS = 65 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 216 — pF Input Capacitance (VDS = 65 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz) Ciss — 765 — pF Dynamic Characteristics (1) Functional Tests (In NXP Narrowband Production Test Fixture, 50 ohm system) VDD = 65 Vdc, IDQ(A+B) = 100 mA, Pout = 1800 W Peak (360 W Avg.), f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle Power Gain Gps 23.0 24.4 26.0 dB Drain Efficiency D 71.0 75.7 — % Input Return Loss IRL — –16 –9 dB Table 6. Load Mismatch/Ruggedness (In NXP Narrowband Production Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) 230 Signal Type VSWR Pin (W) Pulse (100 sec, 20% Duty Cycle) > 65:1 at all Phase Angles 14 W Peak (3 dB Overdrive) Test Voltage, VDD Result 65 No Device Degradation Table 7. Ordering Information Device MRFX1K80NR5 MRFX1K80GNR5 Tape and Reel Information R5 Suffix = 50 Units, 56 mm Tape Width, 13--Reel Package OM--1230--4L OM--1230G--4L 1. Each side of device measured separately. MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 3 TYPICAL CHARACTERISTICS 2000 1.08 1000 NORMALIZED VGS(Q) C, CAPACITANCE (pF) Coss 100 10 1 0 10 20 30 40 50 60 1.02 IDQ(A+B) = 100 mA 1000 mA 1500 mA 1 0.98 0.96 Crss Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 1.04 VDD = 65 Vdc 500 mA 1.06 Ciss 0.94 70 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. Figure 2. Capacitance versus Drain--Source Voltage 0.92 –50 –25 0 25 50 75 100 TC, CASE TEMPERATURE (C) IDQ (mA) Slope (mV/C) 100 –3.14 500 –2.88 1000 –2.75 1500 –2.65 Figure 3. Normalized VGS versus Quiescent Current and Case Temperature MRFX1K80N MRFX1K80GN 4 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT – 2.9  5.1 (7.3 cm  13.0 cm) Table 8. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system) IDQ(A+B) = 200 mA, Pin = 7 W, CW Frequency (MHz) VDD (V) Pout (W) Gps (dB) D (%) 87.5 60 1580 23.5 84.6 98 60 1670 23.8 83.5 108 60 1600 23.6 80.6 MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 5 87.5–108 MHz BROADBAND REFERENCE CIRCUIT – 2.9  5.1 (7.3 cm  13.0 cm) D94850 C22 C25 C6 C7 C28 C26 C21 C27 C5 L4 L1 R2 C20 C19 C18 C17 L3 C11 C4 C3 C16 Q1 R1 C24 C1 C2 L2 C23* C15* R3 C14 C8 C9 C10 *C15 and C23 are mounted vertically. Note: Component numbers C12 and C13 are not used. MRFE6VP61K25N MRF1K50N MRFX1K80N Rev. 0 0.34 (9) 0.45 (11) 0.22 (6) L3 total wire length = 1.7 (43 mm) Inches (mm) Figure 4. MRFX1K80N 87.5–108 MHz Broadband Reference Circuit Component Layout Figure 5. MRFX1K80N 87.5–108 MHz Broadband Reference Circuit Component Layout – Bottom MRFX1K80N MRFX1K80GN 6 RF Device Data NXP Semiconductors Table 9. MRFX1K80N 87.5–108 MHz Broadband Reference Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C3, C6, C9, C18, C19, C20, C21, C22 1000 pF Chip Capacitor ATC100B102JT50XT ATC C2 33 pF Chip Capacitor ATC100B330JT500XT ATC C4, C5, C8 10,000 pF Chip Capacitor ATC200B103KT50XT ATC C7, C10, C15, C16, C17, C23 470 pF Chip Capacitor ATC100B471JT200XT ATC C11 100 pF, 300 V Mica Capacitor MIN02-002EC101J-F CDE C14, C24 12 pF Chip Capacitor ATC100B120GT500XT ATC C25, C26, C27 220 F, 100 V Electrolytic Capacitor EEV-FC2A221M Panasonic--ECG C28 22 F, 35 V Electrolytic Capacitor UUD1V220MCL1GS Nichicon L1, L2 17.5 nH Inductor, 6 Turns B06TJLC Coilcraft L3 1.5 mm Non--Tarnish Silver Plated Copper Wire, Total Wire Length = 1.7/43 mm SP1500NT-001 Scientific Wire Company L4 22 nH Inductor 1212VS-22NMEB Coilcraft Q1 RF Power LDMOS Transistor MRFX1K80N NXP R1 10 , 1/4 W Chip Resistor CRCW120610R0JNEA Vishay R2, R3 33 , 2 W Chip Resistor 1-2176070-3 TE Connectivity Thermal Pad TG Series Soft Thermal Conductive Pad TG6050-150-150-5.0-0 t-Global Technology PCB Rogers TC350 0.030, r = 3.5 D94850 MTL Note: Refer to MRFX1K80N’s printed circuit boards and schematics to download the 87.5–108 MHz baseplate drawing. MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 7 TYPICAL CHARACTERISTICS – 87.5–108 MHz BROADBAND REFERENCE CIRCUIT 27 85 D 80 25 Gps 24 75 70 23 Pout 22 1700 21 1600 20 1500 19 18 87 VDD = 60 Vdc, Pin = 7 W, lDQ(A+B) = 200 mA 89 91 95 93 97 99 1400 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) 26 D, DRAIN EFFICIENCY (%) 90 1300 107 109 101 103 105 f, FREQUENCY (MHz) Figure 6. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power 1800 98 MHz Pout, OUTPUT POWER (WATTS) 1600 1400 108 MHz 87.5 MHz 1200 1000 800 600 400 200 0 VDD = 60 Vdc, IDQ(A+B) = 200 mA 0 4 2 8 6 10 12 Pin, INPUT POWER (WATTS) Figure 7. CW Output Power versus Input Power and Frequency 90 34 80 30 108 MHz 28 60 Gps 26 50 87.5 MHz 98 MHz 24 40 108 MHz 22 20 70 98 MHz D, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) D f = 87.5 MHz 32 30 VDD = 60 Vdc, lDQ(A+B) = 200 mA 0 200 400 600 800 1000 1200 1400 1600 20 1800 Pout, OUTPUT POWER (WATTS) Figure 8. Power Gain and Drain Efficiency versus CW Output Power and Frequency MRFX1K80N MRFX1K80GN 8 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Zo = 5  f = 87.5 MHz f = 108 MHz f = 108 MHz f = 87.5 MHz Zsource Zload f MHz Zsource  Zload  87.5 1.65 + j3.30 3.90 + j4.73 98 1.91 + j3.25 3.88 + j3.99 108 1.94 + j2.87 3.35 + j3.95 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50  = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network 50  + Z load Figure 9. Broadband Series Equivalent Source and Load Impedance – 87.5–108 MHz MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 9 HARMONIC MEASUREMENTS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT F1 H2 H3 H4 Amplitude (10 dB per Division) Fundamental (F1) 87.5 MHz 175 MHz –31 dB 262.5 MHz –29 dB 350 MHz –53 dB H3 H4 H2 (175 MHz) (262.5 MHz) (350 MHz) –31 dB –29 dB –53 dB H3 H2 H4 Center: 228.5 MHz 35 MHz Span: 350 MHz Figure 10. 87.5 MHz Harmonics @ 1500 W CW MRFX1K80N MRFX1K80GN 10 RF Device Data NXP Semiconductors 230 MHz NARROWBAND PRODUCTION TEST FIXTURE – 6.0  4.0 (15.2 cm  10.2 cm) C26 C6 C9 C10 C27 C28 D96894 C12 C24 Coax1 Coax3 R1 L3 C2 C4* C19* L2 C3 C17* C18* C13 C14 C20* C21* C22* C15 C16 CUT OUT AREA C1 L1 C23 L4 R2 Coax4 Coax2 MRFX1K80N Rev. 0 C5 C7 C8 C25 C 11 C29 C30 C31 *C4, C17, C18, C19, C20, C21 and C22 are mounted vertically. aaa--029942 Figure 11. MRFX1K80N Narrowband Production Test Fixture Component Layout – 230 MHz Table 10. MRFX1K80N Narrowband Production Test Fixture Component Designations and Values – 230 MHz Part Description Part Number Manufacturer C1, C2, C3 22 pF Chip Capacitor ATC100B220JT500XT ATC C4 27 pF Chip Capacitor ATC100B270JT500XT ATC C5, C6 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet C7, C9 0.1 F Chip Capacitor CDR33BX104AKWS AVX C8, C10 220 nF Chip Capacitor C1812C224K5RACTU Kemet C11, C12, C24, C25 1000 pF Chip Capacitor ATC100B102JT50XT ATC C13 24 pF Chip Capacitor ATC800R240JT500XT ATC C14, C15 20 pF Chip Capacitor ATC800R200JT500XT ATC C16 22 pF Chip Capacitor ATC800R220JT500XT ATC C17, C18, C19, C20, C21, C22 240 pF Chip Capacitor ATC100B241JT200XT ATC C23 8.2 pF Chip Capacitor ATC100B8R2CT500XT ATC C26, C27, C28, C29, C30, C31 470 F, 100 V Electrolytic Capacitor MCGPR100V477M16X32-RH Multicomp Coax1, 2, 3, 4 25  Semi Rigid Coax Cable, 2.2 Shield Length UT-141C-25 Micro--Coax L1, L2 5 nH Inductor, 2 Turns A02TKLC Coilcraft L3, L4 6.6 nH Inductor, 2 Turns GA3093-ALC Coilcraft R1, R2 10 , 1/4 W Chip Resistor CRCW120610R0JNEA Vishay PCB Rogers AD255A 0.030, r = 2.55 D96894 MTL MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 11 TYPICAL CHARACTERISTICS — 230 MHz, TC = 25_C NARROWBAND PRODUCTION TEST FIXTURE Pout, OUTPUT POWER (WATTS) PEAK 2500 VDD = 65 Vdc, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 2000 Pin = 6.8 W 1500 1000 Pin = 3.4 W 500 0 0 0.5 1.5 1.0 2.0 2.5 3.5 3.0 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 12. Output Power versus Gate--Source Voltage at a Constant Input Power 27 63 60 57 54 51 48 80 25 IDQ(A+B) = 900 mA 70 600 mA 24 30 32 34 36 38 40 23 100 mA 22 P1dB (W) P3dB (W) 230 1878 2143 50 Gps D 21 300 mA 100 mA 40 900 mA 600 mA 30 20 19 100 42 Pin, INPUT POWER (dBm) PEAK f (MHz) 60 300 mA 20 28 90 VDD = 65 Vdc, f = 230 MHz 26 Pulse Width = 100 sec, 20% Duty Cycle 10 3000 1000 Pout, OUTPUT POWER (WATTS) PEAK Figure 14. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 13. Output Power versus Input Power 90 –40_C 26 Gps 24 22 20 18 80 25_C 85_C 70 60 TC = –40_C 50 25_C 40 85_C 30 D 16 14 60 20 100 1000 10 3000 26 24 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) VDD = 65 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz 28 Pulse Width = 100 sec, 20% Duty Cycle D, DRAIN EFFICIENCY (%) 30 22 20 50 V 18 65 V 40 V 16 14 55 V 60 V VDD = 30 V 0 500 IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 1000 1500 2000 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 15. Power Gain and Drain Efficiency versus Output Power Figure 16. Power Gain versus Output Power and Drain--Source Voltage 2500 MRFX1K80N MRFX1K80GN 12 RF Device Data NXP Semiconductors D, DRAIN EFFICIENCY (%) VDD = 65 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 66 230 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource  Zload  230 0.9 + j2.3 1.9 + j2.5 Zsource = Test fixture impedance as measured from gate to gate, balanced configuration. Zload 50  Input Matching Network = Test fixture impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50  + Zload Figure 17. Narrowband Series Equivalent Source and Load Impedance – 230 MHz MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 13 PACKAGE DIMENSIONS MRFX1K80N MRFX1K80GN 14 RF Device Data NXP Semiconductors MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 15 MRFX1K80N MRFX1K80GN 16 RF Device Data NXP Semiconductors MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 17 MRFX1K80N MRFX1K80GN 18 RF Device Data NXP Semiconductors MRFX1K80N MRFX1K80GN RF Device Data NXP Semiconductors 19 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes  AN1907: Solder Reflow Attach Method for High Power RF Devices in Over--Molded Plastic Packages  AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator  RF High Power Model  .s2p File Development Tools  Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Apr. 2018 Description  Initial release of data sheet MRFX1K80N MRFX1K80GN 20 RF Device Data NXP Semiconductors How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2018 NXP B.V. MRFX1K80N MRFX1K80GN Document Number: RF Device Data MRFX1K80N Rev. 0,Semiconductors 04/2018 NXP 21
MRFX1K80NR5 价格&库存

很抱歉,暂时无法提供与“MRFX1K80NR5”相匹配的价格&库存,您可以联系我们找货

免费人工找货