0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MW5IC2030GMBR1

MW5IC2030GMBR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO-272-16

  • 描述:

    IC PWR AMP RF 26V 30W TO272-16GW

  • 数据手册
  • 价格&库存
MW5IC2030GMBR1 数据手册
Document Number: MW5IC2030M Freescale Semiconductor Rev. 6, 1/2006 Replaced by MW5IC2030NBR1(GNBR1). There are no form, fit or function changes with this Technical Data part replacement. N suffix added to part number to indicate transition to lead - free terminations. ARCHIVE INFORMATION The MW5IC2030 wideband integrated circuit is designed with on - chip matching that makes it usable from 1930 to 1990 MHz. This multi - stage structure is rated for 26 to 28 Volt operation and covers all typical cellular base station modulation formats. Final Application • Typical CDMA Performance: VDD = 27 Volts, IDQ1 = 160 mA, IDQ2 = 230 mA, Pout = 5 Watts Avg., Full Frequency Band, IS - 95 CDMA (Pilot, Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF. Power Gain — 23 dB Drain Efficiency — 20% ACPR @ 885 kHz Offset — - 49 dBc in 30 kHz Channel Bandwidth Driver Application • Typical CDMA Performance: VDD = 27 Volts, IDQ1 = 220 mA, IDQ2 = 240 mA, Pout = 1 Watt Avg., Full Frequency Band, IS - 95 CDMA (Pilot, Sync, Paging, Traffic Codes 8 Through 13), Channel Bandwidth = 1.2288 MHz. PAR = 9.8 dB @ 0.01% Probability on CCDF. Power Gain — 24 dB ACPR @ 885 kHz Offset — - 63 dBc in 30 kHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 27 Vdc, 1990 MHz, 30 Watts CW Output Power • Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 0 to 43 dBm CW Pout. • On - Chip Matching (50 Ohm Input, >4 Ohm Output) • Integrated Temperature Compensation Capability with Enable/Disable Function • On - Chip Current Mirror gm Reference FET for Self Biasing Application (1) • Integrated ESD Protection • 200°C Capable Plastic Package • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel VDS1 VRD2 VRG2 RFin VDS2/RFout VRD1 VRG1/VGS1 Quiescent Current Temperature Compensation VGS2 Figure 1. Functional Block Diagram MW5IC2030MBR1 MW5IC2030GMBR1 1930 - 1990 MHz, 30 W, 26 V GSM/GSM EDGE, W - CDMA, PHS RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1329 - 09 TO - 272 WB - 16 PLASTIC MW5IC2030MBR1 CASE 1329A - 03 TO - 272 WB - 16 GULL PLASTIC MW5IC2030GMBR1 GND VDS1 VRD2 VRG2 GND 1 2 3 4 5 16 15 GND NC RFin 6 14 VDS2/ RFout VRD1 VRG1/VGS1 VGS2 NC GND 7 8 9 10 11 13 12 NC GND ARCHIVE INFORMATION RF LDMOS Wideband Integrated Power Amplifiers (Top View) Note: Exposed backside flag is source terminal for transistors. Figure 2. Pin Connections 1. Refer to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1987. NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.  Freescale Semiconductor, Inc., 2006. All rights reserved. RF Device Data Freescale Semiconductor MW5IC2030MBR1 MW5IC2030GMBR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain - Source Voltage Rating VDSS - 0.5, +65 Vdc Gate - Source Voltage VGS - 0.5, +15 Vdc Storage Temperature Range Tstg - 65 to +175 °C Operating Junction Temperature TJ 200 °C Input Power Pin 20 dBm Symbol Value (1,2) Unit Table 2. Thermal Characteristics ARCHIVE INFORMATION Thermal Resistance, Junction to Case RθJC °C/W CDMA Application (Pout = 5 W CW) Stage 1, 27 Vdc, IDQ = 160 mA Stage 2, 27 Vdc, IDQ = 230 mA 4.89 1.75 PHS Application (Pout = 12.6 W CW) Stage 1, 26 Vdc, IDQ = 300 mA Stage 2, 26 Vdc, IDQ = 1300 mA 4.85 1.61 Table 3. ESD Protection Characteristics Test Conditions Class Human Body Model 1B (Minimum) Machine Model A (Minimum) Charge Device Model 3 (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit CDMA Functional Tests (In Freescale 1900 MHz Test Fixture, 50 οhm system) VDD = 27 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, Pout = 5 W Avg., 1960 MHz, Single - Carrier N - CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Channel Bandwidth @ ± 885 kHz Offset. PAR = 9.8 dB @ 0.01 Probability on CCDF. Power Gain Gps 21.5 23 — dB Drain Efficiency ηD 18 20 — % Input Return Loss IRL — - 18 - 10 dB ACPR — - 49 - 47 dBc GF — 0.2 0.3 dB Adjacent Channel Power Ratio Gain Flatness in 30 MHz BW, 1930 - 1990 MHz 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. ARCHIVE INFORMATION Characteristic (continued) MW5IC2030MBR1 MW5IC2030GMBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture) VDD = 26 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, Pout = 5 W, f = 1960 MHz Pout @ 1 dB Compression Point, CW P1dB — 30 — W Φ — ±1 — ° Delay — 2.25 — ns Part - to - Part Phase Variation ∆Φ — ±10 — ° Part - to - Part Gain Variation (Per Lot or Reel) ∆G — ±1.5 — dB — 10 — % Deviation from Linear Phase in 30 MHz BW (Characterized from 1930 - 1990 MHz) Delay Reference FET to RF FET Scaling Ratio Delta (Stages 1 and 2) Power Gain Gps — Drain Efficiency ηD Input Return Loss IRL ACPR Adjacent Channel Power Ratio (600 kHz Offset in 192 kHz BW) 24 — dB — 25 — % — - 15 — dB — - 72 — dBc ARCHIVE INFORMATION ARCHIVE INFORMATION Typical PHS Performances (In Freescale Test Fixture, 50 οhm system) VDD = 26 Vdc, IDQ1 = 260 mA, IDQ2 = 1100 mA, Pout = 12.6 W, 1900 MHz, PHS Signal Mask MW5IC2030MBR1 MW5IC2030GMBR1 RF Device Data Freescale Semiconductor 3 Z10 + C19 C9 C6 VRD2 C12 1 16 2 NC 15 Z9 3 VBIAS R2 R3 R6 RF INPUT C5 4 C13 + VD2 C20 Z8 RF OUTPUT 5 Z1 Z3 Z2 6 C1 VRG1/VGS1 VBIAS1 C11 R4 C15 + VBIAS2 C10 Z1 Z2 Z3 Z4 Z5 Z6 + 8 9 C18 Z11 R2 Z5 C2 C3 Z6 7 C14 R1 Z4 14 C7 VRD1 ARCHIVE INFORMATION C8 Quiescent Current Temperature Compensation NC 10 NC NC 13 11 R5 C16 0.465″ 0.518″ 0.282″ 0.221″ 0.489″ 0.471″ x 0.041″ Microstrip x 0.041″ Microstrip x 0.235″ Microstrip x 0.081″ Microstrip x 0.041″ Microstrip x 0.025″ Microstrip C4 Z7 12 C17 Z7 Z8 Z9 Z10 Z11 PCB 0.200″ x 0.025″ Microstrip 0.274″ x 0.050″ Microstrip 0.615″ x 0.050″ Microstrip 0.450″ x 0.025″ Microstrip 0.340″ x 0.014″ Microstrip Rogers 4350, 0.020″, εr = 3.5 Figure 3. MW5IC2030MBR1(GMBR1) Test Circuit Schematic Table 6. MW5IC2030MBR1(GMBR1) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 1.8 pF High Q Chip Capacitor (0603) 600S1R8AT - 250 - T ATC C2 1.5 pF High Q Chip Capacitor (0603) 600S1R5AT - 250 - T ATC C3 3.9 pF High Q Chip Capacitor (0603) 600S3R9AT - 250 - T ATC C4 6.8 pF High Q Chip Capacitor (0805) 600S6R8AT - 250 - T ATC C5, C6 100 pF Class 1 NPO Chip Capacitors (0805) GRM215CB1H101CZ01D Murata C7 4.7 pF Class 1 NPO Chip Capacitor (0805) GRM215CB1H4R7CZ01D Murata C8, C9, C10, C11 0.1 µF X7R Chip Capacitors (1206) C1206C104K5RACT Kemet C12, C13, C14, C15, C16 0.01 µF Class 2 X7R Chip Capacitors (0805) C0805C103K5RACT Kemet C17, C18 22 µF, 35 V Electrolytic Capacitors ECE - 1AVKS220 Panasonic C19, C20 330 µF, 50 V Electrolytic Capacitors ECA - 1HM331 Panasonic R1, R3 1 kW, 5% Chip Resistors (0805) R2 499 W, 1% Chip Resistor (0805) R4, R5, R6 100 kW, 5% Chip Resistors (0805) ARCHIVE INFORMATION VD1 MW5IC2030MBR1 MW5IC2030GMBR1 4 RF Device Data Freescale Semiconductor RD2 C19 VD1 VD2 MW5IC2030M Rev 3 C20 RG2 C9 R3 C8 C6 C13 C3 C7 C17 C18 C2 C1 C15 C16 C14 C4 R5 R4 C10 RD1 R2 C11 R1 VG2 NC VG1RG1 Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product. ARCHIVE INFORMATION C5 CUTOUT AREA ARCHIVE INFORMATION C12 R6 Figure 4. MW5IC2030MBR1(GMBR1) Test Circuit Component Layout MW5IC2030MBR1 MW5IC2030GMBR1 RF Device Data Freescale Semiconductor 5 Gps G ps , POWER GAIN (dB) 22 31 30 29 21 VDD = 27 Vdc, Pout = 10 W (Avg.) IDQ1 = 160 mA, IDQ2 = 230 mA 100 kHz Tone Spacing ηD 28 −26 IRL 20 −28 −30 19 −32 IMD 1900 1920 1940 1960 1980 2000 2020 −36 2040 −17 −18 −19 −20 −21 f, FREQUENCY (MHz) 9 Gps G ps , POWER GAIN (dB) 23 8 7 ηD 6 VDD = 27 Vdc, Pout = 1 W (Avg.) IDQ1 = 160 mA, IDQ2 = 230 mA 100 kHz Tone Spacing 22 5 −46 21 −47 IRL −48 20 −49 IMD −50 19 1880 1900 1920 1940 1960 1980 2000 2020 −51 2040 −16 −17 −18 −19 −20 −21 IRL, INPUT RETURN LOSS (dB) 24 ηD, DRAIN EFFICIENCY (%) IMD, INTERMODULATION DISTORTION (dBc) Figure 5. Two - Tone Broadband Performance @ Pout = 10 Watts Avg. f, FREQUENCY (MHz) Figure 6. Two - Tone Broadband Performance @ Pout = 1 Watt Avg. 25 24 IDQ1 = 160 mA IDQ2 = 230 mA IMD, INTERMODULATION DISTORTION (dBc) 26 G ps , POWER GAIN (dB) ARCHIVE INFORMATION −34 18 1880 −16 ARCHIVE INFORMATION 32 IRL, INPUT RETURN LOSS (dB) 23 ηD, DRAIN EFFICIENCY (%) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS IDQ1 = 200 mA IDQ2 = 300 mA 23 22 IDQ1 = 120 mA IDQ2 = 175 mA 21 VDD = 27 Vdc 20 f1 = 1960 MHz, f2 = 1960.1 MHz Two−Tone Measurements 19 0.1 1 10 Pout, OUTPUT POWER (WATTS) PEP Figure 7. Two - Tone Power Gain versus Output Power 100 −10 −15 VDD = 27 Vdc −20 IDQ1 = 160 mA, IDQ2 = 230 mA −25 f1 = 1960 MHz, f2 = 1960.1 MHz −30 Two−Tone Measurements −35 −40 −45 −50 −55 −60 −65 −70 −75 −80 0.1 1 3rd Order 5th Order 7th Order 10 100 Pout, OUTPUT POWER (WATTS) PEP Figure 8. Intermodulation Distortion Products versus Output Power MW5IC2030MBR1 MW5IC2030GMBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 50 3rd Order −35 5th Order −40 −45 −50 7th Order −55 P1dB = 44.69 dBm (29.5 W) 47 46 45 44 Actual −30_C 43 25_C 42 41 85_C 40 39 −60 1 10 100 15 16 17 18 TWO−TONE SPACING (MHz) −25 −40 IM3 −45 5 −50 0 −55 G ps , POWER GAIN (dB) −35 ACPR 30 31 32 33 34 35 36 37 TC = −30_C 25 26 27 −30_C 24 23 38 39 40 22 25 21 20 ηD 20 17 41 0 15 VDD = 27 Vdc IDQ1 = 160 mA IDQ2 = 230 mA f = 1960 MHz 1 10 5 0 10 100 Pout, OUTPUT POWER (WATTS) CW Figure 12. Power Gain and Drain Efficiency versus Output Power 40 24 0 30 22 24 V 28 V S21 (dB) 21 32 V −5 S21 23 VDD = 12 V 35 30 19 25 19 40 85_C 85_C Pout, OUTPUT POWER (dBm) 20 45 25_C 25_C Figure 11. 2 - Carrier W - CDMA ACPR, IM3, Power Gain, and Drain Efficiency versus Output Power G ps , POWER GAIN (dB) 24 Gps 18 29 23 25 IM3 (dBc), ACPR (dBc) 2−Carrier W−CDMA, 10 MHz Carrier Spacing, 3.84 MHz Channel Bandwidth, PAR = 8.5 dB @ 0.01% Probability (CCDF) ηD 22 50 26 −30 Gps 10 21 27 VDD = 27 Vdc, IDQ1 = 160 mA, IDQ2 = 230 mA, f = 1960 MHz 15 20 Figure 10. Pulse CW Output Power versus Input Power 30 20 19 Pin, INPUT POWER (dBm) Figure 9. Intermodulation Distortion Products versus Tone Spacing 25 VDD = 27 Vdc IDQ1 = 160 mA, IDQ2 = 230 mA Pulsed CW, 8 µsec(on), 1 msec(off) f = 1960 MHz 20 −10 10 −15 0 −20 ARCHIVE INFORMATION −30 P3dB = 44.91 dBm (31 W) 48 ηD, DRAIN EFFICIENCY (%) −25 Ideal 49 Pout , OUTPUT POWER (dBm) −20 S11 (dB) VDD = 27 Vdc, Pout = 30 W (PEP), IDQ1 = 160 mA, IDQ2 = 230 mA, Two−Tone Measurements (f1 + f2/2) = Center Frequency of 1960 MHz 0.1 ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) ARCHIVE INFORMATION IMD, INTERMODULATION DISTORTION (dBc) −15 S11 18 −10 17 15 0 20 40 VDD = 27 Vdc, Pout = 30 W IDQ1 = 160 mA, IDQ2 = 230 mA −20 IDQ1 = 160 mA, IDQ2 = 230 mA f = 1960 MHz 16 −25 60 −30 1000 1500 2000 2500 Pout, OUTPUT POWER (WATTS) CW f, FREQUENCY (MHz) Figure 13. Power Gain versus Output Power Figure 14. Broadband Frequency Response −30 −35 3000 MW5IC2030MBR1 MW5IC2030GMBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS 25_C 24 23 85_C 22 VDD = 27 Vdc, Pout = 5 W (CW), IDQ1 = 160 mA, IDQ2 = 230 mA f1 = 1960 MHz, f2 = 1960.1 MHz, Two−Tone Measurements SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) 20 1920 1930 1940 1950 1960 1970 1980 1990 2000 −60 20 TC = −30_C 2 10 Source EVM = 0.60% 0 Figure 16. EVM and Drain Efficiency versus Output Power TC = −30_C 85_C 25_C SR @ 400 kHz −70 25_C −75 −30_C 85_C SR @ 600 kHz −85 0 10 100 Figure 17. Spectral Regrowth at 400 kHz and 600 kHz versus Output Power −40 −45 −50 −55 VDD = 27 Vdc IDQ1 = 160 mA, IDQ2 = 230 mA f = 1960 MHz N−CDMA IS−95 (Pilot, Sync, Paging, Traffic Codes 8 Through 13) −60 ACPR −65 −70 ALT2 −75 ALT1 −80 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Pout, IS−95 OUTPUT POWER (dBm) Figure 18. Single - Carrier N - CDMA ACPR, ALT1 and ALT2 versus Output Power 1.E+09 −20 _ −30 TC = −30_C 25_C −40 85_C −50 −60 0 1 10 100 Pout, OUTPUT POWER (WATTS) CW Figure 19. Insertion Phase versus Output Power MTTF FACTOR (HOURS X AMPS2) −10 0 100 10 Figure 15. Power Gain versus Frequency −65 −80 4 Pout, OUTPUT POWER (WATTS) AVG. VDD = 27 Vdc IDQ1 = 160 mA IDQ2 = 230 mA EDGE Modulation f = 1960 MHz −55 25_C f, FREQUENCY (MHz) −45 −50 30 1 Pout, OUTPUT POWER (WATTS) AVG. INSERTION PHASE ( ) ARCHIVE INFORMATION 21 85_C 2nd Stage 1.E+08 ARCHIVE INFORMATION 25 6 40 ηD VDD = 27 Vdc IDQ1 = 160 mA IDQ2 = 230 mA f = 1960 MHz ηD, DRAIN EFFICIENCY (%) TC = −30_C 8 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) ALT 1 & 2, ALTERNATE 1 & 2 CHANNEL POWER RATIO (dBc) G ps , POWER GAIN (dB) 26 EVM, ERROR VECTOR MAGNITUDE (% rms) 27 1.E+07 1st Stage 1.E+06 90 100 110 120 130 140 150 160 170 180 190 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours x ampere2 drain current. Life tests at elevated temperatures have correlated to better than ±10% of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application. Figure 20. MTTF Factor versus Junction Temperature MW5IC2030MBR1 MW5IC2030GMBR1 8 RF Device Data Freescale Semiconductor f = 1800 MHz Zload* f = 1800 MHz f = 2200 MHz f = 2200 MHz Zin VDD = 27 V, IDQ1 = 160 mA, IDQ2 = 230 mA Zin f MHz Zin Ω Zload Ω 1800 49.7 - j9.3 6.9 - j0.3 1850 47.7 - j9.8 6.9 - j0.3 1930 44.8 - j8.5 6.7 - j0.1 1960 44.0 - j7.3 6.6 - j0.0 1990 44.6 - j5.6 6.6 + j0.1 2050 45.7 - j8.6 6.4 + j0.4 2100 42.5 - j8.3 6.2 + j0.8 2150 40.6 - j6.8 6.1 + j1.1 2200 39.3 - j5.0 6.0 + j1.6 ARCHIVE INFORMATION ARCHIVE INFORMATION Zo = 50 Ω = Device input impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 21. Series Equivalent Input and Load Impedance MW5IC2030MBR1 MW5IC2030GMBR1 RF Device Data Freescale Semiconductor 9 DRIVER APPLICATION PERFORMANCE Z10 + C19 C9 C6 VRD2 C12 1 16 2 NC 15 Z9 3 VBIAS R2 R3 R6 RF INPUT C5 4 C13 + VD2 C20 Z8 RF OUTPUT 5 Z1 Z3 Z2 6 C1 VRG1/VGS1 VBIAS1 C11 R4 C15 + VBIAS2 C10 Z1 Z2 Z3 Z4 Z5 Z6 + 8 9 C18 Z11 R2 Z5 C2 C3 Z6 7 C14 R1 Z4 14 C7 VRD1 ARCHIVE INFORMATION C8 Quiescent Current Temperature Compensation NC 10 NC NC 13 11 R5 C16 0.465″ 0.518″ 0.282″ 0.221″ 0.489″ 0.471″ x 0.041″ Microstrip x 0.041″ Microstrip x 0.235″ Microstrip x 0.081″ Microstrip x 0.041″ Microstrip x 0.025″ Microstrip C4 Z7 12 C17 Z7 Z8 Z9 Z10 Z11 PCB 0.200″ x 0.025″ Microstrip 0.274″ x 0.050″ Microstrip 0.615″ x 0.050″ Microstrip 0.450″ x 0.025″ Microstrip 0.340″ x 0.014″ Microstrip Rogers 4350, 0.020″, εr = 3.5 Figure 22. MW5IC2030MBR1(GMBR1) Test Circuit Schematic for Driver Application Tests Table 7. MW5IC2030MBR1(GMBR1) Test Circuit Component Designations and Values for Driver Application Tests Part Description Part Number Manufacturer C1 2.2 pF High Q Chip Capacitor (0603) 600S2R2AT - 250 - T ATC C2 1.8 pF High Q Chip Capacitor (0603) 600S1R8AT - 250 - T ATC C3 3.9 pF High Q Chip Capacitor (0603) 600S3R9AT - 250 - T ATC C4 6.8 pF High Q Chip Capacitor (0805) 600S6R8AT - 250 - T ATC C5, C6 100 pF Class 1 NPO Chip Capacitors (0805) GRM215CB1H101CZ01D Murata C7 4.7 pF Class 1 NPO Chip Capacitor (0805) GRM215CB1H4R7CZ01D Murata C8, C9, C10, C11 0.1 µF X7R Chip Capacitors (1206) C1206C104K5RACT Kemet C12, C13, C14, C15, C16 0.01 µF Class 2 X7R Chip Capacitors (0805) C0805C103K5RACT Kemet C17, C18 22 µF, 35 V Electrolytic Capacitors ECE - 1AVKS220 Panasonic C19, C20 330 µF, 50 V Electrolytic Capacitors ECA - 1HM331 Panasonic R1, R3 1 kW, 5% Chip Resistors (0805) R2 499 W, 1% Chip Resistor (0805) R4, R5, R6 100 kW, 5% Chip Resistors (0805) ARCHIVE INFORMATION VD1 MW5IC2030MBR1 MW5IC2030GMBR1 10 RF Device Data Freescale Semiconductor DRIVER APPLICATION PERFORMANCE RD2 C19 VD1 VD2 MW5IC2030M Rev 3 C20 RG2 C9 R3 C8 C5 C13 C3 C7 C17 C18 C2 C1 C15 C16 C14 C4 R5 R4 C10 RD1 R2 C11 R1 VG2 NC VG1RG1 Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have no impact on form, fit or function of the current product. ARCHIVE INFORMATION C12 R6 CUTOUT AREA ARCHIVE INFORMATION C6 Figure 23. MW5IC2030MBR1(GMBR1) Test Circuit Component Layout for Driver Application Tests MW5IC2030MBR1 MW5IC2030GMBR1 RF Device Data Freescale Semiconductor 11 TYPICAL DRIVER APPLICATION CHARACTERISTICS −60 −61 −62 ACPR (dBc) −63 VDD = 27 Vdc, IDQ1 = 220 mA, IDQ2 = 240 mA f1 = 1957.5 MHz, f2 = 1960 MHz, 2−Carrier N−CDMA 2.5 MHz Carrier Spacing, 1.2288 MHz Channel Bandwidth PAR = 9.8 dB @ 0.01% Probability (CCDF) −64 −65 −66 −67 −68 ARCHIVE INFORMATION 21 22 23 24 25 26 27 28 29 30 Pout, OUTPUT POWER (dBm) Figure 24. 2 - Carrier N - CDMA ACPR versus Output Power ARCHIVE INFORMATION −69 −70 20 MW5IC2030MBR1 MW5IC2030GMBR1 12 RF Device Data Freescale Semiconductor Zo = 50 Ω f = 2200 MHz f = 1800 MHz f = 2200 MHz Zload Zin ARCHIVE INFORMATION ARCHIVE INFORMATION f = 1800 MHz VDD = 27 V, IDQ1 = 220 mA, IDQ2 = 240 mA Zin f MHz Zin Ω Zload Ω 1800 49.7 - j9.3 9.8 - j7.0 1850 47.7 - j9.8 8.9 - j6.3 1930 44.8 - j8.5 7.2 - j4.6 1960 44.0 - j7.3 6.8 - j3.9 1990 44.6 - j5.6 6.5 - j3.4 2050 45.7 - j8.6 5.9 - j2.3 2100 42.5 - j8.3 5.6 - j1.5 2150 40.6 - j6.8 5.4 - j0.7 2200 39.3 - j5.0 5.2 + j0.1 = Device input impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 25. Series Equivalent Input and Load Impedance for Driver Application MW5IC2030MBR1 MW5IC2030GMBR1 RF Device Data Freescale Semiconductor 13 PACKAGE DIMENSIONS r1 C A B 2X E1 B aaa A NOTE 6 M PIN ONE INDEX 4X aaa M b1 C A 6X e1 4X e2 2X e3 e D1 aaa b3 aaa M C A b2 C A D M M 10X b aaa M C A ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ ÇÇÇÇÇÇ N E VIEW Y - Y DATUM PLANE H A c1 C SEATING PLANE F Y ZONE "J" E2 Y A1 7 A2 NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −H−. 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION. 6. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG. 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY. CASE 1329 - 09 ISSUE K TO - 272 WB - 16 PLASTIC MW5IC2030MBR1 DIM A A1 A2 D D1 E E1 E2 F M N b b1 b2 b3 c1 e e1 e2 e3 r1 aaa INCHES MIN MAX .100 .104 .038 .044 .040 .042 .928 .932 .810 BSC .551 .559 .353 .357 .346 .350 .025 BSC .600 −−− .270 −−− .011 .017 .037 .043 .037 .043 .225 .231 .007 .011 .054 BSC .040 BSC .224 BSC .150 BSC .063 .068 .004 MILLIMETERS MIN MAX 2.54 2.64 0.96 1.12 1.02 1.07 23.57 23.67 20.57 BSC 14.00 14.20 8.97 9.07 8.79 8.89 0.64 BSC 15.24 −−− 6.86 −−− 0.28 0.43 0.94 1.09 0.94 1.09 5.72 5.87 .18 .28 1.37 BSC 1.02 BSC 5.69 BSC 3.81 BSC 1.6 1.73 .10 MW5IC2030MBR1 MW5IC2030GMBR1 14 RF Device Data Freescale Semiconductor E1 r1 aaa M C A B 2X A B 4X PIN ONE INDEX aaa M b1 C A 6X e1 4X e2 2X e3 b3 aaa M C A e D1 aaa M D M b2 C A b C A 10X aaa M ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ ÉÉÉÉÉÉ NOTE 6 N E2 VIEW Y - Y E DETAIL Y DATUM PLANE H A2 A E2 c1 Y Y L1 t L GAGE PLANE A1 DETAIL Y C SEATING PLANE NOTES: 1. CONTROLLING DIMENSION: INCH. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M−1994. 3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE. 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −H−. 5. DIMENSIONS "b", "b1", "b2" AND "b3" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 (0.13) TOTAL IN EXCESS OF THE "b", "b1", "b2" AND "b3" DIMENSIONS AT MAXIMUM MATERIAL CONDITION. 6. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SINK. DIM A A1 A2 D D1 E E1 E2 L L1 M N b b1 b2 b3 c1 e e1 e2 e3 r1 t aaa INCHES MIN MAX .100 .104 .001 .004 .099 .110 .928 .932 .810 BSC .429 .437 .353 .357 .346 .350 .018 .024 .01 BSC .600 −−− .270 −−− .011 .017 .037 .043 .037 .043 .225 .231 .007 .011 .054 BSC .040 BSC .224 BSC .150 BSC .063 .068 2° 8° .004 MILLIMETERS MIN MAX 2.54 2.64 0.02 0.10 2.51 2.79 23.57 23.67 20.57 BSC 10.90 11.10 8.97 9.07 8.79 8.89 4.90 5.06 0.25 BSC 15.24 −−− 6.86 −−− 0.28 0.43 0.94 1.09 0.94 1.09 5.72 5.87 .18 .28 1.37 BSC 1.02 BSC 5.69 BSC 3.81 BSC 1.6 1.73 2° 8° .10 CASE 1329A - 03 ISSUE D TO - 272 WB - 16 GULL PLASTIC MW5IC2030GMBR1 MW5IC2030MBR1 MW5IC2030GMBR1 RF Device Data Freescale Semiconductor 15 How to Reach Us: Home Page: www.freescale.com E - mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.  Freescale Semiconductor, Inc. 2006. All rights reserved. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. MW5IC2030MBR1 MW5IC2030GMBR1 Document Number: MW5IC2030M Rev. 6, 1/2006 16 RF Device Data Freescale Semiconductor
MW5IC2030GMBR1 价格&库存

很抱歉,暂时无法提供与“MW5IC2030GMBR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货