0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSC7113VM800

MSC7113VM800

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LFBGA400

  • 描述:

    IC DSP PROCESSOR 16BIT 400MAPBGA

  • 数据手册
  • 价格&库存
MSC7113VM800 数据手册
Freescale Semiconductor Data Sheet Document Number: MSC7113 Rev. 11, 4/2008 MSC7113 Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC • StarCore® SC1400 DSP extended core with one SC1400 DSP core, 192 Kbyte of internal SRAM M1 memory, 16 way 16 Kbyte instruction cache (ICache), four-entry write buffer, programmable interrupt controller (PIC), and low-power Wait and Stop processing modes. • 8 Kbyte boot ROM. • AHB-Lite crossbar switch that allows parallel data transfers between four master ports and six slave ports, where each port connects to an AHB-Lite bus; fixed or round robin priority programmable at each slave port; programmable bus parking at each slave port; low power mode. • Internal PLL generates up to 266 MHz clock for the SC1400 core and up to 133 MHz for the crossbar switch, DMA channels, M2 memory, and other peripherals. • Clock synthesis module provides predivision of PLL input clock; independent clocking of the internal timers and DDR module; programmable operation in the SC1400 low power Stop mode; independent shutdown of different regions of the device. • Enhanced 16-bit wide host interface (HDI16) provides a glueless connection to industry-standard microcomputers, microprocessors, and DSPs and can also operate with an 8-bit host data bus, making if fully compatible with the DSP56300 HI08 from the external host side. • DDR memory controller that supports byte enables for up to a 32-bit data bus; glueless interface to 133 MHz 14-bit page mode DDR-RAM; 14-bit external address bus supporting up to 1 Gbyte; and 16-bit or 32-bit external data bus. • Programmable memory interface with independent read buffers, programmable predictive read feature for each buffer, and a write buffer. • System control unit performs software watchdog timer function; includes programmable bus time-out monitors on AHB-Lite slave buses; includes bus error detection and programmable time-out monitors on AHB-Lite master buses; and has address out-of-range detection on each crossbar switch buses. • Event port collects and counts important signal events including DMA and interrupt requests and trigger events such as interrupts, breakpoints, DMA transfers, or wake-up events; units operate independently, in sequence, or triggered externally; can be used standalone or with the OCE10. MAP-BGA–400 17 mm × 17 mm • Multi-channel DMA controller with 32 time-multiplexed unidirectional channels, priority-based time-multiplexing between channels using 32 internal priority levels, fixed- or round-robin-priority operation, major-minor loop structure, and DONE or DRACK protocol from requesting units. • Two independent TDM modules with independent receive and transmit, programmable sharing of frame sync and clock, programmable word size (8 or 16-bit), hardware-base A-law/μ-law conversion, up to 50 Mbps data rate per TDM, up to 128 channels, with glueless interface to E1/T1 frames and MVIP, SCAS, and H.110 buses. • Ethernet controller with support for 10/100 Mbps MII/RMII designed to comply with IEEE Std. 802.3™, 802.3u™, 802.3x™, and 802.3ac™; with internal receive and transmit FIFOs and a FIFO controller; direct access to internal memories via its own DMA controller; full and half duplex operation; programmable maximum frame length; virtual local area network (VLAN) tag and priority support; retransmission of transmit FIFO following collision; CRC generation and verification for inbound and outbound packets; and address recognition including promiscuous, broadcast, individual address. hash/exact match, and multicast hash match. • UART with full-duplex operation up to 5.0 Mbps. • Up to 41 general-purpose input/output (GPIO) ports. • I2C interface that allows booting from EEPROM devices up to 1 Mbyte. • Two quad timer modules, each with sixteen configurable 16-bit timers. • fieldBIST™ unit detects and provides visibility into unlikely field failures for systems with high availability to ensure structural integrity, that the device operates at the rated speed, is free from reliability defects, and reports diagnostics for partial or complete device inoperability. • Standard JTAG interface allows easy integration to system firmware and internal on-chip emulation (OCE10) module. • Optional booting external host via 8-bit or 16-bit access through the HDI16, I2C, or SPI using in the boot ROM to access serial SPI Flash/EEPROM devices; different clocking options during boot with the PLL on or off using a variety of input frequency ranges. © Freescale Semiconductor, Inc., 2004, 2008. All rights reserved. Table of Contents 1 2 3 4 5 6 7 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1.1 MAP-BGA Ball Layout Diagrams . . . . . . . . . . . . . . . . . .4 1.2 Signal List By Ball Location. . . . . . . . . . . . . . . . . . . . . . .6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 2.2 Recommended Operating Conditions. . . . . . . . . . . . . .18 2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .18 2.4 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .19 2.5 AC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Hardware Design Considerations . . . . . . . . . . . . . . . . . . . . . .41 3.1 Thermal Design Considerations . . . . . . . . . . . . . . . . . .41 3.2 Power Supply Design Considerations. . . . . . . . . . . . . .42 3.3 Estimated Power Usage Calculations. . . . . . . . . . . . . .49 3.4 Reset and Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 3.5 DDR Memory System Guidelines . . . . . . . . . . . . . . . . .53 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 List of Figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. MSC7113 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . 3 MSC7113 Molded Array Process-Ball Grid Array (MAP-BGA), Top View . . . . . . . . . . . . . . . . . . . . . . . . . 4 MSC7113 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View . . . . . . . . . . . . . . . . . . . . . . 5 Timing Diagram for a Reset Configuration Write . . . . 24 DDR DRAM Input Timing Diagram . . . . . . . . . . . . . . 24 DDR DRAM Output Timing Diagram . . . . . . . . . . . . . 26 DDR DRAM AC Test Load. . . . . . . . . . . . . . . . . . . . . 26 Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. TDM Receive Signals. . . . . . . . . . . . . . . . . . . . . . . . . TDM Transmit Signals . . . . . . . . . . . . . . . . . . . . . . . . Ethernet Receive Signal Timing . . . . . . . . . . . . . . . . . Ethernet Receive Signal Timing . . . . . . . . . . . . . . . . . Asynchronous Input Signal Timing . . . . . . . . . . . . . . . Serial Management Channel Timing . . . . . . . . . . . . . Read Timing Diagram, Single Data Strobe . . . . . . . . Read Timing Diagram, Double Data Strobe . . . . . . . . Write Timing Diagram, Single Data Strobe. . . . . . . . . Write Timing Diagram, Double Data Strobe . . . . . . . . Host DMA Read Timing Diagram, HPCR[OAD] = 0 . . Host DMA Write Timing Diagram, HPCR[OAD] = 0 . . I2C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . UART Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . UART Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . EE Pin Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EVNT Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPI/GPO Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . Test Clock Input Timing Diagram . . . . . . . . . . . . . . . . Boundary Scan (JTAG) Timing Diagram . . . . . . . . . . Test Access Port Timing Diagram . . . . . . . . . . . . . . . TRST Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . Voltage Sequencing Case 1 . . . . . . . . . . . . . . . . . . . . Voltage Sequencing Case 2 . . . . . . . . . . . . . . . . . . . . Voltage Sequencing Case 3 . . . . . . . . . . . . . . . . . . . . Voltage Sequencing Case 4 . . . . . . . . . . . . . . . . . . . . Voltage Sequencing Case 5 . . . . . . . . . . . . . . . . . . . . PLL Power Supply Filter Circuits . . . . . . . . . . . . . . . . SSTL Termination Techniques . . . . . . . . . . . . . . . . . . SSTL Power Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 28 29 29 30 32 33 33 34 34 35 36 37 37 37 38 38 39 40 40 40 43 44 45 46 47 48 53 54 MSC7113 Data Sheet, Rev. 11 2 Freescale Semiconductor JTAG Port JTAG DMA (32 Channel) AMDMA ASM2 128 64 Boot ROM (8 KB) OCE10 to IPBus SC1400 Core Trace Buffer (8 KB) DSP Extended Core ASEMI 64 External Memory Interface from IPBus External Bus 128 M1 SRAM (192 KB) 64 128 AMEC 64 32 HDI16 Port TDM 32 2 TDMs PLL/Clock I2C APB UART PLL/Clock I2C RS-232 GPIO 64 AMENT Ethernet MAC Note: The arrows show the direction of the transfer. ASAPB Host Interface (HDI16) ASM1 64 64 P XA XB 64 ASIB 32 IB Bridge Extended Core Interface AMIC ASTH MUX Instruction Cache (16 KB) APB Bridge AHB-Lite Crossbar Switch Interrupt Control Fetch Unit 32 Interrupts GPIO System Ctrl 32 to EMI to DMA MII/RMII Watchdog Event Port BTMs Events to/from OCE10 Timers IPBus Figure 1. MSC7113 Block Diagram MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 3 Pin Assignments 1 Pin Assignments This section includes diagrams of the MSC7113 package ball grid array layouts and pinout allocation tables. 1.1 MAP-BGA Ball Layout Diagrams Top and bottom views of the MAP-BGA package are shown in Figure 2 and Figure 3 with their ball location index numbers. Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A GND GND DQM1 DQS2 CK CK HD15 HD12 HD10 HD7 HD6 HD4 HD1 HD0 GND NC NC NC NC NC B VDDM NC CS0 DQM2 DQS3 DQS0 CKE WE HD14 HD11 HD8 HD5 HD2 NC NC NC NC NC NC NC C D24 D30 D25 CS1 DQM3 DQM0 DQS1 RAS CAS HD13 HD9 HD3 NC NC NC NC NC NC NC NC D VDDM D28 D27 GND VDDM VDDM VDDM VDDM VDDM VDDM VDDIO VDDIO VDDIO VDDIO VDDIO VDDIO VDDC NC NC NC E GND D26 D31 VDDM VDDM VDDC VDDC VDDC VDDC VDDM VDDIO VDDIO VDDIO VDDIO VDDIO VDDC VDDC NC NC NC F VDDM D15 D29 VDDC VDDC VDDC GND GND GND VDDM VDDM GND GND GND VDDIO VDDC VDDC NC NC NC G GND D13 GND VDDM VDDM GND GND GND GND GND GND GND GND GND VDDIO VDDIO VDDC NC NC NC H D14 D12 D11 VDDM VDDM GND GND GND GND GND GND GND GND GND VDDIO VDDIO VDDC NC HA2 HA1 J D10 VDDM D9 VDDM VDDM VDDM GND GND GND GND GND GND GND GND GND VDDIO VDDC HA3 HACK HREQ K D0 GND D8 VDDC VDDM GND GND GND GND GND GND GND GND GND VDDIO VDDIO VDDC HA0 HDDS HDS L D1 GND D3 VDDC VDDM GND GND GND GND GND GND GND GND VDDIO VDDIO VDDIO VDDC HCS2 HCS1 HRW M D2 VDDM D5 VDDM VDDM GND GND GND GND GND GND GND GND GND GND VDDC VDDC SDA UTXD URXD N D4 D6 VREF VDDM VDDM VDDM GND GND GND GND GND GND GND GND VDDIO VDDC VDDC CLKIN SCL VSSPLL P D7 D17 D16 VDDM VDDM VDDM GND GND GND GND GND GND GND GND VDDIO VDDIO VDDC PORESET TPSEL VDDPLL R GND D19 D18 VDDM VDDM VDDM GND VDDM GND VDDM GND GND VDDIO GND VDDIO VDDIO VDDC TDO EE0 TEST0 T VDDM D20 D22 VDDM VDDM VDDC VDDM VDDM VDDC VDDM VDDM VDDIO VDDIO VDDIO VDDIO VDDC VDDC MDIO TMS HRESET U GND D21 D23 VDDM VDDC VDDC VDDC VDDC VDDC VDDC VDDC VDDC VDDC VDDC VDDC VDDC VDDC COL TCK TRST V VDDM NC A13 A11 A10 A5 A2 BA0 NC T1TD TX_ER RXD2 RXD0 TX_EN CRS TDI W GND VDDM A12 A8 A7 A6 A3 NC EVNT1 EVNT2 T0RFS T0TFS T1TFS TXD2 RXD3 TXD1 TXCLK RX_ER Y VDDM GND A9 A1 A0 A4 BA1 NMI EVNT3 T0RCK T1RCK T1TCK TXD3 RXCLK TXD0 RXD1 EVNT0 EVNT4 T0TCK T1RFS T0RD TOTD T1RD GND MDC RX_DV Figure 2. MSC7113 Molded Array Process-Ball Grid Array (MAP-BGA), Top View MSC7113 Data Sheet, Rev. 11 4 Freescale Semiconductor Pin Assignments Bottom View 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A NC NC NC NC NC GND HD0 HD1 HD4 HD6 HD7 HD10 HD12 HD15 CK CK DQS2 DQM1 GND GND B NC NC NC NC NC NC NC HD2 HD5 HD8 HD11 HD14 WE CKE DQS0 DQS3 DQM2 CS0 NC VDDM C NC NC NC NC NC NC NC NC HD3 HD9 HD13 CAS RAS DQS1 DQM0 DQM3 CS1 D25 D30 D24 D NC NC NC VDD VDDIO VDDIO VDDIO VDDIO VDDIO VDDIO VDDM VDDM VDDM VDDM VDDM VDDM GND D27 D28 VDDM E NC NC NC VDD VDD VDDIO VDDIO VDDIO VDDIO VDDIO VDDM VDD VDD VDD VDD VDDM VDDM D31 D26 GND F NC NC NC VDD VDD VDDIO GND GND GND VDDM VDDM GND GND GND VDD VDD VDD D29 D15 VDDM G NC NC NC VDD VDDIO VDDIO GND GND GND GND GND GND GND GND GND VDDM VDDM GND D13 GND H HA1 HA2 NC VDD VDDIO VDDIO GND GND GND GND GND GND GND GND GND VDDM VDDM D11 D12 D14 J HREQ HACK HA3 VDD VDDIO GND GND GND GND GND GND GND GND GND VDDM VDDM VDDM D9 VDDM D10 K HDS HDDS HA0 VDD VDDIO VDDIO GND GND GND GND GND GND GND GND GND VDDM VDD D8 GND D0 L HRW HCS1 HCS2 VDD VDDIO VDDIO VDDIO GND GND GND GND GND GND GND GND VDDM VDD D3 GND D1 M URXD UTXD SDA VDD VDD GND GND GND GND GND GND GND GND GND GND VDDM VDDM D5 VDDM D2 N VSSPLL SCL CLKIN VDD VDD VDDIO GND GND GND GND GND GND GND GND VDDM VDDM VDDM VREF D6 D4 P VDDPLL TPSEL PORESET VDD VDDIO VDDIO GND GND GND GND GND GND GND GND VDDM VDDM VDDM D16 D17 D7 R TEST0 EE0 TDO VDD VDDIO VDDIO GND VDDIO GND GND VDDM GND VDDM GND VDDM VDDM VDDM D18 D19 GND T HRESET TMS MDIO VDD VDD VDDIO VDDIO VDDIO VDDIO VDDM VDDM VDD VDDM VDDM VDD VDDM VDDM D22 D20 VDDM U TRST TCK COL VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDD VDDM D23 D21 GND V TDI CRS TX_EN RXD0 RXD2 TX_ER T1TD T1RFS T0TCK EVNT4 EVNT0 NC BA0 A2 A5 A10 A11 A13 NC VDDM W MDC RX_ER TXCLK TXD1 RXD3 TXD2 T1TFS T1RD T0TFS T0RFS EVNT2 EVNT1 NC A3 A6 A7 A8 A12 VDDM GND Y RX_DV TXD0 RXCLK TXD3 T1TCK T1RCK TOTD NMI BA1 A4 A0 A1 A9 GND VDDM GND RXD1 T0RD T0RCK EVNT3 Figure 3. MSC7113 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 5 Pin Assignments 1.2 Signal List By Ball Location Table 1 lists the signals sorted by ball number and configuration. Table 1. MSC7113 Signals by Ball Designator Signal Names Software Controlled Number End of Reset GPI Enabled (Default) Interrupt Enabled Hardware Controlled GPO Enabled A1 GND A2 GND A3 DQM1 A4 DQS2 A5 CK A6 CK Primary Alternate A7 GPIC7 GPOC7 HD15 A8 GPIC4 GPOC4 HD12 A9 GPIC2 GPOC2 HD10 A10 reserved HD7 A11 reserved HD6 A12 reserved HD4 A13 reserved HD1 A14 reserved HD0 A15 GND A16 (1L44X) NC A16 (1M88B) BM3 GPID8 A17 NC A18 NC A19 NC A20 NC B1 VDDM B2 NC B3 CS0 B4 DQM2 B5 DQS3 B6 DQS0 B7 CKE B8 WE GPOD7 reserved B9 GPIC6 GPOC6 HD14 B10 GPIC3 GPOC3 HD11 B11 GPIC0 GPOC0 HD8 B12 reserved HD5 B13 reserved HD2 B14 NC MSC7113 Data Sheet, Rev. 11 6 Freescale Semiconductor Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) B15 (1L44X) B15 (1M88B) Interrupt Enabled Hardware Controlled GPO Enabled Primary Alternate NC BM2 GPID7 B16 NC B17 NC B18 NC B19 NC B20 NC C1 D24 C2 D30 C3 D25 C4 CS1 C5 DQM3 C6 DQM0 C7 DQS1 C8 RAS C9 CAS GPOD7 reserved C10 GPIC5 GPOC5 HD13 C11 GPIC1 GPOC1 HD9 C12 reserved HD3 C13 NC C14 NC C15 NC C16 NC C17 NC C18 NC C19 NC C20 NC D1 VDDM D2 D28 D3 D27 D4 GND D5 VDDM D6 VDDM D7 VDDM D8 VDDM D9 VDDM D10 VDDM D11 VDDIO MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 7 Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) Interrupt Enabled Hardware Controlled GPO Enabled D12 VDDIO D13 VDDIO D14 VDDIO D15 VDDIO D16 VDDIO D17 VDDC D18 NC D19 NC D20 NC E1 GND E2 D26 E3 D31 E4 VDDM E5 VDDM E6 VDDC E7 VDDC E8 VDDC E9 VDDC E10 VDDM E11 VDDIO E12 VDDIO E13 VDDIO E14 VDDIO E15 VDDIO E16 VDDC E17 VDDC E18 NC E19 NC E20 NC F1 VDDM F2 D15 F3 D29 F4 VDDC F5 VDDC F6 VDDC F7 GND F8 GND F9 GND Primary Alternate MSC7113 Data Sheet, Rev. 11 8 Freescale Semiconductor Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) Interrupt Enabled Hardware Controlled GPO Enabled F10 VDDM F11 VDDM F12 GND F13 GND F14 GND F15 VDDIO F16 VDDC F17 VDDC F18 NC F19 NC F20 NC G1 GND G2 D13 G3 GND G4 VDDM G5 VDDM G6 GND G7 GND G8 GND G9 GND G10 GND G11 GND G12 GND G13 GND G14 GND G15 VDDIO G16 VDDIO G17 VDDC G18 NC G19 NC G20 NC H1 D14 H2 D12 H3 D11 H4 VDDM H5 VDDM H6 GND H7 GND Primary Alternate MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 9 Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) Interrupt Enabled Hardware Controlled GPO Enabled H8 GND H9 GND H10 GND H11 GND H12 GND H13 GND H14 GND H15 VDDIO H16 VDDIO H17 VDDC H18 Primary Alternate NC H19 reserved HA2 H20 reserved HA1 J1 D10 J2 VDDM J3 D9 J4 VDDM J5 VDDM J6 VDDM J7 GND J8 GND J9 GND J10 GND J11 GND J12 GND J13 GND J14 GND J15 GND J16 VDDIO J17 VDDC J18 (1L44X) reserved J18 (1M88B) J19 J20 HA3 GPIC11 GPOC11 HACK/HACK or HRRQ/HRRQ reserved HDSP HA3 HREQ/HREQ or HTRQ/HTRQ reserved K1 D0 K2 GND K3 D8 K4 VDDC MSC7113 Data Sheet, Rev. 11 10 Freescale Semiconductor Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) Interrupt Enabled Hardware Controlled GPO Enabled K5 VDDM K6 GND K7 GND K8 GND K9 GND K10 GND K11 GND K12 GND K13 GND K14 GND K15 VDDIO K16 VDDIO K17 VDDC Primary Alternate K18 reserved HA0 K19 reserved HDDS K20 reserved HDS/HDS or HWR/HWR L1 D1 L2 GND L3 D3 L4 VDDC L5 VDDM L6 GND L7 GND L8 GND L9 GND L10 GND L11 GND L12 GND L13 GND L14 VDDIO L15 VDDIO L16 VDDIO L17 VDDC L18 (1L44X) L18 (1M88B) reserved HCS2/HCS2 GPIB11 GPOB11 HCS2/HCS2 L19 reserved HCS1/HCS1 L20 reserved HRW or HRD/HRD M1 D2 MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 11 Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) Interrupt Enabled Hardware Controlled GPO Enabled M2 VDDM M3 D5 M4 VDDM M5 VDDM M6 GND M7 GND M8 GND M9 GND M10 GND M11 GND M12 GND M13 GND M14 GND M15 GND M16 VDDC M17 VDDC Primary Alternate M18 GPIA14 IRQ15 GPOA14 SDA M19 GPIA12 IRQ3 GPOA12 UTXD M20 GPIA13 IRQ2 GPOA13 URXD GPOA15 SCL N1 D4 N2 D6 N3 VREF N4 VDDM N5 VDDM N6 VDDM N7 GND N8 GND N9 GND N10 GND N11 GND N12 GND N13 GND N14 GND N15 VDDIO N16 VDDC N17 VDDC N18 CLKIN N19 GPIA15 IRQ14 MSC7113 Data Sheet, Rev. 11 12 Freescale Semiconductor Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) Interrupt Enabled Hardware Controlled GPO Enabled N20 VSSPLL P1 D7 P2 D17 P3 D16 P4 VDDM P5 VDDM P6 VDDM P7 GND P8 GND P9 GND P10 GND P11 GND P12 GND P13 GND P14 GND P15 VDDIO P16 VDDIO P17 VDDC P18 PORESET P19 TPSEL P20 VDDPLL R1 GND R2 D19 R3 D18 R4 VDDM R5 VDDM R6 VDDM R7 GND R8 VDDM R9 GND R10 VDDM R11 GND R12 GND R13 VDDIO R14 GND R15 VDDIO R16 VDDIO R17 VDDC Primary Alternate MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 13 Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) R18 R19 Interrupt Enabled Hardware Controlled GPO Enabled Alternate TDO reserved EE0/DBREQ R20 TEST0 T1 VDDM T2 D20 T3 D22 T4 VDDM T5 VDDM T6 VDDC T7 VDDM T8 VDDM T9 VDDC T10 VDDM T11 VDDM T12 VDDIO T13 VDDIO T14 VDDIO T15 VDDIO T16 VDDC T17 VDDC T18 Primary reserved MDIO T19 TMS T20 HRESET U1 GND U2 D21 U3 D23 U4 VDDM U5 VDDC U6 VDDC U7 VDDC U8 VDDC U9 VDDC U10 VDDC U11 VDDC U12 VDDC U13 VDDC U14 VDDC U15 VDDC MSC7113 Data Sheet, Rev. 11 14 Freescale Semiconductor Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset GPI Enabled (Default) Interrupt Enabled Hardware Controlled GPO Enabled U16 VDDC U17 VDDC U18 reserved TCK U20 TRST V1 VDDM V2 NC V3 A13 V4 A11 V5 A10 V6 A5 V7 A2 V8 BA0 V9 NC V10 reserved SWTE GPIA16 Alternate COL U19 V11 Primary EVNT0 IRQ12 GPOA16 EVNT4 V12 GPIA8 IRQ6 GPOA8 T0TCK V13 GPIA4 IRQ1 GPOA4 T1RFS V14 GPIA0 IRQ11 GPOA0 V15 GPIA28 IRQ17 GPOA28 TX_ER reserved GPOD6 RXD2 reserved V16 GPID6 V17 GPIA22 V18 GPIA24 V19 IRQ22 GPOA22 RXD0 IRQ24 GPOA24 TX_EN reserved CRS V20 TDI W1 GND W2 VDDM W3 A12 W4 A8 W5 A7 W6 A6 W7 A3 W8 NC W9 W10 T1TD GPIA17 BM0 IRQ13 GPIC14 GPOA17 EVNT1 CLKO GPOC14 EVNT2 W11 GPIA10 IRQ5 GPOA10 T0RFS W12 GPIA7 IRQ7 GPOA7 T0TFS W13 GPIA3 IRQ8 GPOA3 T1RD MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 15 Pin Assignments Table 1. MSC7113 Signals by Ball Designator (continued) Signal Names Software Controlled Number End of Reset W14 GPI Enabled (Default) GPIA1 W15 Hardware Controlled Interrupt Enabled GPO Enabled IRQ10 GPOA1 GPID4 Primary Alternate T1TFS GPOD4 TXD2 RXD3 reserved W16 GPIA27 IRQ18 GPOA27 W17 GPIA19 IRQ19 GPOA19 TXD1 W18 GPIA23 IRQ23 GPOA23 TXCLK or REFCLK W19 GPIA26 IRQ26 GPOA26 RX_ER W20 H8BIT reserved MDC Y1 VDDM Y2 GND Y3 A9 Y4 A1 Y5 A0 Y6 A4 Y7 BA1 Y8 Y9 Y10 reserved reserved NMI BM1 GPIC15 GPIA11 Y11 IRQ4 GPIA9 Y12 reserved GPIA6 GPOC15 EVNT3 GPOA11 T0RCK GPOA9 T0RD GPOA6 T0TD Y13 GPIA5 IRQ0 GPOA5 T1RCK Y14 GPIA2 IRQ9 GPOA2 T1TCK Y15 GPIA29 IRQ16 GPIA29 TXD3 GPOD5 RXCLK Y16 GPID5 reserved reserved Y17 GPIA20 IRQ20 GPOA20 TXD0 Y18 GPIA21 IRQ21 GPOA21 RXD1 GPOA25 RX_DV or CRS_DV Y19 Y20 GND GPIA25 IRQ25 MSC7113 Data Sheet, Rev. 11 16 Freescale Semiconductor Electrical Characteristics 2 Electrical Characteristics This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the MSC711x Reference Manual. 2.1 Maximum Ratings CAUTION This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or VDD). In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a “maximum” value for a specification never occurs in the same device with a “minimum” value for another specification; adding a maximum to a minimum represents a condition that can never exist. Table 2 describes the maximum electrical ratings for the MSC7113. Table 2. Absolute Maximum Ratings Rating Symbol Value Unit Core supply voltage VDDC 1.5 V Memory supply voltage VDDM 4.0 V PLL supply voltage VDDPLL 1.5 V I/O supply voltage VDDIO –0.2 to 4.0 V VIN (GND – 0.2) to 4.0 V VREF 4.0 V Maximum operating temperature TJ 105 °C Minimum operating temperature TA –40 °C TSTG –55 to +150 °C Input voltage Reference voltage Storage temperature range Notes: 1. 2. 3. Functional operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage. Section 3.1, Thermal Design Considerations includes a formula for computing the chip junction temperature (TJ). MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 17 Electrical Characteristics 2.2 Recommended Operating Conditions Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed. Table 3. Recommended Operating Conditions Rating Symbol Value Unit Core supply voltage VDDC 1.14 to 1.26 V Memory supply voltage VDDM 2.38 to 2.63 V PLL supply voltage VDDPLL 1.14 to 1.26 V I/O supply voltage VDDIO 3.14 to 3.47 V Reference voltage VREF 1.19 to 1.31 V TJ TA maximum: 105 minimum: –40 °C °C Operating temperature range 2.3 Thermal Characteristics Table 4 describes thermal characteristics of the MSC7113 for the MAP-BGA package. Table 4. Thermal Characteristics for MAP-BGA Package MAP-BGA 17 Characteristic Symbol × 17 mm5 Unit Natural Convection 200 ft/min (1 m/s) airflow RθJA 39 31 °C/W Junction-to-ambient, four-layer board RθJA 23 20 °C/W Junction-to-board4 RθJB 12 °C/W Junction-to-case RθJC 7 °C/W Junction-to-package-top6 Ψ JT 2 °C/W Junction-to-ambient1, 2 1, 3 5 Notes: 1. 2. 3. 4. 5. 6. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. Section 3.1, Thermal Design Considerations explains these characteristics in detail. MSC7113 Data Sheet, Rev. 11 18 Freescale Semiconductor Electrical Characteristics 2.4 DC Electrical Characteristics This section describes the DC electrical characteristics for the MSC7113. Note: The leakage current is measured for nominal voltage values must vary in the same direction (for example, both VDDIO and VDDC vary by +2 percent or both vary by –2 percent). Table 5. DC Electrical Characteristics Characteristic Symbol Min Typical Max Unit VDDC VDDPLL 1.14 1.2 1.26 V VDDM 2.375 2.5 2.625 V VDDIO 3.135 3.3 3.465 V VREF 0.49 × VDDM 1.25 0.51 × VDDM V VTT VREF – 0.04 VREF VREF + 0.04 V VIHCLK 2.4 3.0 3.465 V DRAM interface input high I/O voltage VIHM VREF + 0.28 VDDM VDDM + 0.3 V DRAM interface input low I/O voltage VILM –0.3 GND VREF – 0.18 V IIN –1.0 0.09 1 µA IVREF — — 5 µA IOZ –1.0 0.09 1 µA Signal low input current, VIL = 0.4 V IL –1.0 0.09 1 µA Signal high input current, VIH = 2.0 V IH –1.0 0.09 1 µA Output high voltage, IOH = –2 mA, except open drain pins VOH 2.0 3.0 — V Output low voltage, IOL= 5 mA VOL — 0 0.4 V P — 293.0 — mW Core and PLL voltage DRAM interface I/O voltage1 I/O voltage DRAM interface I/O reference voltage 2 DRAM interface I/O termination voltage 3 Input high CLKIN voltage Input leakage current, VIN = VDDIO VREF input leakage current Tri-state (high impedance off state) leakage current, VIN = VDDIO 5 Typical power at 266 MHz Notes: 1. 2. 3. 4. 5. The value of VDDM at the MSC7113 device must remain within 50 mV of VDDM at the DRAM device at all times. VREF must be equal to 50% of VDDM and track VDDM variations as measured at the receiver. Peak-to-peak noise must not exceed ±2% of the DC value. VTT is not applied directly to the MSC7113 device. It is the level measured at the far end signal termination. It should be equal to VREF. This rail should track variations in the DC level of VREF. Output leakage for the memory interface is measured with all outputs disabled, 0 V ≤ VOUT ≤ VDDM. The core power values were measured.using a standard EFR pattern at typical conditions (25°C, 300 MHz, 1.2 V core). Table 6 lists the DDR DRAM capacitance. Table 6. DDR DRAM Capacitance Parameter/Condition Symbol Max Unit Input/output capacitance: DQ, DQS CIO 30 pF Delta input/output capacitance: DQ, DQS CDIO 30 pF Note: These values were measured under the following conditions: • VDDM = 2.5 V ± 0.125 V • f = 1 MHz • TA = 25°C • VOUT = VDDM/2 • VOUT (peak to peak) = 0.2 V MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 19 Electrical Characteristics 2.5 AC Timings This section presents timing diagrams and specifications for individual signals and parallel I/O outputs and inputs. All AC timings are based on a 30 pF load, except where noted otherwise, and a 50 Ω transmission line. For any additional pF, use the following equations to compute the delay: • • 2.5.1 Standard interface: 2.45 + (0.054 × Cload) ns DDR interface: 1.6 + (0.002 × Cload) ns Clock and Timing Signals The following tables describe clock signal characteristics. Table 6 shows the maximum frequency values for internal (core, reference, and peripherals) and external (CLKO) clocks. You must ensure that maximum frequency values are not exceeded (see for the allowable ranges when using the PLL). Table 6. Maximum Frequencies Maximum in MHz Characteristic Core clock frequency (CLOCK) External output clock frequency (CLKO) Memory clock frequency (CK, CK) TDM clock frequency (TxRCK, TxTCK) Mask Set 1L44X Mask Set 1M88B 200 50 100 50 266 67 133 67 Table 7. Clock Frequencies in MHz Characteristic Symbol CLKIN frequency FCLKIN CLOCK frequency FCORE CK, CK frequency FCK TDMxRCK, TDMxTCK frequency FTDMCK CLKO frequency FCKO AHB/IPBus/APB clock frequency FBCK Note: The rise and fall time of external clocks should be 5 ns maximum Max Min 10 — — — — — Mask Set 1L44X Mask Set 1M88B 100 200 100 50 50 100 100 266 133 50 67 133 Table 8. System Clock Parameters Characteristic CLKIN frequency CLKIN slope CLKIN frequency jitter (peak-to-peak) CLKO frequency jitter (peak-to-peak) 2.5.2 Min Max Unit 10 — — — 100 5 1000 150 MHz ns ps ps Configuring Clock Frequencies This section describes important requirements for configuring clock frequencies in the MSC7113 device when using the PLL block. To configure the device clocking, you must program four fields in the Clock Control Register (CLKCTL): • • • • PLLDVF field. Specifies the PLL division factor. The output of the divider block is the input to the multiplier block. PLLMLTF field. Specifies the PLL multiplication factor. The output from the multiplier block is the VCO. RNG field. Selects the available PLL frequency range. CKSEL field. Selects the source for the core clock. There are restrictions on the frequency range permitted at the beginning of the multiplication portion of the PLL that affect the allowable values for the PLLDVF and PLLMLTF fields. The following sections define these restrictions and provide guidelines to configure the device clocking when using the PLL. Refer to the Clock and Power Management chapter in the MSC711x Reference Manual for details on the clock programming model. MSC7113 Data Sheet, Rev. 11 20 Freescale Semiconductor Electrical Characteristics 2.5.2.1 PLL Multiplier Restrictions There are two restrictions for correct usage of the PLL block: • • The input frequency to the PLL multiplier block (that is, the output of the divider) must be in the range 10.5–19.5 MHz. The output frequency of the PLL multiplier must be in the range 300-600 MHz. When programming the PLL for a desired output frequency using the PLLDVF, PLLMLTF, and RNG fields, you must meet these constraints. 2.5.2.2 Division Factors and Corresponding CLKIN Frequency Range The value of the PLLDVF field determines the allowable CLKIN frequency range, as shown in Table 9. Table 9. CLKIN Frequency Ranges by Divide Factor Value PLLDVF Field Value Divide Factor CLKIN Frequency Range 0x00 1 10.5 to 19.5 MHz Pre-Division by 1 0x01 2 21 to 39 MHz Pre-Division by 2 0x02 3 31.5 to 58.5 MHz Pre-Division by 3 0x03 4 42 to 78 MHz Pre-Division by 4 0x04 5 52.5 to 97.5 MHz Pre-Division by 5 0x05 6 63 to 100 MHz Pre-Division by 6 0x06 7 73.5 to 100 MHz Pre-Division by 7 0x07 8 84 to 100 MHz Pre-Division by 8 0x08 9 94.5 to 100 MHz Pre-Division by 9 Note: Comments The maximum CLKIN frequency is 100 MHz. Therefore, the PLLDVF value must be in the range from 1–9. 2.5.2.3 Multiplication Factor Range The multiplier block output frequency ranges depend on the divided input clock frequency as shown in Table 10. Table 10. PLLMLTF Ranges Multiplier Block (Loop) Output Range 266 ≤ [Divided Input Clock × (PLLMLTF + 1)] ≤ 532 MHz Note: 2.5.2.4 Minimum PLLMLTF Value Maximum PLLMLTF Value 266/Divided Input Clock 532/Divided Input Clock This table results from the allowed range for FLoop. The minimum and maximum multiplication factors are dependent on the frequency of the Divided Input Clock. Allowed Core Clock Frequency Range The frequency delivered to the core, extended core, and peripherals depends on the value of the CLKCTRL[RNG] bit as shown in Table 11. Table 11. Fvco Frequency Ranges CLKCTRL[RNG] Value Allowed Range of Fvco 1 266 ≤ Fvco ≤ 532 MHz 0 133 ≤ Fvco ≤ 266 MHz Note: This table results from the allowed range for Fvco, which is FLoop modified by CLKCTRL[RNG]. This bit along with the CKSEL determines the frequency range of the core clock. MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 21 Electrical Characteristics Table 12. Resulting Ranges Permitted for the Core Clock CLKCTRL[CKSEL] CLKCTRL[RNG] Resulting Division Factor Allowed Range of Core Clock 11 1 1 Reserved 11 0 2 133 ≤ core clock ≤ 266 MHz Limited by range of PLL 01 1 2 133 ≤ core clock ≤ 266 MHz Limited by range of PLL 01 0 4 66.5 ≤ core clock ≤ 133 MHz Limited by range of PLL Note: Comments Reserved This table results from the allowed range for FOUT, which depends on clock selected via CLKCTRL[CKSEL]. 2.5.2.5 Core Clock Frequency Range When Using DDR Memory The core clock can also be limited by the frequency range of the DDR devices in the system. Table 13 summarizes this restriction. Table 13. Core Clock Ranges When Using DDR DDR Type Allowed Frequency Range for DDR CK Corresponding Range for the Core Clock DDR 200 (PC-1600) 83–100 MHz 166 ≤ core clock ≤ 200 MHz Core limited to 2 × maximum DDR frequency DDR 266 (PC-2100) 83–133 MHz 166 ≤ core clock ≤ 266 MHz Core limited to 2 × maximum DDR frequency DDR 333 (PC-2600) 83–150 MHz 166 ≤ core clock ≤ 300 MHz Core limited to 2 × maximum DDR frequency 2.5.3 Comments Reset Timing The MSC7113 device has several inputs to the reset logic. All MSC7113 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. Table 14 describes the reset sources. Table 14. Reset Sources Name Direction Description Power-on reset (PORESET) Input Initiates the power-on reset flow that resets the MSC7113 and configures various attributes of the MSC7113. On PORESET, the entire MSC7113 device is reset. SPLL and DLL states are reset, HRESET is driven, the SC1400 extended core is reset, and system configuration is sampled. The system is configured only when PORESET is asserted. External Hard reset (HRESET) Input/ Output Initiates the hard reset flow that configures various attributes of the MSC7113. While HRESET is asserted, HRESET is an open-drain output. Upon hard reset, HRESET is driven and the SC1400 extended core is reset. Software watchdog reset Internal When the MSC7113 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence. Bus monitor reset Internal When the MSC7113 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence. JTAG EXTEST, CLAMP, or HIGHZ command Internal When a Test Access Port (TAP) executes an EXTEST, CLAMP, or HIGHZ command, the TAP logic asserts an internal reset signal that generates an internal soft reset sequence. Table 15 summarizes the reset actions that occur as a result of the different reset sources. MSC7113 Data Sheet, Rev. 11 22 Freescale Semiconductor Electrical Characteristics Table 15. Reset Actions for Each Reset Source Power-On Reset (PORESET) Hard Reset (HRESET) Soft Reset (SRESET) External only External or Internal (Software Watchdog or Bus Monitor) JTAG Command: EXTEST, CLAMP, or HIGHZ Configuration pins sampled (refer to Section 2.5.3.1 for details). Yes No No PLL and clock synthesis states Reset Yes No No HRESET Driven Yes Yes No Software watchdog and bus time-out monitor registers Yes Yes Yes Clock synthesis modules (STOPCTRL, HLTREQ, and HLTACK) reset Yes Yes Yes Extended core reset Yes Yes Yes Peripheral modules reset Yes Yes Yes Reset Action/Reset Source 2.5.3.1 Power-On Reset (PORESET) Pin Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at least 16 CLKIN cycles after external power to the MSC7113 reaches at least 2/3 VDD. 2.5.3.2 Reset Configuration The MSC7113 has two mechanisms for writing the reset configuration: • • From a host through the host interface (HDI16) From memory through the I2C interface Five signal levels (see Chapter 1 for signal description details) are sampled on PORESET deassertion to define the boot and operating conditions: • • • • BM[0–1] SWTE H8BIT HDSP 2.5.3.3 Reset Timing Tables Table 16 and Figure 4 describe the reset timing for a reset configuration write. Table 16. Timing for a Reset Configuration Write No. Characteristics Expression Unit 1 Required external PORESET duration minimum 16/FCLKIN clocks 2 Delay from PORESET deassertion to HRESET deassertion 521/FCLKIN clocks Note: Timings are not tested, but are guaranteed by design. MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 23 Electrical Characteristics 1 PORESET Input Configuration Pins are sampled PORESET Internal HRESET Output(I/O) 2 Figure 4. Timing Diagram for a Reset Configuration Write 2.5.4 DDR DRAM Controller Timing This section provides the AC electrical characteristics for the DDR DRAM interface. 2.5.4.1 DDR DRAM Input AC Timing Specifications Table 17 provides the input AC timing specifications for the DDR DRAM interface. Table 17. DDR DRAM Input AC Timing Max No. Parameter Symbol Min Mask Set 1L44X Mask Set 1M88B Unit — AC input low voltage VIL — VREF – 0.31 VREF – 0.31 V — AC input high voltage VIH VREF + 0.31 VDDM + 0.3 VDDM + 0.3 V 201 Maximum Dn input setup skew relative to DQSn input — — 1026 900 ps 202 Maximum Dn input hold skew relative to DQSn input — — 386 900 ps Notes: 1. 2. 3. Maximum possible skew between a data strobe (DQSn) and any corresponding bit of data (D[8n + {0...7}] if 0 ≤ n ≤ 7). See Table 18 for tCK value. Dn should be driven at the same time as DQSn. This is necessary because the DQSn centering on the DQn data tenure is done internally. DQSn 202 202 D0 Dn D1 201 Note: DQS centering is done internally. 201 Figure 5. DDR DRAM Input Timing Diagram MSC7113 Data Sheet, Rev. 11 24 Freescale Semiconductor Electrical Characteristics 2.5.4.2 DDR DRAM Output AC Timing Specifications Table 18 and Table 19 list the output AC timing specifications and measurement conditions for the DDR DRAM interface. Table 18. DDR DRAM Output AC Timing Min No. Parameter 200 CK cycle time, (CK/CK crossing)1 • 100 MHz (DDR200) • 133 MHz (DDR266) Symbol Max Unit 1.0 7.52 — — ns ns Mask Set 1L44X Mask Set 1M88B 10 Not applicable tCK 204 An/RAS/CAS/WE/CKE output setup with respect to CK tDDKHAS 0.5 × tCK – 2250 0.5 × tCK – 1000 — ps 205 An/RAS/CAS/WE/CKE output hold with respect to CK tDDKHAX 0.5 × tCK – 1250 0.5 × tCK – 1000 — ps 206 CSn output setup with respect to CK tDDKHCS 0.5 × tCK – 2250 0.5 × tCK – 1000 — ps 207 CSn output hold with respect to CK tDDKHCX 0.5 × tCK – 1250 0.5 × tCK – 1000 — ps tDDKHMH –600 –600 600 ps 2 208 CK to DQSn 209 Dn/DQMn output setup with respect to DQSn3 tDDKHDS, tDDKLDS 0.25 × tMCK – 1050 0.25 × tCK – 750 — ps 210 Dn/DQMn output hold with respect to DQSn3 tDDKHDX, tDDKLDX 0.25 × tCK – 1050 0.25 × tCK – 750 — ps 211 DQSn preamble start4 tDDKHMP –0.25 × tCK –0.25 × tCK — ps tDDKHME –600 –600 600 ps 212 Notes: DQSn epilogue end 1. 2. 3. 4. 5. 5 All CK/CK referenced measurements are made from the crossing of the two signals ±0.1 V. tDDKHMH can be modified through the TCFG2[WRDD] DQSS override bits. The DRAM requires that the first write data strobe arrives 75–125% of a DRAM cycle after the write command is issued. Any skew between DQSn and CK must be considered when trying to achieve this 75%–125% goal. The TCFG2[WRDD] bits can be used to shift DQSn by 1/4 DRAM cycle increments. The skew in this case refers to an internal skew existing at the signal connections. By default, the CK/CK crossing occurs in the middle of the control signal (An/RAS/CAS/WE/CKE) tenure. Setting TCFG2[ACSM] bit shifts the control signal assertion 1/2 DRAM cycle earlier than the default timing. This means that the signal is asserted no earlier than 410 ps before the CK/CK crossing and no later than 677 ps after the crossing time; the device uses 1087 ps of the skew budget (the interval from –410 to +677 ps). Timing is verified by referencing the falling edge of CK. See Chapter 10 of the MSC711x Reference Manual for details. Determined by maximum possible skew between a data strobe (DQS) and any corresponding bit of data. The data strobe should be centered inside of the data eye. Please note that this spec is in reference to the DQSn first rising edge. It could also be referenced from CK(r), but due to programmable delay of the write strobes (TCFG2[WRDD]), there pre-amble may be extended for a full DRAM cycle. For this reason, we reference from DQSn. All outputs are referenced to the rising edge of CK. Note that this is essentially the CK/DQSn skew in spec 208. In addition there is no real “maximum” time for the epilogue end. JEDEC does not require this is as a device limitation, but simply for the chip to guarantee fast enough write to read turn-around times. This is already guaranteed by the memory controller operation. MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 25 Electrical Characteristics Figure 6 shows the DDR DRAM output timing diagram. CK CK 200 204 206 An RAS CAS WE CKE DQMn 205 207 Write A0 NOOP 211 208 DQSn 212 209 209 Dn D0 D1 210 210 Figure 6. DDR DRAM Output Timing Diagram Figure 7 provides the AC test load for the DDR DRAM bus. Z0 = 50 Ω Output VOUT RL = 50 Ω Figure 7. DDR DRAM AC Test Load Table 19. DDR DRAM Measurement Conditions Symbol VTH 1 VOUT 2 Notes: 2.5.5 1. 2. DDR DRAM Unit VREF ± 0.31 V V 0.5 × VDDM V Data input threshold measurement point. Data output measurement point. TDM Timing Table 20. TDM Timing No. Characteristic Expression Min Max Units 300 TDMxRCK/TDMxTCK TC 20.0 — ns 301 TDMxRCK/TDMxTCK High Pulse Width 0.4 × TC 8.0 — ns 302 TDMxRCK/TDMxTCK Low Pulse Width 0.4 × TC 8.0 — ns 303 TDM all input Setup time 3.0 — ns 304 TDMxRD Hold time 3.5 — ns 305 TDMxTFS/TDMxRFS input Hold time 2.0 — ns 306 TDMxTCK High to TDMxTD output active 4.0 — ns MSC7113 Data Sheet, Rev. 11 26 Freescale Semiconductor Electrical Characteristics Table 20. TDM Timing No. Characteristic 307 308 309 Expression Min Max Units TDMxTCK High to TDMxTD output valid — 14.0 ns TDMxTD hold time 2.0 — ns TDMxTCK High to TDMxTD output high impedance — 10.0 ns 310 TDMXTFS/TDMxRFS output valid — 13.5 ns 311 TDMxTFS/TDMxRFS output hold time 2.5 — ns Notes: 1. 2. Output values are based on 30 pF capacitive load. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. Refer to the MSC711x Reference Manual for details. TDMxTCK and TDMxRCK are shown using the rising edge. 300 302 301 TDMxRCK 304 303 TDMxRD 305 303 TDMxRFS 310 ~ ~ TDMxRFS (output) 311 Figure 8. TDM Receive Signals 300 302 301 TDMxTCK 309 306 TDMxTD TDMxRCK 310 TDMxTFS (output) 303 305 ~ ~ ~ ~ 307 308 311 TDMxTFS (input) Figure 9. TDM Transmit Signals MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 27 Electrical Characteristics 2.5.6 2.5.6.1 Ethernet Timing Receive Signal Timing Table 21. Receive Signal Timing No. Min Max Unit Receive clock period: • MII: RXCLK (max frequency = 25 MHz) • RMII: REFCLK (max frequency = 50 MHz) 40 20 — — ns ns 801 Receive clock pulse width high—as a percent of clock period • MII: RXCLK • RMII: REFCLK 35 14 7 65 — — % ns ns 802 Receive clock pulse width low—as a percent of clock period: • MII: RXCLK • RMII: REFCLK 35 14 7 65 — — % ns ns 800 Characteristics 803 RXDn, RX_DV, CRS_DV, RX_ER to receive clock rising edge setup time 4 — ns 804 Receive clock rising edge to RXDn, RX_DV, CRS_DV, RX_ER hold time 2 — ns 800 801 802 Receive clock RXDn RX_DV CRS_DV RX_ER 803 804 Valid Figure 10. Ethernet Receive Signal Timing MSC7113 Data Sheet, Rev. 11 28 Freescale Semiconductor Electrical Characteristics 2.5.6.2 Transmit Signal Timing Table 22. Transmit Signal Timing No. Min Max Unit Transmit clock period: • MII: TXCLK • RMII: REFCLK 40 20 — — ns ns 801 Transmit clock pulse width high—as a percent of clock period • MII: RXCLK • RMII: REFCLK 35 14 7 65 — — % ns ns 802 Transmit clock pulse width low—as a percent of clock period: • MII: RXCLK • RMII: REFCLK 35 14 7 65 — — % ns ns 800 Characteristics 805 Transmit clock to TXDn, TX_EN, TX_ER invalid 4 — ns 806 Transmit clock to TXDn, TX_EN, TX_ER valid — 14 ns Min Max Unit 60 30 — — ns ns 800 801 Transmit clock 802 806 805 TXDn TX_EN TX_ER Valid Figure 11. Ethernet Receive Signal Timing 2.5.6.3 Asynchronous Input Signal Timing Table 23. Asynchronous Input Signal Timing No. 807 Characteristics • MII: CRS and COL minimum pulse width (1.5 × TXCLK period) • RMII: CRS_DV minimum pulse width (1.5 x REFCLK period) CRS COL CRS_DV 807 Figure 12. Asynchronous Input Signal Timing MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 29 Electrical Characteristics 2.5.6.4 Management Interface Timing Table 24. Ethernet Controller Management Interface Timing No. Characteristics Min Max Unit 808 MDC period 400 — ns 809 MDC pulse width high 160 — ns 810 MDC pulse width low 160 — ns 811 MDS falling edge to MDIO output invalid (minimum propagation delay) 0 — ns 812 MDS falling edge to MDIO output valid (maximum propagation delay) — 15 ns 813 MDIO input to MDC rising edge setup time 10 — ns 814 MDC rising edge to MDIO input hold time 10 — ns 808 809 810 MDC (output) 811 MDIO (output) 812 813 814 MDIO (input) Figure 13. Serial Management Channel Timing MSC7113 Data Sheet, Rev. 11 30 Freescale Semiconductor Electrical Characteristics 2.5.7 HDI16 Signals Table 25. Host Interface (HDI16) Timing1, 2 No. Mask Set 1L44X Characteristics3 Expression 40 Host Interface Clock period Value Mask Set 1M88B Expression Unit Value THCLK Note 1 TCORE Note 1 ns 44a Read data strobe minimum assertion width4 HACK read minimum assertion width 3.0 × THCLK Note 11 2.0 × TCORE + 9.0 Note 11 ns 44b Read data strobe minimum deassertion width4 HACK read minimum deassertion width 1.5 × THCLK Note 11 1.5 × TCORE Note 11 ns 44c Read data strobe minimum deassertion width4 after “Last Data Register” reads5,6, or between two consecutive CVR, ICR, or ISR reads7 HACK minimum deassertion width after “Last Data Register” reads5,6 2.5 × THCLK Note 11 2.5 × TCORE Note 11 ns 45 Write data strobe minimum assertion width8 HACK write minimum assertion width 1.5 × THCLK Note 11 1.5 × TCORE Note 11 ns 2.5 × THCLK Note 11 2.5 × TCORE Note 11 ns 47 Host data input minimum setup time before write data strobe deassertion8 Host data input minimum setup time before HACK write deassertion — 3.0 — 2.5 ns 48 Host data input minimum hold time after write data strobe deassertion8 Host data input minimum hold time after HACK write deassertion — 4.0 — 2.5 ns — 1.0 — 1.0 ns 46 Write data strobe minimum deassertion width8 HACK write minimum deassertion width after ICR, CVR and Data Register writes5 49 Read data strobe minimum assertion to output data active from high impedance4 HACK read minimum assertion to output data active from high impedance 50 Read data strobe maximum assertion to output data valid4 HACK read maximum assertion to output data valid (2.0 × THCLK) + 8.0 Note 11 (2.0 × TCORE) + 8.0 Note 11 51 Read data strobe maximum deassertion to output data high impedance4 HACK read maximum deassertion to output data high impedance 52 Output data minimum hold time after read data strobe deassertion4 Output data minimum hold time after HACK read deassertion ns — 8.0 — 9.0 ns — 1.0 — 1.0 ns 4 — 0.0 — 0.5 ns 54 HCS[1–2] minimum assertion to write data strobe assertion8 — 0.0 — 0.0 ns 53 HCS[1–2] minimum assertion to read data strobe assertion 55 HCS[1–2] maximum assertion to output data valid (2.0 × THCLK) + 8.0 Note 11 (2.0 × TCORE) + 6.0 Note 11 ns 56 HCS[1–2] minimum hold time after data strobe deassertion9 — 0.0 — 0.5 ns 57 HA[0–3], HRW minimum setup time before data strobe assertion9 — 5.0 — 5.0 ns 58 HA[0–3], HRW minimum hold time after data strobe deassertion9 — 5.0 — 5.0 ns (3.0 × THCLK) + 8.0 Note 11 (3.0 × TCORE) + 6.0 Note 11 ns 62 Maximum delay from write data strobe deassertion to host request deassertion for “Last Data Register” write5,8,10 (3.0 × THCLK) + 8.0 Note 11 (3.0 × TCORE) + 6.0 Note 11 ns 63 Minimum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) deassertion to HREQ assertion. (2.0 × THCLK) + 1.0 Note 11 (2.0 × TCORE) + 1.0 Note 11 ns 64 Maximum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) assertion to HREQ deassertion (5.0 × THCLK) + 8.0 Note 11 (5.0 × TCORE) + 6.0 Note 11 ns 61 Maximum delay from read data strobe deassertion to host request deassertion for “Last Data Register” read4, 5, 10 MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 31 Table 25. Host Interface (HDI16) Timing1, 2 (continued) Mask Set 1L44X Characteristics3 No. Expression Notes: Mask Set 1M88B Value Expression Unit Value 1. 2. 3. 4. 5. THCLK = 2/ (Core Clock). At 200 MHz, THCLK = 10 ns. TCORE = core clock period. At 266 MHz, TCORE = 3.75 ns. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable. VDD = 3.3 V ± 0.15 V; TJ = –40°C to +105 °C, CL = 30 pF for maximum delay timings and CL = 0 pF for minimum delay timings. The read data strobe is HRD/HRD in the dual data strobe mode and HDS/HDS in the single data strobe mode. For 64-bit transfers, The “last data register” is the register at address 0x7, which is the last location to be read or written in data transfers. This is RX0/TX0 in the little endian mode (HBE = 0), or RX3/TX3 in the big endian mode (HBE = 1). 6. This timing is applicable only if a read from the “last data register” is followed by a read from the RXL, RXM, or RXH registers without first polling RXDF or HREQ bits, or waiting for the assertion of the HREQ/HREQ signal. 7. This timing is applicable only if two consecutive reads from one of these registers are executed. 8. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode. 9. The data strobe is host read (HRD/HRD) or host write (HWR/HWR) in the dual data strobe mode and host data strobe (HDS/HDS) in the single data strobe mode. 10. The host request is HREQ/HREQ in the single host request mode and HRRQ/HRRQ and HTRQ/HTRQ in the double host request mode. HRRQ/HRRQ is deasserted only when HOTX fifo is empty, HTRQ/HTRQ is deasserted only if HORX fifo is full (treat as level Host Request). 11. Compute the value using the expression. 12. For mask set 1M88B, the read and write data strobe minimum deassertion width for non-”last data register” accesses in single and dual data strobe modes is based on timings 57 and 58. Figure 14 and Figure 15 show HDI16 read signal timing. Figure 16 and Figure 17 show HDI16 write signal timing. HA[0–3] 57 58 56 53 HCS[1–2] 57 58 HRW 44a HDS 51 55 44c 50 52 49 HD[0–15] 61 HREQ (single host request) HRRQ (double host request) Figure 14. Read Timing Diagram, Single Data Strobe MSC7113 Data Sheet, Rev. 11 32 Freescale Semiconductor HA[0–3] 57 58 56 53 HCS[1–2] 44a HRD 51 55 44a 50 52 49 HD[0–15] 61 HREQ (single host request) HRRQ (double host request) Figure 15. Read Timing Diagram, Double Data Strobe HA[0–3] 57 58 56 54 HCS[1–2] 57 58 HRW 45 HDS 46 47 48 HD[0–15] 62 HREQ (single host request) HTRQ (double host request) Figure 16. Write Timing Diagram, Single Data Strobe MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 33 HA[0–3] 57 58 56 54 HCS[1–2] 45 HWR 46 48 47 HD[0–15] 62 HREQ (single host request) HTRQ (double host request) Figure 17. Write Timing Diagram, Double Data Strobe HREQ (Output) 63 64 44a 44b RX[0–3] HACK Read 51 50 49 HD[0–15] 52 Data Valid (Output) Figure 18. Host DMA Read Timing Diagram, HPCR[OAD] = 0 MSC7113 Data Sheet, Rev. 11 34 Freescale Semiconductor HREQ (Output) 63 64 46 45 HACK TX[0–3] Write 47 48 HD[0–15] (Input) Data Valid Figure 19. Host DMA Write Timing Diagram, HPCR[OAD] = 0 MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 35 2.5.8 I2C Timing Table 26. I2C Timing Fast No. Characteristic Unit Min Max 0 400 kHz 450 SCL clock frequency 451 Hold time START condition (Clock period/2) – 0.3 — μs 452 SCL low period (Clock period/2) – 0.3 — μs 453 SCL high period (Clock period/2) – 0.1 — μs 454 Repeated START set-up time (not shown in figure) 2 × 1/FBCK — μs 455 Data hold time 0 — μs 456 Data set-up time 250 — ns 457 SDA and SCL rise time — 700 ns 458 SDA and SCL fall time — 300 ns 459 Set-up time for STOP (Clock period/2) – 0.7 — μs 460 Bus free time between STOP and START (Clock period/2) – 0.3 — μs Note: SDA set-up time is referenced to the rising edge of SCL. SDA hold time is referenced to the falling edge of SCL. Load capacitance on SDA and SCL is 400 pF. 453 458 Start Condition 1 SCL 2 3 457 4 452 451 SDA 5 6 7 8 Stop Condition Start Condition 9 A C K Data Byte 457 458 459 460 Start Condition SCL SDA Data Byte Figure 20. I2C Timing Diagram MSC7113 Data Sheet, Rev. 11 36 Freescale Semiconductor 2.5.9 UART Timing Table 27. UART Timing No. Characteristics Mask Set 1L44X Expression Min Max Mask Set 1M88B Min Max Unit — Internal bus clock (APBCLK) FCORE/2 — 100 — 133 — Internal bus clock period (1/APBCLK) TAPBCLK 10.0 — 7.52 — MHz ns 16 × TAPBCLK 160.0 — 120.3 — ns 400 URXD and UTXD inputs high/low duration 401 URXD and UTXD inputs rise/fall time — 5 — 5 ns 402 UTXD output rise/fall time — 5 — 5 ns 401 401 UTXD, URXD inputs 400 400 Figure 21. UART Input Timing 402 402 UTXD output Figure 22. UART Output Timing 2.5.10 EE Timing Table 28. EE0 Timing Number Notes: Characteristics 65 EE0 input to the core 66 EE0 output from the core 1. 2. 3. Type Min Asynchronous 4 core clock periods Synchronous to core clock 1 core clock period The core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset. Configure the direction of the EE pin in the EE_CTRL register (see the SC1400 Core Reference Manual for details. Refer to Table 14 for details on EE pin functionality. Figure 23 shows the signal behavior of the EE pin. 65 EE0 in 66 EE0 out Figure 23. EE Pin Timing MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 37 2.5.11 Event Timing Table 29. EVNT Signal Timing Number 67 68 Notes: 1. 2. 3. Characteristics EVNT as input EVNT as output Type Min Asynchronous 1.5 × APBCLK periods Synchronous to core clock 1 APBCLK period Refer to Table 27 for a definition of the APBCLK period. Direction of the EVNT signal is configured through the GPIO and Event port registers. Refer to the MSC711x Reference Manual for details on EVNT pin functionality. Figure 24 shows the signal behavior of the EVNT pin. 67 EVNT in 68 EVNT out Figure 24. EVNT Pin Timing 2.5.12 GPIO Timing Table 30. GPIO Signal Timing1,2,3 Number Notes: Characteristics 4.5 601 GPI 602 GPO5 603 604 1. 2. 3. 4. 5. 6. Type Min Asynchronous 1.5 × APBCLK periods Synchronous to core clock 1 APBCLK period Port A edge-sensitive interrupt Asynchronous 1.5 × APBCLK periods Port A level-sensitive interrupt Asynchronous 3 × APBCLK periods6 Refer to Table 27 for a definition of the APBCLK period. Direction of the GPIO signal is configured through the GPIO port registers. Refer to MSC711x Reference Manual for details on GPIO pin functionality. GPI data is synchronized to the APBCLK internally and the minimum listed is the capability of the hardware to capture data into a register when the GPA_DR is read. The specification is not tested due to the asynchronous nature of the input and dependence on the state of the DSP core. It is guaranteed by design. The input and output signals cannot toggle faster than 50 MHz. Level-sensitive interrupts should be held low until the system determines (via the service routine) that the interrupt is acknowledged. Figure 25 shows the signal behavior of the GPI/GPO pin. 601 GPI 602 GPO Figure 25. GPI/GPO Pin Timing MSC7113 Data Sheet, Rev. 11 38 Freescale Semiconductor 2.5.13 JTAG Signals Table 31. JTAG Timing All frequencies No. Characteristics Unit Min Max 700 TCK frequency of operation (1/(TC × 3); maximum 22 MHz) 0.0 40.0 MHz 701 TCK cycle time 25.0 — ns 702 TCK clock pulse width measured at VM = 1.6 V 11.0 — ns 703 TCK rise and fall times 0.0 3.0 ns 704 Boundary scan input data set-up time 5.0 — ns 705 Boundary scan input data hold time 14.0 — ns 706 TCK low to output data valid 0.0 20.0 ns 707 TCK low to output high impedance 0.0 20.0 ns 708 TMS, TDI data set-up time 5.0 — ns 709 TMS, TDI data hold time 25.0 — ns 710 TCK low to TDO data valid 0.0 24.0 ns 711 TCK low to TDO high impedance 0.0 10.0 ns 712 TRST assert time 100.0 — ns Note: All timings apply to OCE module data transfers as the OCE module uses the JTAG port as an interface. 701 702 TCK (Input) VIH VM VM VIL 703 703 Figure 26. Test Clock Input Timing Diagram MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 39 VIH TCK (Input) VIL 704 Data Inputs 705 Input Data Valid 706 Data Outputs Output Data Valid 707 Data Outputs Figure 27. Boundary Scan (JTAG) Timing Diagram TCK (Input) VIH VIL 708 TDI TMS (Input) 709 Input Data Valid 710 TDO (Output) Output Data Valid 711 TDO (Output) Figure 28. Test Access Port Timing Diagram TRST (Input) 712 Figure 29. TRST Timing Diagram MSC7113 Data Sheet, Rev. 11 40 Freescale Semiconductor Hardware Design Considerations 3 Hardware Design Considerations This section described various areas to consider when incorporating the MSC7113 device into a system design. 3.1 Thermal Design Considerations An estimation of the chip-junction temperature, TJ, in °C can be obtained from the following: TJ = TA + (RθJA × PD) Eqn. 1 where TA = ambient temperature near the package (°C) RθJA = junction-to-ambient thermal resistance (°C/W) PD = PINT + PI/O = power dissipation in the package (W) PINT = IDD × VDD = internal power dissipation (W) PI/O = power dissipated from device on output pins (W) The power dissipation values for the MSC7113 are listed in Table 4. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm2 with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If TJ appears to be too high, either lower the ambient temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case. Use the following equation to determine TJ: TJ = TT + (ΨJT × PD) Eqn. 2 where TT = thermocouple (or infrared) temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) MSC7113 Data Sheet, Rev. 11 Freescale Semiconductor 41 Hardware Design Considerations 3.2 Power Supply Design Considerations This section outlines the MSC7113 power considerations: power supply, power sequencing, power planes, decoupling, power supply filtering, and power consumption. It also presents a recommended power supply design and options for low-power consumption. For information on AC/DC electrical specifications and thermal characteristics, refer to Section 2. 3.2.1 Power Supply The MSC7113 requires four input voltages, as shown in Table 32. Table 32. MSC7113 Voltages Voltage Symbol Value Core VDDC 1.2 V Memory VDDM 2.5 V Reference VREF 1.25 V I/O VDDIO 3.3 V You should supply the MSC7113 core voltage via a variable switching supply or regulator to allow for compatibility with possible core voltage changes on future silicon revisions. The core voltage is supplied with 1.2 V (+5% and –10%) across VDDC and GND and the I/O section is supplied with 3.3 V (± 10%) across VDDIO and GND. The memory and reference voltages supply the DDR memory controller block. The memory voltage is supplied with 2.5 V across VDDM and GND. The reference voltage is supplied across VREF and GND and must be between 0.49 × VDDM and 0.51 × VDDM. Refer to the JEDEC standard JESD8 (Stub Series Terminated Logic for 2.5 Volts (STTL_2)) for memory voltage supply requirements. 3.2.2 Power Sequencing One consequence of multiple power supplies is that the voltage rails ramp up at different rates when power is initially applied. The rates depend on the power supply, the type of load on each power supply, and the way different voltages are derived. It is extremely important to observe the power up and power down sequences at the board level to avoid latch-up, forward biasing of ESD devices, and excessive currents, which all lead to severe device damage. Note: There are five possible power-up/power-down sequence cases. The first four cases listed in the following sections are recommended for new designs. The fifth case is not recommended for new designs and must be carefully evaluated for current spike risks based on actual information for the specific application. MSC7113 Data Sheet, Rev. 11 42 Freescale Semiconductor Hardware Design Considerations 3.2.2.1 Case 1 The power-up sequence is as follows: 1. 2. 3. 4. Turn on the VDDIO (3.3 V) supply first. Turn on the VDDC (1.2 V) supply second. Turn on the VDDM (2.5 V) supply third. Turn on the VREF (1.25 V) supply fourth (last). The power-down sequence is as follows: 1. 2. 3. 4. Turn off the VREF (1.25 V) supply first. Turn off the VDDM (2.5 V) supply second. Turn off the VDDC (1.2 V) supply third. Turn of the VDDIO (3.3 V) supply fourth (last). Use the following guidelines: • • • Make sure that the time interval between the ramp-down of VDDIO and VDDC is less than 10 ms. Make sure that the time interval between the ramp-up or ramp-down for VDDC and VDDM is less than 10 ms for power-up and power-down. Refer to Figure 30 for relative timing for power sequencing case 1. Ramp-down Ramp-up VDDIO = 3.3 V Voltage VDDM = 2.5 V VREF = 1.25 V VDDC = 1.2 V
MSC7113VM800 价格&库存

很抱歉,暂时无法提供与“MSC7113VM800”相匹配的价格&库存,您可以联系我们找货

免费人工找货