0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MW7IC18100NR1

MW7IC18100NR1

  • 厂商:

    NXP(恩智浦)

  • 封装:

    TO-270-14

  • 描述:

    IC PWR AMP RF LDMOS TO270-14

  • 数据手册
  • 价格&库存
MW7IC18100NR1 数据手册
Freescale Semiconductor Technical Data Document Number: MW7IC18100N Rev. 3, 3/2009 RF LDMOS Wideband Integrated Power Amplifiers The MW7IC18100N wideband integrated circuit is designed with on - chip matching that makes it usable from 1805 to 2050 MHz. This multi - stage structure is rated for 24 to 32 Volt operation and covers all typical cellular base station modulations including GSM EDGE and CDMA. Final Application • Typical GSM Performance: VDD = 28 Volts, IDQ1 = 180 mA, IDQ2 = 1000 mA, Pout = 100 Watts CW, 1805 - 1880 MHz or 1930 - 1990 MHz Power Gain — 30 dB Power Added Efficiency — 48% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 215 mA, IDQ2 = 800 mA, Pout = 40 Watts Avg., 1805 - 1880 MHz or 1930 - 1990 MHz Power Gain — 31 dB Power Added Efficiency — 35% Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 80 dBc EVM — 1.5% rms • Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW Output Power • Stable into a 5:1 VSWR. All Spurs Below - 60 dBc @ 1 mW to 120 Watts CW Pout. Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source Scattering Parameters • On - Chip Matching (50 Ohm Input, DC Blocked) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. VDS1 RFin RFout/VDS2 VGS1 Quiescent Current Temperature Compensation (1) VGS2 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 1990 MHz, 100 W, 28 V GSM/GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1618 - 02 TO - 270 WB - 14 PLASTIC MW7IC18100NR1 CASE 1621 - 02 TO - 270 WB - 14 GULL PLASTIC MW7IC18100GNR1 CASE 1617 - 02 TO - 272 WB - 14 PLASTIC MW7IC18100NBR1 NC VDS1 NC NC NC RFin RFin NC VGS1 VGS2 VDS1 NC 1 2 3 4 5 6 7 8 9 10 11 12 14 RFout /VDS2 13 RFout /VDS2 (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Functional Block Diagram Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. © Freescale Semiconductor, Inc., 2007 - 2009. All rights reserved. RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain- Source Voltage Rating VDSS - 0.5, +65 Vdc Gate- Source Voltage VGS - 0.5, +6 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C TJ 225 °C Symbol Value (2,3) Unit Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case GSM Application (Pout = 100 W CW) RθJC Stage 1, 28 Vdc, IDQ1 = 180 mA Stage 2, 28 Vdc, IDQ2 = 1000 mA °C/W 2.0 0.51 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1 (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Functional Tests f = 1990 MHz. (4) Symbol Min Typ Max Unit (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W CW, IDQ1 = 180 mA, IDQ2 = 1000 mA, Power Gain Gps 27 30 31 dB Input Return Loss IRL — - 15 - 10 dB Power Added Efficiency PAE 45 48 — % Pout @ 1 dB Compression Point, CW P1dB 100 112 — W Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 215 mA, IDQ2 = 800 mA, Pout = 40 W Avg., 1805 - 1880 MHz or 1930 - 1990 MHz EDGE Modulation. Power Gain Gps — 31 — dB Power Added Efficiency PAE — 35 — % Error Vector Magnitude EVM — 1.5 — % rms Spectral Regrowth at 400 kHz Offset SR1 — - 63 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 80 — dBc 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. 4. Measurement made with device in straight lead configuration before any lead forming operation is applied. (continued) MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, 1930-1990 MHz Bandwidth Gain Flatness in 60 MHz Bandwidth @ Pout = 100 W CW GF — 0.37 — dB Average Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 100 W CW Φ — 0.502 — ° Delay — 2.57 — ns Part - to - Part Insertion Phase Variation @ Pout = 100 W CW, f = 1960 MHz, Six Sigma Window ΔΦ — 63.65 — ° Gain Variation over Temperature ( - 30°C to +85°C) ΔG — 0.048 — dB/°C ΔP1dB — 0.004 — dBm/°C Average Group Delay @ Pout = 100 W CW, f = 1960 MHz Output Power Variation over Temperature ( - 30°C to +85°C) MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 3 + C17 VDD1 VDD2 C1 1 NC C10 DUT C3 2 Z3 RF INPUT 3 NC Z4 C6 C7 Z12 C14 Z13 Z8 4 NC Z2 Z1 Z5 Z6 C11 14 5 NC Z7 C12 Z11 Z10 6 Z14 Z15 7 VGG1 VGG2 C5 8 NC R1 9 10 R2 11 Z16 RF OUTPUT Quiescent Current Temperature Compensation 13 C13 C15 Z9 12 NC C4 C16 Z1 Z2, Z5 Z3 Z4 Z6 Z7 Z8, Z9 Z10 C8 C9 C2 0.083″ x 0.505″ Microstrip 0.083″ x 0.552″ Microstrip 0.083″ x 0.252″ Microstrip 0.083″ x 0.174″ Microstrip 0.083″ x 1.261″ Microstrip 0.060″ x 0.126″ Microstrip 0.080″ x 1.569″ Microstrip 0.880″ x 0.224″ Microstrip Z11 Z12 Z13 Z14 Z15 Z16 PCB 0.880″ x 0.256″ Microstrip 0.215″ x 0.138″ Microstrip 0.215″ x 0.252″ Microstrip 0.083″ x 0.298″ Microstrip 0.083″ x 0.810″ Microstrip 0.083″ x 0.250″ Microstrip Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55 Figure 3. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1900 MHz Table 6. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1900 MHz Part Description Part Number Manufacturer C1, C2, C3, C4, C5 6.8 pF Chip Capacitors ATC100B6R8BT500XT ATC C6, C7, C8, C9 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C10, C11 0.2 pF Chip Capacitors ATC100B0R2BT500XT ATC C12, C13 0.5 pF Chip Capacitors ATC100B0R5BT500XT ATC C14 0.8 pF Chip Capacitor ATC100B0R8BT500XT ATC C15 1.5 pF Chip Capacitor ATC100B1R5BT500XT ATC C16 2.2 μF, 16 V Chip Capacitor C1206C225K4RAC Kemet C17 470 μF, 63 V Electrolytic Capacitor, Radial 477KXM063M Illinois Capacitor R1, R2 10 KΩ, 1/4 W Chip Resistors CRCW12061001FKEA Vishay MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 4 RF Device Data Freescale Semiconductor C17 C3 C10 C6 C1 C7 C12 CUT OUT AREA C11 MW7IC18100N Rev. 2 C15 C5 C14 C13 C2 C8 C9 R1 C4 C16 R2 Figure 4. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1900 MHz MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS — 1900 MHz 50 PAE 45 31 Gps 40 30 VDD = 28 Vdc, Pout = 100 W CW IDQ1 = 180 mA, IDQ2 = 1000 mA 29 28 27 1880 35 30 IRL 1900 1920 1940 1960 1980 2000 2020 −5 −10 −15 25 2040 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 32 55 PAE, POWER ADDED EFFICIENCY (%) 33 −20 f, FREQUENCY (MHz) Gps 50 40 30 PAE 29 30 VDD = 28 Vdc, Pout = 40 W Avg. IDQ1 = 215 mA, IDQ2 = 800 mA EDGE Modulation 28 27 20 10 IRL EVM 26 1880 1900 1920 1940 1960 1980 2000 2020 0 2040 −5 −10 −15 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 31 60 EVM, ERROR VECTOR MAGNITUDE (% rms) 32 PAE, POWER ADDED EFFICIENCY (%) Figure 5. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW −20 f, FREQUENCY (MHz) Figure 6. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ Pout = 40 Watts Avg. 32 34 IDQ2 = 1500 mA 1250 mA Gps, POWER GAIN (dB) 1000 mA Gps, POWER GAIN (dB) IDQ1 = 270 mA 33 31 30 750 mA 29 500 mA 28 27 32 225 mA 31 180 mA 30 29 135 mA 28 27 VDD = 28 Vdc, IDQ1 = 180 mA f = 1960 MHz 26 90 mA 26 25 VDD = 28 Vdc, IDQ2 = 1000 mA f = 1960 MHz 25 1 10 100 200 1 10 100 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 7. Two - Tone Power Gain versus Output Power @ IDQ1 = 180 mA Figure 8. Two - Tone Power Gain versus Output Power @ IDQ2 = 1000 mA 200 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1900 MHz −10 VDD = 28 Vdc, IDQ1 = 180 mA f1 = 1960 MHz, f2 = 1960.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −20 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IDQ2 = 500 mA −30 750 mA 1500 mA −40 −50 1250 mA 1000 mA VDD = 28 Vdc, IDQ2 = 1000 mA f1 = 1960 MHz, f2 = 1960.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −20 −30 IDQ1 = 90 mA 135 mA −50 225 mA 270 mA −60 −60 1 1 200 100 10 Pout, OUTPUT POWER (WATTS) PEP Figure 9. Third Order Intermodulation Distortion versus Output Power @ IDQ1 = 180 mA Figure 10. Third Order Intermodulation Distortion versus Output Power @ IDQ2 = 1000 mA 0 IMD, INTERMODULATION DISTORTION (dBc) 0 IMD, INTERMODULATION DISTORTION (dBc) 200 100 10 Pout, OUTPUT POWER (WATTS) PEP VDD = 28 Vdc, IDQ1 = 180 mA IDQ2 = 1000 mA, f1 = 1960 MHz, f2 = 1960.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −10 −20 −30 −40 3rd Order −50 −60 5th Order −70 7th Order −80 VDD = 28 Vdc, Pout = 80 W (PEP), IDQ1 = 215 mA IDQ2 = 800 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz −10 −20 IM3−U IM3−L −30 −40 IM5−U IM5−L −50 IM7−U −60 IM7−L −70 −80 1 100 10 400 10 TWO−TONE SPACING (MHz) Figure 11. Intermodulation Distortion Products versus Output Power Figure 12. Intermodulation Distortion Products versus Tone Spacing 40 P6dB = 51.74 dBm (149.27 W) 57 60 Ideal Gps 35 56 Gps, POWER GAIN (dB) P3dB = 51.32 dBm (135.51 W) 55 54 53 P1dB = 50.6 dBm (114.8 W) 52 Actual 51 50 VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA Pulsed CW, 12 μsec(on), 1% Duty Cycle f = 1960 MHz 49 48 16 1 0.1 Pout, OUTPUT POWER (WATTS) PEP 58 Pout, OUTPUT POWER (dBc) 180 mA −40 17 18 19 20 21 22 23 24 25 TC = −30_C 25_C 25_C 30 50 40 85_C 85_C 25 30 20 20 15 VDD = 28 Vdc IDQ1 = 180 mA IDQ2 = 1000 mA f = 1960 MHz PAE 10 26 −30_C 1 10 100 Pin, INPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) CW Figure 13. Pulsed CW Output Power versus Input Power Figure 14. Power Gain and Power Added Efficiency versus Output Power 10 PAE, POWER ADDED EFFICIENCY (%) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) −10 0 200 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS — 1900 MHz 5 IDQ1 = 180 mA IDQ2 = 1000 mA f = 1960 MHz EVM, ERROR VECTOR MAGNITUDE (% ms) 30 29 28 VDD = 24 V 28 V 32 V 27 50 150 100 200 3 2 Pout = 50 W Avg. 1 40 W Avg. 30 W Avg. 0 1880 1900 1920 1940 1960 1980 2000 2020 f, FREQUENCY (MHz) Figure 15. Power Gain versus Output Power Figure 16. EVM versus Frequency 2040 −40 SR @ 400 kHz SPECTRAL REGROWTH @ 400 kHz (dBc) −55 Pout = 50 W Avg. −60 40 W Avg. −65 30 W Avg. VDD1 = 28 Vdc, VDD2 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 815 mA f = 1960 MHz, EDGE Modulation −70 −75 50 W Avg. SR @ 600 kHz −80 −85 1880 30 W Avg. 40 W Avg. 1900 1920 1940 1960 −50 25_C TC = −30_C 85_C −60 −70 2000 2020 1 2040 100 10 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 17. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency Figure 18. Spectral Regrowth at 400 kHz versus Output Power VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA f = 1960 MHz, EDGE Modulation −60 VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA f = 1960 MHz, EDGE Modulation −80 1980 −50 SPECTRAL REGROWTH @ 600 kHz (dBc) 4 Pout, OUTPUT POWER (WATTS) CW 25_C TC = 85_C −30_C −70 −80 EVM, ERROR VECTOR MAGNITUDE (% ms) SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) 0 VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA EDGE Modulation 80 16 VDD1 = 28 Vdc IDQ1 = 215 mA IDQ2 = 800 mA f = 1960 MHz EDGE Modulation 14 12 10 TC = 85_C 25_C 60 50 85_C 8 25_C 6 1 10 100 200 70 −30_C PAE 40 30 20 4 2 10 EVM 0 −90 200 1 10 100 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 19. Spectral Regrowth at 600 kHz versus Output Power Figure 20. EVM and Power Added Efficiency versus Output Power PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 31 0 200 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1900 MHz 32 0 36 S21 −10 20 −15 16 −20 1800 34 33 25_C 32 VDD = 28 Vdc, Pout = 40 W Avg. IDQ1 = 180 mA, IDQ2 = 1000 mA 31 30 VDD = 28 Vdc IDQ1 = 180 mA, IDQ2 = 1000 mA 1600 Gps, POWER GAIN (dB) 24 S11 (dB) S21 (dB) S11 12 1400 TC = −30_C 35 −5 28 2000 2200 −25 2600 2400 29 1880 85_C 1900 1920 1940 1960 1980 2000 2020 f, FREQUENCY (MHz) f, FREQUENCY (MHz) Figure 21. Broadband Frequency Response Figure 22. Power Gain versus Frequency 2040 109 MTTF (HOURS) 108 1st Stage 107 2nd Stage 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 100 W CW, and PAE = 48%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 23. MTTF versus Junction Temperature MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 9 GSM TEST SIGNAL −10 −20 Reference Power VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz −30 −40 (dB) −50 −60 −70 −80 −90 400 kHz 400 kHz 600 kHz 600 kHz −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 24. EDGE Spectrum MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 10 RF Device Data Freescale Semiconductor Zo = 50 Ω f = 2040 MHz Zin Zload f = 1880 MHz f = 1880 MHz f = 2040 MHz VDD1 = VDD2 = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, Pout = 100 W CW f MHz Zin W Zload W 1880 67.48 - j17.89 2.324 - j3.239 1900 60.03 - j20.86 2.234 - j3.105 1920 53.65 - j21.94 2.135 - j2.965 1940 48.13 - j21.94 2.037 - j2.818 1960 43.52 - j21.22 1.936 - j2.666 1980 39.60 - j20.00 1.851 - j2.509 2000 36.14 - j18.52 1.765 - j2.355 2020 33.19 - j16.57 1.669 - j2.193 30.96 - j14.58 1.559 - j2.012 2040 Zin = Device input impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 25. Series Equivalent Input and Load Impedance — 1900 MHz MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 11 Table 7. Common Source S - Parameters (VDD = 28 V, IDQ1 = 180 mA, IDQ2 = 1000 mA, TC = 255C, 50 Ohm System) S11 S21 S12 S22 f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 1500 0.612 118.5 6.369 69.06 0.002 102.9 0.615 47.74 1550 0.557 104.3 11.42 18.29 0.003 85.09 0.666 - 41.54 1600 0.491 88.33 16.92 - 34.34 0.005 59.06 0.844 - 113.4 1650 0.410 70.24 23.21 - 84.03 0.005 28.40 0.931 - 163.4 1700 0.313 48.99 30.49 - 135.7 0.006 7.983 0.887 155.6 1750 0.216 21.99 32.64 168.8 0.007 - 15.63 0.700 120.3 1800 0.131 - 22.83 32.93 114.0 0.006 - 35.27 0.475 95.71 1850 0.117 - 95.13 32.62 65.01 0.006 - 53.22 0.332 82.10 1900 0.185 - 146.3 32.58 20.45 0.006 - 77.03 0.252 68.30 1950 0.253 - 177.3 32.45 - 22.53 0.007 - 98.93 0.165 47.02 2000 0.303 160.4 32.41 - 65.29 0.007 - 108.4 0.052 8.742 2050 0.328 139.5 32.33 - 108.6 0.006 - 127.3 0.070 - 154.8 2100 0.331 117.9 32.50 - 152.7 0.008 - 145.8 0.161 179.9 2150 0.273 91.65 32.84 160.2 0.008 - 169.1 0.257 165.7 2200 0.141 64.27 32.52 109.2 0.008 162.7 0.424 150.3 2250 0.050 172.7 28.92 56.72 0.009 138.3 0.641 123.4 2300 0.194 163.4 21.30 8.112 0.007 112.6 0.804 91.99 2350 0.270 139.7 14.62 - 34.53 0.007 97.74 0.879 62.03 2400 0.288 118.9 9.878 - 72.70 0.007 84.37 0.910 34.57 2450 0.274 100.6 6.771 - 107.5 0.007 70.79 0.911 8.878 2500 0.236 83.35 4.579 - 141.3 0.007 55.31 0.903 - 16.73 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 12 RF Device Data Freescale Semiconductor ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — 1900 MHz 56 Ideal P3dB = 52.72 dBm (187.06 W) Pout, OUTPUT POWER (dBm) 55 P2dB = 52.43 dBm (175 W) 54 P1dB = 51.93 dBm (155.89 W) 53 52 Actual 51 VDD = 28 Vdc, IDQ1 = 180 mA IDQ2 = 1000 mA, Pulsed CW 12 μsec(on) 1% Duty Cycle f = 1990 MHz 50 49 17 18 19 21 20 22 23 24 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V Test Impedances per Compression Level P3dB Zsource Ω Zload Ω 40.2 - j30.91 0.96 - j3.14 Figure 26. Pulsed CW Output Power versus Input Power @ 28 V MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 13 + C17 VDD1 VDD2 C1 1 NC C10 DUT C3 2 Z3 RF INPUT 3 NC Z4 C6 C7 Z12 C14 Z13 Z8 4 NC Z2 Z1 Z5 Z6 C11 14 5 NC Z7 C12 Z11 Z10 6 Z14 Z15 7 VGG1 VGG2 C5 8 NC R1 9 10 R2 11 Z16 RF OUTPUT 13 Quiescent Current Temperature Compensation C13 C15 Z9 12 NC C4 C16 Z1 Z2, Z5 Z3 Z4 Z6 Z7 Z8, Z9 Z10 C8 C9 C2 0.083″ x 0.505″ Microstrip 0.083″ x 0.552″ Microstrip 0.083″ x 0.252″ Microstrip 0.083″ x 0.174″ Microstrip 0.083″ x 1.261″ Microstrip 0.060″ x 0.126″ Microstrip 0.080″ x 1.569″ Microstrip 0.880″ x 0.224″ Microstrip Z11 Z12 Z13 Z14 Z15 Z16 PCB 0.880″ x 0.256″ Microstrip 0.215″ x 0.138″ Microstrip 0.215″ x 0.252″ Microstrip 0.083″ x 0.298″ Microstrip 0.083″ x 0.810″ Microstrip 0.083″ x 0.250″ Microstrip Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55 Figure 27. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1800 MHz Table 8. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Designations and Values — 1800 MHz Part Description Part Number Manufacturer C1, C2, C3, C4, C5 6.8 pF Chip Capacitors ATC100B6R8BT500XT ATC C6, C7, C8, C9 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C10, C11 0.2 pF Chip Capacitors ATC100B0R2BT500XT ATC C12, C13 0.8 pF Chip Capacitors ATC100B0R8BT500XT ATC C14 1.2 pF Chip Capacitor ATC100B1R2BT500XT ATC C15 1.0 pF Chip Capacitor ATC100B1R0BT500XT ATC C16 2.2 μF, 16 V Chip Capacitor C1206C225K4RAC Kemet C17 470 μF, 63 V Electrolytic Capacitor, Radial 477KXM063M Illinois Capacitor R1, R2 10 KΩ, 1/4 W Chip Resistors CRCW12061001FKEA Vishay MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 14 RF Device Data Freescale Semiconductor C17 C3 C10 C6 C1 C7 C12 CUT OUT AREA C11 MW7IC18100N Rev. 2 C14 C5 C15 C13 C2 C8 C9 R1 C4 C16 R2 Figure 28. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1800 MHz MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 15 TYPICAL CHARACTERISTICS — 1800 MHz 55 50 Gps, POWER GAIN (dB) 31 45 30 Gps VDD1 = 28 Vdc, Pout = 100 W CW IDQ1 = 180 mA, IDQ2 = 1000 mA 29 40 35 28 IRL 30 27 26 1760 1780 1800 1820 1840 1860 1880 1900 −10 −15 −20 25 1920 1940 IRL, INPUT RETURN LOSS (dB) PAE PAE, POWER ADDED EFFICIENCY (%) 32 −25 f, FREQUENCY (MHz) 32 Gps 30 40 −10 PAE 30 28 20 27 IRL 10 26 EVM 25 1760 1780 1800 1820 1840 1860 1880 1900 1920 0 1940 −15 −20 −25 IRL, INPUT RETURN LOSS (dB) 29 50 VDD1 = 28 Vdc, Pout = 40 W Avg. IDQ1 = 215 mA, IDQ2 = 800 mA EDGE Modulation EVM, ERROR VECTOR MAGNITUDE (% rms) Gps, POWER GAIN (dB) 31 60 PAE, POWER ADDED EFFICIENCY (%) Figure 29. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW −30 f, FREQUENCY (MHz) Figure 30. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ Pout = 40 Watts Avg. 33 36 IDQ2 = 1500 mA 34 1000 mA Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 32 IDQ1 = 270 mA 35 1250 mA 31 750 mA 30 500 mA 29 225 mA 33 32 180 mA 31 135 mA 30 29 28 VDD = 28 Vdc, IDQ1 = 180 mA f = 1840 MHz 28 VDD = 28 Vdc, IDQ2 = 1000 mA f = 1840 MHz 90 mA 27 27 26 1 10 100 200 1 10 100 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 31. Two - Tone Power Gain versus Output Power @ IDQ1 =180 mA Figure 32. Two - Tone Power Gain versus Output Power @ IDQ2 = 1000 mA 200 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 16 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1800 MHz −10 VDD = 28 Vdc, IDQ1 = 180 mA f1 = 1840 MHz, f2 = 1840.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −20 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IDQ2 = 500 mA −30 750 mA −40 1000 mA 1250 mA −50 1500 mA −60 VDD = 28 Vdc, IDQ2 = 1000 mA f1 = 1840 MHz, f2 = 1840.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −20 −30 IDQ1 = 90 mA 135 mA 180 mA 10 200 100 1 10 Pout, OUTPUT POWER (WATTS) PEP Figure 34. Third Order Intermodulation Distortion versus Output Power @ IDQ2 = 1000 mA IMD, INTERMODULATION DISTORTION (dBc) VDD = 28 Vdc, IDQ1 = 180 mA IDQ2 = 1000 mA, f1 = 1840 MHz, f2 = 1840.1 MHz Two−Tone Measurements, 100 kHz Tone Spacing −20 −30 −40 −50 3rd Order 5th Order 7th Order −80 1 100 10 −20 IM3−L −30 IM3−U IM5−U −40 IM5−L IM7−U IM7−L −50 −60 0.1 1 10 50 TWO−TONE SPACING (MHz) Figure 35. Intermodulation Distortion Products versus Output Power Figure 36. Intermodulation Distortion Products versus Tone Spacing 40 60 Ideal P6dB = 51.876 dBm (154.028 W) 57 Pout, OUTPUT POWER (dBc) VDD = 28 Vdc, Pout = 80 W (PEP), IDQ1 = 180 mA IDQ2 = 1000 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1840 MHz Pout, OUTPUT POWER (WATTS) PEP 58 Gps TC = −30_C 35 56 P3dB = 51.34 dBm (136.144 W) 55 54 53 P1dB = 50.539 dBm (113.21 W) 52 Actual 51 50 VDD = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA Pulsed CW, 12 μsec(on), 1% Duty Cycle f = 1840 MHz 49 48 15 −10 400 Gps, POWER GAIN (dB) IMD, INTERMODULATION DISTORTION (dBc) 0 −70 16 17 18 19 20 21 22 23 200 100 Pout, OUTPUT POWER (WATTS) PEP Figure 33. Third Order Intermodulation Distortion versus Output Power @ IDQ1 = 180 mA −60 225 mA −50 −60 1 −10 270 mA −40 24 25_C 50 25_C 85_C 30 85_C 25 40 30 20 20 15 VDD = 28 Vdc IDQ1 = 180 mA IDQ2 = 1000 mA f = 1840 MHz PAE 10 25 −30_C 1 10 100 Pin, INPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) CW Figure 37. Pulsed CW Output Power versus Input Power Figure 38. Power Gain and Power Added Efficiency versus Output Power 10 PAE, POWER ADDED EFFICIENCY (%) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) −10 0 200 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 17 TYPICAL CHARACTERISTICS — 1800 MHz 4 32 30 29 28 V 28 VDD = 24 V 32 V 27 100 50 150 200 Pout = 50 W Avg. 2 40 W Avg. 1 30 W Avg. 0 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 f, FREQUENCY (MHz) Figure 39. Power Gain versus Output Power Figure 40. EVM versus Frequency −40 −60 SPECTRAL REGROWTH @ 400 kHz (dBc) −55 Pout = 50 W Avg. SR @ 400 kHz 40 W Avg. −65 VDD1 = 28 Vdc, VDD2 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 815 mA f = 1840 MHz, EDGE Modulation 30 W Avg. −70 −75 SR @ 600 kHz 30 W Avg. 50 W Avg. −80 40 W Avg. −85 1760 1800 1820 1840 −50 25_C TC = −30_C 85_C −60 −70 1860 1880 1900 1920 1940 100 10 1 f, FREQUENCY (MHz) Pout, OUTPUT POWER (WATTS) AVG. Figure 41. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency Figure 42. Spectral Regrowth at 400 kHz versus Output Power VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA f = 1840 MHz, EDGE Modulation −60 VDD1 = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA f = 1840 MHz, EDGE Modulation −80 1780 −50 SPECTRAL REGROWTH @ 600 kHz (dBc) 3 Pout, OUTPUT POWER (WATTS) CW −30_C TC = 85_C 25_C −70 −80 EVM, ERROR VECTOR MAGNITUDE (% ms) SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) 0 VDD = 28 Vdc IDQ1 = 215 mA, IDQ2 = 800 mA EDGE Modulation 70 14 VDD1 = 28 Vdc IDQ1 = 215 mA IDQ2 = 800 mA f = 1840 MHz EDGE Modulation 12 10 25_C 85_C 1 10 100 200 60 TC = −30_C 50 25_C 85_C 40 8 −30_C 6 PAE 30 20 4 2 10 EVM 0 −90 200 1 10 100 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 43. Spectral Regrowth at 600 kHz versus Output Power Figure 44. EVM and Power Added Efficiency versus Output Power PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 31 EVM, ERROR VECTOR MAGNITUDE (% ms) IDQ1 = 180 mA IDQ2 = 1000 mA f = 1840 MHz 0 200 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 18 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1800 MHz 37 Gps, POWER GAIN (dB) 36 TC = −30_C 35 34 25_C 33 32 VDD = 28 Vdc, Pout = 40 W Avg. IDQ1 = 180 mA, IDQ2 = 1000 mA 31 85_C 30 29 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 f, FREQUENCY (MHz) Figure 45. Power Gain versus Frequency MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 19 f = 1760 MHz Zo = 75 Ω Zin f = 1920 MHz Zload f = 1760 MHz f = 1920 MHz VDD1 = VDD2 = 28 Vdc, IDQ1 = 180 mA, IDQ2 = 1000 mA, Pout = 100 W CW f MHz Zin W Zload W 1760 71.78 + j40.05 2.983 - j3.974 1780 79.83 + j31.13 2.872 - j3.861 1800 84.35 + j19.44 2.757 - j3.745 1820 84.75 + j7.234 2.636 - j3.639 1840 81.21 - j4.076 2.535 - j3.506 1860 74.76 - j12.32 2.434 - j3.376 1880 67.49 - j17.89 2.324 - j3.239 1900 60.03 - j20.86 2.234 - j3.105 53.65 - j21.94 2.135 - j2.965 1920 Zin = Device input impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 46. Series Equivalent Input and Load Impedance — 1800 MHz MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 20 RF Device Data Freescale Semiconductor ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — 1800 MHz 56 Ideal P3dB = 52.46 dBm (176.19 W) Pout, OUTPUT POWER (dBm) 55 54 P2dB = 52.19 dBm (165.57 W) 53 P1dB = 51.72 dBm (148.59 W) 52 Actual 51 VDD = 28 Vdc, IDQ1 = 180 mA IDQ2 = 1000 mA, Pulsed CW 12 μsec(on) 1% Duty Cycle f = 1880 MHz 50 49 17 18 19 21 20 22 23 24 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V Test Impedances per Compression Level P3dB Zsource Ω Zload Ω 83.04 - j2.44 1.36 - j3.19 Figure 47. Pulsed CW Output Power versus Input Power @ 28 V MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 21 PACKAGE DIMENSIONS MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 22 RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 23 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 24 RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 25 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 26 RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 27 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 28 RF Device Data Freescale Semiconductor MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 29 MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 30 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages • AN3789: Clamping of High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 May 2007 • Initial Release of Data Sheet 1 June 2007 • Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature rating will be added to the Maximum Ratings table when parts’ Operating Junction Temperature is increased to 225°C. 2 Apr. 2008 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related “Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C in Capable Plastic Package bullet, p. 1, 2 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 • Updated PCB information to show more specific material details, Figs. 3, 27, Test Circuit Schematic, p. 4, 14 • Updated Part Numbers in Tables 6, 8, Component Designations and Values, to RoHS compliant part numbers, p. 4, 14 • Replaced Case Outline 1617 - 01 with 1617 - 02, Issue A, p. 22 - 24. Revised cross - hatched area for exposed heat spreader. Added pin numbers 1, 12, 13, and 14 to Sheets 1 and 2. Corrected mm Min and Max values for dimension A1 to 0.99 and 1.09, respectively. • Replaced Case Outline 1618 - 01 with 1618 - 02, Issue A, p. 25 - 27. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheet 1. Removed Pin 5 designation from Sheet 2. • Replaced Case Outline 1621 - 01 with 1621 - 02, Issue A, p. 28 - 30. Added pin numbers 1, 12, 13, and 14 and Pin 1 Index designation to Sheet 1. Corrected dimensions e and e1 on Sheets 1 and 3. Removed Pin 5 designation from Sheet 2. 3 Mar. 2009 • Changed Storage Temperature Range in Max Ratings table from - 65 to +200 to - 65 to +150 for standardization across products, p. 2. • Updated Human Body Model ESD from Class 0 to 1 to reflect 2008 Human Body Model actual test data, p. 2 • Added footnote, Measurement made with device in straight lead configuration before any lead forming operation is applied, to Functional Tests table, p. 2. MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 RF Device Data Freescale Semiconductor 31 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or +1 - 303- 675- 2140 Fax: +1 - 303- 675- 2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007 - 2009. All rights reserved. MW7IC18100NR1 MW7IC18100GNR1 MW7IC18100NBR1 Document Number: MW7IC18100N Rev. 3, 3/2009 32 RF Device Data Freescale Semiconductor
MW7IC18100NR1 价格&库存

很抱歉,暂时无法提供与“MW7IC18100NR1”相匹配的价格&库存,您可以联系我们找货

免费人工找货