0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PC34VR5100A1EP

PC34VR5100A1EP

  • 厂商:

    NXP(恩智浦)

  • 封装:

    -

  • 描述:

    ICREG9OUTBUCK/LDO48QFN

  • 数据手册
  • 价格&库存
PC34VR5100A1EP 数据手册
NXP Semiconductors Data sheet: Advance Information Document Number: VR5100 Rev. 5.0, 12/2018 Multi-output DC/DC regulator for low-power LS1 communication processors VR5100 The VR5100 is a high performance, highly integrated, multi-output, DC/DC regulator solution, with integrated power MOSFETs, ideally suited for the LS1 family of communications processors. Integrating three buck converters, six linear regulators, RTC supply and a coin-cell charger, the VR5100 can provide power for a complete system, including communications processors, memory, and system peripherals. Features: • Three adjustable high efficiency buck regulators: 3.8 A, 1.25 A, 1.5 A • Selectable modes: PWM, PFM, APS • 5.0 V, 600 mA boost regulator with PFM or Auto mode • Six adjustable general purpose linear regulators • Input voltage range: 2.8 V to 4.5 V • OTP (One Time Programmable) memory for device configuration • Programmable start-up sequence and timing • Selectable output voltage, frequency, soft start • I2C control POWER MANAGEMENT EP SUFFIX 98ASA00719D 48 QFN 7.0 X 7.0 Applications: • Network attached storage (NAS) • Value IOT gateway • Mobile NAS • Industrial control • Home/Factory automation • Always ON RTC supply and Coin cell charger • DDR reference voltage • -40 °C to +125 °C operating junction temperature Figure 1. VR5100 simplified application diagram * This document contains certain information on a new product. Specifications and information herein are subject to change without notice. © NXP Semiconductors N.V. 2018 Table of Contents 1 5 6 6 Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 Functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 Functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.2 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.5 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.6 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 9 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.1 Rating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9.2 Estimation of junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 10.1Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 VR5100 2 NXP Semiconductors ORDERABLE PARTS 1 Orderable parts The VR5100 is available with pre-programmed OTP memory configurations. The devices are identified using the program codes from Table 1. Details of the OTP programming for each device can be found in Table 37. Table 1. Orderable part variations Part Number MC34VR5100A0EP MC34VR5100A1EP MC34VR5100A2EP Temperature (TA) -40 °C to 105 °C (For use in Industrial applications) Package Programming Options Notes 0 - Not programmed 48 QFN 7.0 mm x 7.0 mm 1 (LS1012 with DDR3L) (1) 2 (LX2160 with DDR4) Notes 1. For tape and reel, add an R2 suffix to the part number. VR5100 NXP Semiconductors 3 INTERNAL BLOCK DIAGRAM 2 Internal block diagram Figure 2. VR5100 simplified internal block diagram VR5100 4 NXP Semiconductors 37 FBBST 38 PVIN2 39 VDDOTP 40 SGND 41 VCC 42 VIN 48 EN Transparent top view 43 VDIG Pinout diagram 44 VBG 3.1 45 SDA Pin connections 47 VCCI2C 3 46 SCL PIN CONNECTIONS PINOUT DIAGRAM 1 36 LICELL 2 35 LXBST 3 34 VSNVS STBY 4 33 VSD 5 32 V33 31 SGND3 30 NC INTB SD_VSEL PORB ICTEST FB1 6 EP 23 24 REFIN REFOUT VHALF 25 22 12 LDO4 SGND1 21 SGND2 VLDOIN34 26 20 11 LDO3 NC 19 FB3 FB2 27 18 10 PVIN2 PVIN1 17 PVIN3 LX2 28 16 9 VLDOIN2 LX1 15 LX3 LDO2 29 14 8 LDO1 LX1 13 7 VLDOIN1 PVIN1 Figure 3. Pinout diagram VR5100 NXP Semiconductors 5 PIN CONNECTIONS PIN DEFINITIONS 3.2 Pin definitions Table 2. Pin definitions Pin number Pin name Pin function Type Definition - EP GND GND Expose pad. Functions as ground return for buck and boost regulators. Tie this pad to the inner and external ground planes through vias to allow effective thermal dissipation 1 INTB O Digital Open drain interrupt signal to processor 2 SD_VSEL I/O Digital Input from LS1 processor to select SD regulator voltage • SD_VSEL=0, SD = 3.3 V • SD_VSEL= 1, VSD = 1.8 V 3 PORB O Digital Open drain reset output to processor 4 STBY I Digital Standby input signal from processor 5 ICTEST I Digital and Analog 6 FB1 I Analog SW1 output voltage feedback pin. Route this trace separately from the high current path and terminate at the output capacitance or near the load, if possible for best regulation 7 PVIN1 I Analog Input to SW1 regulator. Bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as close to the pin as possible 8, 9 LX1 O Analog Switcher 1 switch node connection. Connect to SW1 inductor 10 PVIN1 I Analog Input to SW1 regulator. Bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as close to the pin as possible 11, 30 NC — — 12 SGND1 GND GND 13 VLDOIN1 I Analog LDO1 input supply. Bypass with a 1.0 μF decoupling capacitor as close to the pin as possible 14 LDO1 O Analog LDO1 regulator output. Bypass with a 2.2 μF ceramic output capacitor 15 LDO2 O Analog LDO2 regulator output. Bypass with a 4.7 μF ceramic output capacitor 16 VLDOIN2 I Analog LDO2 input supply. Bypass with a 1.0 μF decoupling capacitor as close to the pin as possible 17 LX2 (2) O Analog Switcher 2 switch node connection.Connect to SW2 inductor 18 PVIN2 (2) I Analog Input to SW2 regulator. Bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as close to the pin as possible 19 FB2 (2) I Analog SW2 output voltage feedback pin. Route this trace separately from the high current path and terminate at the output capacitor or near the load, if possible for best regulation 20 LDO3 O Analog LDO3 regulator output. Bypass with a 2.2 μF ceramic output capacitor 21 VLDOIN34 I Analog LDO3 and LDO4 input supply. Bypass with a 1.0 μF decoupling capacitor as close to the pin as possible 22 LDO4 O Analog LDO4 regulator output. Bypass with a 2.2 μF ceramic output capacitor 23 VHALF I Analog Half supply reference for REFOUT. Bypass with 0.1 μF to ground. 24 REFIN I Analog REFOUT regulator input. Connect a 0.1 μF capacitor between REFIN and VHALF pin. Ensure there is at least 1.0 μF net capacitance from REFIN to ground 25 REFOUT O Analog REFOUT regulator output. Bypass with 1.0 μF to ground 26 SGND2 GND GND Reference ground for SW2 and SW3 regulators. Connect to GND. Keep away from high current ground return paths 27 FB3 (2) I Analog SW3 output voltage feedback pin. Route this trace separately from the high current path and terminate at the output capacitor or near the load, if possible for best regulation 28 PVIN3 (2) I Analog Input to SW3 regulator. Bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as close to the pin as possible 29 LX3 (2) O Analog Switcher 3 switch node connection. Connect the SW3 inductor Reserved pin. Connect to GND in application Leave this pin floating Ground reference for SW1. Connect to GND. Keep away from high current ground return paths VR5100 6 NXP Semiconductors PIN CONNECTIONS PIN DEFINITIONS Table 2. Pin definitions (continued) 31 SGND3 GND GND Connect to GND. 32 V33 O Analog V33 regulator output. Bypass with a 4.7 μF ceramic output capacitor 33 VSD O Analog Output of VSD regulator. Bypass with a 2.2 μF ceramic output capacitor. 34 VSNVS O Analog VSNVS regulator/switch output. Bypass with 0.47 μF capacitor to ground. 35 LXBST (2) I/O Analog SWBST switch node connection. Connect to SWBST inductor and anode of Schottky diode 36 LICELL I/O Analog Coin cell supply input/output. Bypass with 0.1 μF capacitor. Connect to optional coin cell 37 FBBST (2) I Analog SWBST output voltage feedback pin. Route this trace separately from the high current path and terminate at the output capacitor 38 PVIN2 I Analog Input to SD, V33 regulators and SWBST control circuitry. Connect to VIN rail and bypass with 10 μF capacitor 39 VDDOTP I Digital & Analog 40 SGND GND GND 41 VCC O Analog Internal analog core supply. Bypass with 1 μF capacitor to ground 42 VIN I Analog Main IC supply. Bypass with 1.0 μF capacitor to ground. Connect to system input supply. 43 VDIG O Analog Internal digital core supply. Bypass with 1.0 μF capacitor to ground 44 VBG O Analog Main band gap reference. Bypass with 220 nF capacitor to ground 45 SDA I/O Digital I2C data line (open drain). Pull up to VCCI2C with a 4.7 kΩ resistor 46 SCL I Digital I2C clock. Pull up to VCCI2C with a 4.7 kΩ resistor 47 VCCI2C I Analog Supply for I2C bus. Bypass with 0.1 μF ceramic capacitor. Connect to 1.7 to 3.6 V supply. Ensure VCCI2C is always lesser than or equal to VIN 48 EN I Digital Power ON/OFF input from processor Supply to program OTP fuses. Connect VDDOTP to GND during normal application Ground reference for IC core circuitry. Connect to ground. Keep away from high current ground return paths Notes 2. Unused switching regulators should be connected as follows: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be connected to VIN with a 0.1 F bypass capacitor. VR5100 NXP Semiconductors 7 GENERAL PRODUCT CHARACTERISTICS ABSOLUTE MAXIMUM RATINGS 4 General product characteristics 4.1 Absolute maximum ratings Table 3. Absolute maximum voltage ratings All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage to the device. The detailed maximum voltage rating per pin can be found in the pin list section. Symbol Description Value Unit – -0.3 to 7.5 V VIN, PVIN2, VLDOIN1, PVIN1, – PVIN2, PVIN3, LX1, LX2, LX3 -0.3 to 4.8 V OTP programming input supply voltage -0.3 to 10.0 V Boost switcher feedback -0.3 to 5.5 V -0.3 to 3.6 V Notes Electrical ratings ICTEST, LXBST VDDOTP FBBST INTB, SD_VSEL, PORB, STBY, FB1, FB2, FB3, LDO1, VLDOIN2, VLDOIN34, LDO3, LDO4, VHALF, – REFIN, REFOUT, V33, VSD, VSNVS, LICELL, VCC, SDA, SCL, VCCI2C, EN LDO2 LDO2 linear regulator output -0.3 to 2.5 V VDIG Digital core supply voltage output -0.3 to 1.65 V VBG Bandgap reference voltage output -0.3 to 1.5 V VESD ESD ratings • Human body model • Charge device model 2000 500 V (3) (4) Notes 3. 10 V Maximum voltage rating during OTP fuse programming. 7.5 V Maximum DC voltage rated otherwise. 4. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge device model (CDM), Robotic (CZAP = 4.0 pF). VR5100 8 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS THERMAL CHARACTERISTICS 4.2 Thermal characteristics Table 4. Thermal ratings Symbol Description (Rating) Min. Max. Unit Notes Thermal ratings TA Ambient operating temperature range • Industrial version -40 105 C TJ Operating junction temperature range -40 125 C Storage temperature range -65 150 C – (7) C (6) (7) TST TPPRT Peak package reflow temperature (5) QFN48 thermal resistance and package dissipation ratings RJA Junction to ambient, natural convection • Four layer board (2s2p) • Eight layer board (2s6p) – – 24 15 °C/W (8) (9) (10) RJB Junction to board – 11 °C/W (11) RJCBOTTOM Junction to case bottom – 1.4 °C/W (12) JT Junction to package top • Natural convection – 1.3 °C/W (13) Notes 5. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Thermal Protection Thresholds for thermal protection features. 6. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a malfunction or permanent damage to the device. 7. NXP's package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and moisture sensitivity levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable parts, and review parametrics. 8. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 9. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5. 10. Per JEDEC JESD51-6 with the board horizontal. 11. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. 12. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 13. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters (JT) are not available, the thermal characterization parameter is written as Psi-JT. VR5100 NXP Semiconductors 9 GENERAL PRODUCT CHARACTERISTICS CURRENT CONSUMPTION 4.3 Current consumption The current consumption of the individual blocks is described in detail in the following table. Table 5. Current consumption summary TA= -40 °C to 105 °C, VIN = 3.6 V, VCCI2C = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V, VSNVS = 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VCCI2C = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and 25 °C, unless otherwise noted. Mode Coin Cell Off Sleep LPSR Standby ON VR5100 Conditions Typ. Max. Unit Notes No load on VSNVS 4.0 7.0 A (14) (15) VSNVS from VIN or LICELL Wake-up from EN active 32 kHz RC on All other blocks off VIN UVDET No load on VSNVS, PMIC able to wakeup 16 25 A (14) (15) VSNVS from VIN Wake-up from EN active Trimmed reference active SW3 PFM. All other regulators off. Trimmed 16 MHz RC off 32 kHz RC on REFOUT disabled No load on any of the regulators 130 (14) 200 (17) 220 (14) A (16) LDO1 & LDO3 activated in addition to SW3 No load on any of the regulators 170 (14) 260 (17) 248 (14) A (16) VSNVS from either VIN or LICELL SW1 in PFM SW2 in PFM SW3 in PFM SWBST off Trimmed 16 MHz RC enabled Trimmed reference active LDO1-4 enabled V33 enabled VSD enabled REFOUT enabled No load on any of the regulators 297 450 A (16) VSNVS from VIN SW1 in APS SW2 in APS SW3 in APS SWBST off Trimmed 16 MHz RC enabled Trimmed reference active LDO1-4 enabled V33 enabled VSD enabled REFOUT enabled No load on any of the regulators 1.2 VSNVS from LICELL, All other blocks off, VIN = 0.0 V System Conditions mA Notes 14. At 25 °C only 15. When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 A, typically. 16. 17. For PFM operation, headroom should be 300 mV or greater. At 105 °C only VR5100 10 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS ELECTRICAL CHARACTERISTICS 4.4 Electrical characteristics Table 6. Static electrical characteristics – SW1 All parameters are specified at TA = -40 °C to 105 °C, VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes (18) Switch mode supply SW1 VPVIN1 Operating input voltage 2.8 – 4.5 V VSW1 Nominal output voltage – Table 46 – V -25 25 mV -25 35 mV 45 mV -6.0 6.0 % -6.0 6.0 % VSW1ACC ISW1 ISW1Q Output voltage accuracy • PWM, APS, 2.8 V < VPVIN1 < 4.5 V, 0 < ISW1 < 3.8 A 0.7 V  VSW1 1.2 V • PFM, APS, 2.8 V < VPVIN1 < 4.5 V, 0 < ISW1 < 3.8 A 1.225 V < VSW1 < 1.425 V • PFM, steady state, 2.8 V < VPVIN1 < 4.5 V, 0 < ISW1 < 150 mA 1.8 V VSW1  1.425 V • PWM, APS, 2.8 V < VPVIN1 < 4.5 V, 0 < ISW1 < 2.75A 1.8 V < VSW1 < 3.3 V • PFM, steady state, 2.8 V < VPVIN1 < 4.5 V, 0 < ISW1 < 150 mA 1.8 V VSW1 3.3 V Rated output load current, • 2.8 V  VPVIN1  4.5 V, 0.7 V < VSW1 < 1.425 V, 1.8V, 3.3V Quiescent current • PFM Mode • APS Mode -45 – 3800 – – mA – – 22 300 – – μA 4 2.6 5.5 4.0 8.0 5.4 A ISW1LIM Current limiter peak current detection , current through inductor • SW1ILIM = 0 • SW1ILIM = 1 VSW1 Output ripple – 5.0 – mV Discharge resistance – 600 –  Start-up overshoot, ISW1 = 0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN1 = 4.5 V, VSW1 = 1.425 V – – 66 mV Turn-on time, enable to 90% of end value, ISW1 = 0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN1 = 4.5 V, VSW1 = 1.425 V – – 500 μs RSW1DIS Switch mode supply SW1 VSW1OSH tONSW1 Notes 18. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any VR5100 regulator, or external system supply. VR5100 NXP Semiconductors 11 GENERAL PRODUCT CHARACTERISTICS ELECTRICAL CHARACTERISTICS Table 7. Static electrical characteristics – SW2 All parameters are specified at TA = -40 °C to 105 °C, VIN = VPVIN2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes (19) Switch mode supply SW2 VPVIN2 Operating input voltage 2.8 – 4.5 V VSW2 Nominal output voltage – Table 48 – V -3.0% -6.0% – – 3.0% 6.0% -6.0% -6.0% – – 6.0% 6.0% 1250 – – – – – 23 145 305 – – – 1.625 1.235 2.5 1.9 3.375 2.565 A VSW2ACC ISW2 ISW2Q Output voltage accuracy • PWM, APS, 2.8 V  VPVIN2  4.5 V, 0  ISW2  1.25 A • 1.50 V  VSW2  1.85 V • 2.5 V  VSW2  3.3 V • PFM, 2.8 V  VPVIN2  4.5 V, 0  ISW2 50 mA • 1.50 V  VSW2  1.85 V • 2.5 V  VSW2  3.3 V Rated output load current, 2.8 V < VPVIN2 < 4.5 V, 1.50 V < VSW2 < 1.85 V, 2.5 V < VSW2 < 3.3 V Quiescent current • PFM mode • APS mode (Low output voltage settings) • APS mode (High output voltage settings, SW2_HI=1) % mA (20) μA ISW2LIM Current limiter peak current detection, current through inductor • SW2ILIM = 0 • SW2ILIM = 1 VSW2 Output ripple – 5.0 – mV RONSW2P SW2 P-MOSFET RDS(on) at VIN = VPVIN2 = 3.3 V – 215 245 m RONSW2N SW2 N-MOSFET RDS(on) at VIN = VPVIN2 = 3.3 V – 258 326 m ISW2PQ SW2 P-MOSFET leakage current, VIN = VPVIN2 = 4.5 V – – 10.5 μA ISW2NQ SW2 N-MOSFET leakage current, VIN = VPVIN2 = 4.5 V – – 3.0 μA RSW2DIS Discharge resistance during OFF mode – 600 –  VSW2OSH Start-up overshoot, ISW2 = 0.0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN2 = 4.5 V – – 66 mV tONSW2 Turn-on time, enable to 90% of end value, ISW2 = 0.0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN2 = 4.5 V – – 500 μs Notes 19. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any VR5100 regulator, or external system supply. 20. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VPVIN2 - VSW2) = ISW2* (DCR of Inductor + RONSW2P + PCB trace resistance). VR5100 12 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS ELECTRICAL CHARACTERISTICS Table 8. Static electrical characteristics – SW3 All parameters are specified at TA = -40 °C to 105 °C, VIN = VPVIN3 = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VPVIN3 = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes (21) Switch mode supply SW3 VPVIN3 Operating input voltage 2.8 – 4.5 V VSW3 Nominal output voltage – Table 50 – V -3.0% – 3.0% -6.0% – 6.0% 1500 – – mA – – 50 150 – – μA 1.95 1.45 3.0 2.25 4.05 3.05 A VSW3ACC ISW3 ISW3Q Output voltage accuracy • PWM, APS, 2.8 V < VPVIN3 < 4.5 V, 0 < ISW3 < 1.5 A, 0.9 V < VSW3 < 1.65 V • PFM, steady state (2.8 V < VPVIN3 < 4.5 V, 0 < ISW3 < 50 mA), 0.9 V < VSW3 < 1.65 V Rated output load current, 2.8 V < VPVIN3 < 4.5 V, 0.9 V < VSW3 < 1.65 V, PWM, APS mode Quiescent current • PFM Mode • APS Mode ISW3LIM Current limiter peak current detection, current through inductor • SW3ILIM = 0 • SW3ILIM = 1 VSW3 % Output ripple – 5.0 – mV RONSW3P SW3 P-MOSFET RDS(on)at VIN = VSW3IN = 3.3 V – 205 235 m RONSW3N SW3 N-MOSFET RDS(on) at VIN = VSW3IN = 3.3 V – 250 315 m ISW3PQ SW3 P-MOSFET leakage current, VIN = VSW3IN = 4.5 V – – 12 μA ISW3NQ SW3 N-MOSFET leakage current, VIN = VSW3IN = 4.5 V – – 4.0 μA RSW3DIS Discharge resistance during Off mode – 600 –  VSW3OSH Start-up overshoot, ISW3 = 0.0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN3 = 4.5 V – – 66 mV Turn-on time, enable to 90% of end value, ISW3 = 0 mA, DVS clk = 25 mV/4 s, VIN = VPVIN3 = 4.5 V – – 500 μs tONSW3 (22) Notes 21. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any VR5100 regulator, or external system supply. 22. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW3IN - VSW3) = ISW3* (DCR of Inductor +RONSW3P + PCB trace resistance). VR5100 NXP Semiconductors 13 GENERAL PRODUCT CHARACTERISTICS ELECTRICAL CHARACTERISTICS Table 9. Static electrical characteristics - SWBST All parameters are specified at TA = -40 °C to 105 °C, VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical external component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VSWBSTIN = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, and 25 °C, unless otherwise noted. Symbol Parameters Min. Typ. Max. Unit Notes 2.8 – 4.5 V (23) Switch mode supply SWBST VSWBSTIN Input voltage range VSWBST Nominal output voltage – Table 52 – V ISWBST Continuous load current • 2.8 V  VIN  3.0 V • 3.0 V  VIN  4.5 V 500 600 – – – – mA Output voltage accuracy, 2.8 V  VIN  4.5 V, 0 < ISWBST < ISWBSTMAX -4.0 – 3.0 % VSWBSTACC ISWBSTQ Quiescent current (auto mode) – 222 289 A VSWBST Output ripple, 2.8 V  VIN  4.5 V, 0 < ISWBST < ISWBSTMAX, excluding reverse recovery of Schottky diode – – 120 mVp-p ISWBSTLIM Peak Current Limit 1400 2200 3200 mA RDSONBST MOSFET on resistance – 206 306 m ISWBSTHSQ NMOS Off leakage, VSWBST = 4.5 V, SWBSTMODE [1:0] = 00 – 1.0 5.0 μA VSWBSTOSH Start-up overshoot, ISWBST = 0.0 mA – – 500 mV Turn-on time, enable to 90% of VSWBST, ISWBST = 0.0 mA – – 2.0 ms tONSWBST (24) Notes 23. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any VR5100 regulator, or external system supply. 24. Only in Auto and APS modes. Table 10. Static electrical characteristics - VSNVS All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Operating input voltage • Valid coin cell range • Valid VIN 1.8 2.25 – 3.3 4.5 V ISNVS Operating load current, VINMIN < VIN < VINMAX 1.0 – 1000 A VSNVS Output voltage • 5.0 A < ISNVS < 1000 A (OFF), 3.20 V < VIN < 4.5 V • 5.0 A < ISNVS < 1000A (ON), 3.20 V < VIN < 4.5 V • 5.0 A < ISNVS < 1000 A (Coin Cell mode), 2.84 V < VCOIN < 3.3 V -5.0% -5.0% VCOIN-0.10 3.0 3.0 7.0% 5.0% VCOIN – – 110 mV 1100 – 6750 A Operating input voltage, valid coin cell range 1.8 – 3.3 V ISNVS Operating load current 1.0 – 1000 A RDSONSNVS Internal switch RDS(on) – – 100  Notes VSNVS VIN VSNVSDROP ISNVSLIM Dropout voltage, 2.85 V < VIN < 2.9 V, 1.0 A < ISNVS < 1000 A Current limit, VIN > VTH1 V VSNVS DC, SWITCH VLICELL VR5100 14 NXP Semiconductors GENERAL PRODUCT CHARACTERISTICS ELECTRICAL CHARACTERISTICS Table 11. Dynamic electrical characteristics - VSNVS All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes (25),(26) VSNVS VSNVSTON Turn-on time (load capacitor, 0.47 F), from VIN = VTH1 to 90% of VSNVS, VCOIN = 0.0 V, ISNVS = 5.0 A – – 24 ms VSNVSOSH Start-up overshoot, ISNVS = 5.0 A – 40 70 mV VSNVSLOTR Transient load response, 3.2 < VIN 4.5 V, ISNVS = 100 to 1000 A 2.8 – – V VTL1 VIN falling threshold (VIN powered to coin cell powered) 2.45 2.70 3.05 V VTH1 VIN Rising Threshold (coin cell powered to VIN powered) 2.5 2.75 3.10 V VIN threshold hysteresis for VTH1-VTL1 5.0 - - mV Output voltage during crossover, VCOIN > 2.9 V, Switch to LDO: VIN > VTH1, ISNVS = 100 A, LDO to Switch: VIN < VTL1, ISNVS = 100 A 2.45 - - V VHYST1 VSNVSCROSS Notes 25. The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to 3.0 V. 26. From coin cell insertion to VSNVS = 1.0 V, the delay time is typically 400 ms. Table 12. Static electrical characteristics - LDO1 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDOIN1 = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDOIN1 = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit Notes 2.8 VLDO1NOM +0.250 – – 4.5 4.5 V (27) – Table 55 – V Rated output load current 100 – – mA Output voltage tolerance, VLDO1INMIN < VLDOIN1 < 4.5 V, 0.0 mA < ILDO1 < 100 mA, LDO1 = 1.8 V to 3.3 V -3.0 – 3.0 % – 13 – A 122 167 280 mA LDO1 linear regulator VLDOIN1 VLDO1NOM ILDO1 VLDO1TOL ILDO1Q ILDO1LIM Operating input voltage • 1.8 V  VLDO1NOM  2.5 V • 2.6 V  VLDO1NOM  3.3 V Nominal output voltage Quiescent current, no load, change in IVIN, when LDO1 enabled Current limit, ILDO1 when VLDO1 is forced to VLDO1NOM/2 Notes 27. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.3 V. This voltage can be an output from any VR5100 regulator, or external system supply. VR5100 NXP Semiconductors 15 GENERAL PRODUCT CHARACTERISTICS ELECTRICAL CHARACTERISTICS Table 13. Dynamic electrical characteristics - LDO1 All parameters are specified at TA = -40 °C to 105 °C, VIN = 3.6 V, VLDOIN1 = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VLDOIN1 = 3.6 V, VLDO1 = 3.3 V, ILDO1 = 10 mA, and 25 °C, unless otherwise noted. Symbol Parameter Min. Typ. Max. Unit dB Notes LDO1 linear regulator PSRRLDO1 PSRR, ILDO1 = 75 mA, 20 Hz to 20 kHz • LDO1 = 1.8 V to 3.3 V, VLDOIN1 = VLDO1INMIN + 100 mV • LDO1 = 1.8 V to 3.3 V, VLDOIN1 = VLDO1NOM + 1.0 V 35 52 40 60 – – NOISELDO1 Output noise density, VLDOIN1 = VLDO1INMIN, ILDO1 = 75 mA • 100 Hz to 2.7 V (typical) 1 VIN 2.7 V (typical) 0 ENI Power on interrupt bit —ENI is set to 1 when the turn on event occurs. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 Power on has not occurred. 1 Power on has occurred. VR5100 NXP Semiconductors 61 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.2 Interrupt status mask register 0 (INTMASK0) INTMASK0 is the mask register for the status interrupt register INTSTAT0. Write a logic 0 to a bit to unmask the corresponding interrupt. When unmasked, the corresponding interrupt state is reflected on the INTB pin. Table 93. Interrupt status mask register 0 (INTMASK0) Access: user read/write (54) Address: 0x06 functional page 7 6 R W Default 0 5 4 3 2 1 0 THERM130M THERM125M THERM120M THERM110M LOWVINM ENM 1 1 1 1 1 1 0 = Unimplemented or reserved Notes 54. Read: Anytime Write: Anytime Table 94. INTMASK0 field descriptions Field Description 5 THERM130M 130 °C thermal interrupt mask bit 0 THERM130I unmasked 1 THERM130I masked 4 THERM125M 125 °C thermal interrupt mask bit 0 THERM125I unmasked 1 THERM125I masked 3 THERM120M 120 °C thermal interrupt mask bit 0 THERM120I unmasked 1 THERM120I masked 2 THERM110M 110 °C thermal interrupt mask bit 0 THERM110I unmasked 1 THERM110I masked 1 LOWVINM 0 ENM Low-voltage interrupt mask bit 0 LOWVINI unmasked 1 LOWVINI masked Power on interrupt mask bit 0 ENI unmasked 1 ENI masked VR5100 62 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.3 Interrupt sense register 0 (INTSENSE0) This register has seven read-only sense bits. These sense bits reflects the actual state of the corresponding function. Table 95. Interrupt sense register 0 (INTSENSE0) Access: user read-only (55) Address: 0x07 functional page 7 R 6 VDDOTPS 5 4 3 2 1 0 THERM130S THERM125S THERM120S THERM110S LOWVINS ENS X (58) X (58) X (58) X (58) X (57) X (56) W Default X (59) 0 = Unimplemented or reserved Notes 55. 56. 57. 58. 59. Read: Anytime Default value depends on the initial EN pin state. Default value depends on the initial VIN voltage. Default value depends on the initial temperature of the die. Default value depends on the initial VDDOTP pin state. Table 96. INTSENSE0 field descriptions Field 7 VDDOTPS Description VDDOTP voltage sense bit 0 VDDOTP grounded. 1 VDDOTP to VDIG or greater. 5 THERM130S 130 °C thermal interrupt sense bit 0 Die temperature below THERM130 threshold. 1 Die temperature above THERM130 threshold. 4 THERM125S 125 °C thermal interrupt sense bit 0 Die temperature below THERM125 threshold. 1 Die temperature has crossed THERM125 threshold. 3 THERM120S 120 °C thermal interrupt sense bit 0 Die temperature below THERM120 threshold. 1 Die temperature has crossed THERM120 threshold. 2 THERM110S 110 °C thermal interrupt sense bit 0 Die temperature below THERM110 threshold. 1 Die temperature has crossed THERM110 threshold. 1 LOWVINS 0 ENS Low-voltage interrupt sense bit 0 VIN > 2.7 V (typical) 1 VIN 2.7 V (typical) Power on interrupt sense bit 0 EN low. 1 EN high. VR5100 NXP Semiconductors 63 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.4 Interrupt status register 1 (INTSTAT1) INSTAT1 is one of the four status interrupt registers. This register contains four status flags. Write a logic 1 to clear a flag. Table 97. Status interrupt register 1 (INTSTAT1) Access: user read/write (60) Address: 0x08 functional page 7 6 5 R W Default 0 0 4 3 SW3FAULTI SW2FAULTI 0 0 0 2 0 1 0 SW1FAULTI SW1FAULTI 0 0 = Unimplemented or reserved Notes 60. Read: Anytime Write: Anytime Table 98. INTSTAT1 field descriptions Field Description 4 SW3FAULTI SW3 overcurrent interrupt bit — SW3FAULTI is set to 1 when the SW3 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 SW3 in normal operation 1 SW3 above current limit 3 SW2FAULTI SW2 overcurrent interrupt bit — SW2FAULTI is set to 1 when the SW2 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 SW2 in normal operation 1 SW2 above current limit 1 SW1FAULTI SW1 overcurrent interrupt bit — SW1FAULTI is set to 1 when the SW1 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 SW1 in normal operation 1 SW1 above current limit 0 SW1FAULTI SW1 overcurrent interrupt bit — SW1FAULTI is set to 1 when the SW1 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 SW1 in normal operation 1 SW1 above current limit 6.6.5.3.5 Interrupt status mask register 1 (INTMASK1) INTMASK1 is the mask register for the status interrupt register INTSTAT1. Write a logic 0 to a bit to unmask the corresponding interrupt. When unmasked, the corresponding interrupt state is reflected on the INTB pin. Table 99. Interrupt status mask register 1 (INTMASK1) Access: user read/write (61) Address: 0x09 functional page 7 6 5 R W Default 0 0 0 4 3 SW3FAULTM SW2FAULTM 1 1 2 0 1 0 SW1FAULTM SW1FAULTM 1 1 = Unimplemented or reserved Notes 61. Read: Anytime Write: Anytime VR5100 64 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 100. INTMASK1 field descriptions Field Description 4 SW3FAULTM SW3 overcurrent interrupt mask bit 0 SW3FAULTI Unmasked 1 SW3FAULTI Masked 3 SW2FAULTM SW2 overcurrent interrupt mask bit 0 SW2FAULTI Unmasked 1 SW2FAULTI Masked 1 SW1FAULTM SW1 overcurrent interrupt mask bit 0 SW1FAULTI Unmasked 1 SW1FAULTI Masked 0 SW1FAULTM SW1 overcurrent interrupt mask bit 0 SW1FAULTI Unmasked 1 SW1FAULTI Masked 6.6.5.3.6 Interrupt sense register 1 (INTSENSE1) This register has four read-only sense bits. These sense bits reflect the actual state of the corresponding function. Table 101. Interrupt sense register 1 (INTSENSE1) Access: user read-only (62) Address: 0x0A functional page 7 6 5 R 4 3 SW3FAULTS SW2FAULTS X (63) X (63) 2 1 0 SW1FAULTS SW1FAULTS X (63) X (63) W Default 0 0 0 0 = Unimplemented or reserved Notes 62. Read: Anytime 63. Default value depends on the regulator initial state Table 102. INTSENSE1 field descriptions Field Description 4 SW3FAULTS SW3 overcurrent sense bit 0 SW3 in normal operation 1 SW3 above current limit 3 SW2FAULTS SW2 overcurrent sense bit 0 SW2 in normal operation 1 SW2 above current limit 1 SW1FAULTS SW1 overcurrent sense bit 0 SW1 in normal operation 1 SW1 above current limit 0 SW1FAULTS SW1 overcurrent sense bit 0 SW1 in normal operation 1 SW1 above current limit VR5100 NXP Semiconductors 65 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.7 Interrupt status register 3 (INTSTAT3) INSTAT3 is one of the four status interrupt registers. This register contains four status flags. Write a logic 1 to clear a flag. Table 103. Status interrupt register 3 (INTSTAT3) Access: user read/write (64) Address: 0x0E functional page R W Default 7 6 OTP_ECCI OTP_AUTO_BL OW_DONEI 0 0 5 4 3 2 1 0 SWBSTFAULTI 0 0 0 0 0 0 = Unimplemented or reserved Notes 64. Read: Anytime Write: Anytime Table 104. INTSTAT3 field descriptions Field Description 7 OTP_ECCI OTP error interrupt bit — OTP_ECCI is set to 1 when an error is detected in OTP registers. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 No error detected 1 OTP error detected OTP auto fuse blow interrupt bit — OTP_AUTO_BLOW_DONEI is set to 1 after the Auto Fuse Blow Sequence is completed. This 6 flag can only be cleared by writing a 1. Writing a 0 has no effect. OTP_AUTO_BL 0 OTP Auto Fuse Blow Sequence not completed OW_DONEI 1 OTP Auto Fuse Blow Sequence completed SWBST overcurrent limit interrupt bit — SWBSTFAULTI is set to 1 when the SWBST regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 SWBSTFAULTI 0 SWBST in normal operation 1 SWBST above current limit 6.6.5.3.8 Interrupt status mask register 3 (INTMASK3) INTMASK3 is the mask register for the status interrupt register INTSTAT3. Write a logic 0 to a bit to unmask the corresponding interrupt. When unmasked, the corresponding interrupt state is reflected on the INTB pin. Table 105. Interrupt status mask register 3 (INTMASK3) Access: user read/write (65) Address: 0x0F functional page R W Default 7 6 OTP_ECCM OTP_AUTO_BL OW_DONEM 1 1 5 4 3 2 1 0 SWBSTFAULTM 0 0 0 1 0 1 = Unimplemented or reserved Notes 65. Read: Anytime Write: Anytime VR5100 66 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 106. INTMASK3 field descriptions Field Description OTP error interrupt mask bit 0 OTP_ECCI unmasked 1 OTP_ECCI masked 7 OTP_ECCM OTP auto blow mask bit 6 OTP_AUTO_BLO 0 OTP_AUTO_BLOW_DONEI unmasked W_DONEM 1 OTP_AUTO_BLOW_DONEI masked SWBST overcurrent limit interrupt mask bit 0 SWBSTFAULTI unmasked 1 SWBSTFAULTI masked 0 SWBSTFAULTM 6.6.5.3.9 Interrupt sense register 3 (INTSENSE3) This register has four read-only sense bits. These sense bits reflect the actual state of the corresponding function. Table 107. Interrupt sense register 3 (INTSENSE3) Access: user read-only (66) Address: 0x10 functional page R 7 6 OTP_ECCS OTP_AUTO_B LOW_DONES 0 0 5 4 3 2 1 0 SWBSTFAULTS W Default 0 0 0 0 0 X (67) = Unimplemented or reserved Notes 66. Read: Anytime 67. Default value depends on the regulator initial state Table 108. INTSENSE3 field descriptions Field 7 OTP_ECCS Description OTP error sense bit 0 No error detected 1 OTP error detected OTP auto blow sense bit — This bit is high while the auto blow sequence is running. Do not read/write the OTP TBB registers while 6 this bit is 1. OTP_AUTO_BLO 0 SW2 in normal operation W_DONES 1 SW2 at current limit 0 SWBSTFAULTS SWBST overcurrent limit sense bit 0 SWBST in normal operation 1 SWBST above current limit VR5100 NXP Semiconductors 67 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.10 Interrupt status register 4 (INTSTAT4) INSTAT4 is one of the four status interrupt registers. This register contains six status flags. Write a logic 1 to clear a flag. Table 109. Status interrupt register 4 (INTSTAT4) Access: user read/write (68) Address: 0x11 functional page 7 6 R W Default 0 0 5 4 3 2 1 0 LDO4FAULTI LDO3FAULTI V33FAULTI VSDFAULTI LDO2FAULTI LDO1FAULTI 0 0 0 0 0 0 = Unimplemented or reserved Notes 68. Read: Anytime Write: Anytime Table 110. INTSTAT4 field descriptions Field Description 5 LDO4FAULTI LDO4 overcurrent interrupt bit — LDO4FAULTI is set to 1 when the LDO4 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 LDO4 in normal operation 1 LDO4 above current limit 4 LDO3FAULTI LDO3 overcurrent interrupt bit — LDO3FAULTI is set to 1 when the LDO3 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 LDO3 in normal operation 1 LDO3 above current limit 3 V33FAULTI V33 overcurrent interrupt bit — V33FAULTI is set to 1 when the V33 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 V33 in normal operation 1 V33 above current limit 2 VSDFAULTI VSD overcurrent interrupt bit — VSDFAULTI is set to 1 when the VSD regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 VSD in normal operation 1 VSD above current limit 1 LDO2FAULTI LDO2 overcurrent interrupt bit — LDO2FAULTI is set to 1 when the LDO2 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 LDO2 in normal operation range. 1 LDO2 above current limit 0 LDO1FAULTI LDO1 overcurrent interrupt bit — LDO1FAULTI is set to 1 when the LDO1 regulator is in current limit protection. This flag can only be cleared by writing a 1. Writing a 0 has no effect. 0 LDO1 in normal operation range. 1 LDO1 above current limit VR5100 68 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.11 Interrupt status mask register 4 (INTMASK4) INTMASK4 is the mask register for the status interrupt register INTSTAT4. Write a logic 0 to a bit to unmask the corresponding interrupt. When unmasked, the corresponding interrupt state is reflected on the INTB pin. Table 111. Interrupt status mask register 4 (INTMASK4) Access: user read/write (69) Address: 0x12 functional page 7 6 R W Default 0 5 4 3 2 1 0 LDO4FAULTM LDO3FAULTM V33FAULTM VSDFAULTM LDO2FAULTM LDO1FAULTM 1 1 1 1 1 1 0 = Unimplemented or reserved Notes 69. Read: Anytime Write: Anytime Table 112. INTMASK4 field descriptions Field Description 5 LDO4FAULTM LDO4 overcurrent interrupt mask bit 0 LDO4FAULTI unmasked 1 LDO4FAULTI masked 4 LDO3FAULTM LDO3 overcurrent interrupt mask bit 0 LDO3FAULTI unmasked 1 LDO3FAULTI masked 3 V33FAULTM V33 overcurrent interrupt mask bit 0 V33FAULTI unmasked 1 V33FAULTI masked 2 VSDFAULTM VSD overcurrent interrupt mask bit 0 VSDFAULTI unmasked 1 VSDFAULTI masked 1 LDO2FAULTM LDO2 overcurrent interrupt mask bit 0 LDO2FAULTI unmasked 1 LDO2FAULTI masked 0 LDO1FAULTM LDO1 overcurrent interrupt mask bit 0 LDO1FAULTI unmasked 1 LDO1FAULTI masked VR5100 NXP Semiconductors 69 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.12 Interrupt sense register 4 (INTSENSE4) This register has four read-only sense bits. These sense bits reflect the actual state of the corresponding function. Access: user read-only (70) Address: 0x13 functional page 7 6 R 5 4 3 2 1 0 LDO4FAULTS LDO3FAULTS V33FAULTS VSDFAULTS LDO2FAULTS LDO1FAULTS X (71) X (71) X (71) X (71) X (71) X (71) W Default 0 0 = Unimplemented or reserved Notes 70. Read: Anytime 71. Default value depends on the regulator initial state Table 113. INTSENSE4 field descriptions Field Description 5 LDO4FAULTS LDO4 overcurrent sense bit 0 LDO4 in normal operation 1 LDO4 above current limit 4 LDO3FAULTS LDO3 overcurrent sense bit 0 LDO3 in normal operation 1 LDO3 above current limit 3 V33FAULTS V33 overcurrent sense bit 0 V33 in normal operation 1 V33 above current limit 2 VSDFAULTS VSD overcurrent sense bit 0 VSD in normal operation 1 VSD above current limit 1 LDO2FAULTS LDO2 overcurrent sense bit 0 LDO2 in normal operation 1 LDO2 above current limit 0 LDO1FAULTS LDO1 overcurrent sense bit 0 LDO1 in normal operation 1 LDO1 above current limit VR5100 70 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.13 Coin cell control register (COINCTL) This register is used to control the coin cell charger. Table 114. Coin cell control register (COINCTL) Access: user read/write (72) Address: 0x1A functional page 7 6 5 4 3 R 2 1 COINCHEN W Default 0 0 0 0 0 0 VCOIN 0 0 0 = Unimplemented or reserved Notes 72. Read: Anytime Write: Anytime Table 115. COINCTL field descriptions Field 3 COINCHEN 2:0 VCOIN 6.6.5.3.14 Description Coin cell charger enable bit 0 Coin cell charger disabled. 1 Coin cell charger enabled. Coin cell charger output voltage selection — This field is used to set the coin cell charging voltage from 2.50 V to 3.30 V. See Table 63 for all options selectable through these bits. Power control register (PWRCTL) Table 116. Power control register (PWRCTL) Access: user read/write (73) Address: 0x1B functional page R W 7 6 REGSCPEN STBYINV 0 0 Default 5 4 3 STBYDLY 0 2 ENBDBNC 1 0 0 1 0 ENRSTEN RESTARTEN 0 0 = Unimplemented or reserved Notes 73. Read: Anytime Write: Anytime VR5100 NXP Semiconductors 71 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 117. PWRCTL field descriptions Field Description 7 REGSCPEN Short-circuit protection enable bit — When REGSCPEN is set to 1, whenever a current limit event occurs on a LDO regulator, this regulator is shutdown. 0 Short-circuit protection disabled 1 Short-circuit protection enabled 6 STBYINV STBY inversion bit —STBYINV is used to control the polarity of the STBY pin. 0 Standby pin is active high 1 Standby pin is active low 4:3 STBYDLY STBY delay bits — STBYDLY is used to set the delay between a standby request from the STBY pin and the entering in standby mode. 00 No delay 01 One 32 kHz period (default) 10 Two 32 kHz periods 11 Three 32 kHz periods 3:2 ENDBNC EN programmable debouncer bits — ENDBNC is used to set the debounce time for the EN input pin. For configuration, see Table 31. 1 ENRSTEN EN reset enable bit — When set to 1, the VR5100 can enter OFF mode when the EN pin is held low for 4 seconds or longer. See EN Pin section for details. 0 Disallow OFF mode after EN held low 1 Allow OFF mode after ENheld low 0 RESTARTEN Restart enable bit — When set to 1, the VR5100 restarts automatically after a power off event generated by the EN (held low for 4 seconds or longer) when PWR_CFG bit = 1. 0 Automatic restart disabled. 1 Automatic restart enabled. 6.6.5.3.15 Embedded memory register A (MEMA) Table 118. Embedded memory register A (MEMA) Access: user read/write (74) Address: 0x1C functional page 7 6 5 4 R 2 1 0 0 0 0 0 MEMA W Default 3 0 0 0 0 = Unimplemented or reserved Notes 74. Read: Anytime Write: Anytime Table 119. MEMA field descriptions Field Description 7:0 MEMA Memory bank A — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the embedded memory are reset by COINPORB. VR5100 72 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.16 Embedded memory register B (MEMB) Table 120. Embedded memory register B (MEMB) Address: 0x1D functional page 7 6 5 Access: user read/write 4 R 2 1 0 0 0 0 0 MEMB W Default 3 0 0 0 0 = Unimplemented or reserved Notes 75. Read: Anytime Write: Anytime Table 121. MEMB field descriptions Field Description 7:0 MEMB Memory bank B — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the embedded memory are reset by COINPORB. 6.6.5.3.17 Embedded memory register C (MEMC) Table 122. Embedded memory register C (MEMC) Access: user read/write (76) Address: 0x1E functional page 7 6 5 4 R 2 1 0 0 0 0 0 MEMC W Default 3 0 0 0 0 = Unimplemented or reserved Notes 76. Read: Anytime Write: Anytime Table 123. MEMC field descriptions Field Description 7:0 MEMC Memory bank C — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the embedded memory are reset by COINPORB. VR5100 NXP Semiconductors 73 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.18 Embedded memory register D (MEMD) Table 124. Embedded memory register D (MEMD) Access: user read/write (77) Address: 0x1F functional page 7 6 5 4 R 2 1 0 0 0 0 0 MEMD W Default 3 0 0 0 0 = Unimplemented or reserved Notes 77. Read: Anytime Write: Anytime Table 125. MEMD field descriptions Field Description 7:0 MEMD Memory bank D — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the embedded memory are reset by COINPORB. 6.6.5.3.19 SW1 voltage control register (SW1VOLT) This register is used to set the output voltage of the SW1 regulator in normal operation. Table 126. SW1 voltage control register (SW1VOLT) Access: user read/write (78) Address: 0x20 functional page 7 6 5 4 3 R 1 0 X (79) X (79) SW1 W Default 2 0 0 0 X (79) X (79) X (79) = Unimplemented or reserved Notes 78. Read: Anytime Write: Anytime 79. Default value depends on OTP content. Table 127. SW1VOLT field descriptions Field 4:0 SW1 Description SW1 output voltage — Refer to Table 46 VR5100 74 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.20 SW1 standby voltage control register (SW1STBY) This register is used to set the output voltage of the SW1 regulator in standby operation. Table 128. SW1 standby voltage control register (SW1STBY) Access: user read/write (80) Address: 0x21 functional page 7 6 5 4 3 R 1 0 X (81) X (81) SW1STBY W Default 2 0 0 0 X (81) X (81) X (81) = Unimplemented or reserved Notes 80. Read: Anytime Write: Anytime 81. Default value depends on OTP content. Table 129. SW1STBY field descriptions Field 4:0 SW1STBY 6.6.5.3.21 Description SW1 standby output voltage — Refer to Table 46 SW1 Sleep mode voltage control register (SW1OFF) This register is used to set the output voltage of the SW1 regulator in Sleep mode operation. Table 130. SW1 Sleep mode voltage control register (SW1OFF) Access: user read/write (82) Address: 0x22 functional page 7 6 5 4 3 R 1 0 X (83) X (83) SW1OFF W Default 2 0 0 0 X (83) X (83) X (83) = Unimplemented or Reserved Notes 82. Read: Anytime Write: Anytime 83. Default value depends on OTP content. Table 131. SW1OFF field descriptions Field 4:0 SW1STBY Description SW1 Sleep mode output voltage — Refer to Table 46 VR5100 NXP Semiconductors 75 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.22 SW1 Switching mode selector register (SW1MODE) This register is used to set the switching mode of the SW1 regulator. Table 132. SW1 Switching mode selector register (SW1MODE) Access: user read/write (84) Address: 0x23 functional page 7 6 R 4 3 2 SW1OMODE W Default 5 0 0 0 1 0 X (85) X (85) SW1MODE X (85) 0 X (85) = Unimplemented or reserved Notes 84. Read: Anytime Write: Anytime 85. Default value depends on OTP content. Table 133. SW1MODE field descriptions Field 5 SW1OMODE 3:0 SW1MODE 6.6.5.3.23 Description SW1 Off mode bit— This bit configures the mode entered by SW1 after a turn-off event 0 OFF mode entered after a turn-off event. 1 Sleep mode entered after a turn-off event. SW1 Switching mode selector — Refer to Table 41 SW1 configuration register (SW1CONF) This register is used to configure DVS, switching frequency, phase and current limit settings of the SW1 regulator. Table 134. SW1 configuration register (SW1CONF) Access: user read/write (86) Address: 0x24 functional page 7 R 5 SW1DVSSPEE D W Default 6 0 X (87) 4 3 SW1PHASE 0 2 1 SW1ILIM SW1FREQ 0 X (87) 0 X (87) 0 X (87) = Unimplemented or reserved Notes 86. Read: Anytime Write: Anytime 87. Default value depends on OTP content. VR5100 76 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 135. SW1CONF field descriptions Field Description 6 SW1DVSSPEED 5:4 SW1PHASE SW1 phase clock bit— SW1PHASE is used to set the phase clock for SW1. Refer to Table 43. 3:2 SW1FREQ SW1 switching frequency— SW1PHASE is used to set the desired switching frequency for SWA. Refer to Table 45. SW1 current limiter bit— This bit configures the current limit for SW1. 0 4 A (typ). 1 2.0 A (typ). 0 SW1ILIM 6.6.5.3.24 SW1 DVS speed bit— This bit configures the DVS stepping rates speed for SW1. Refer to the Table 42. 0 25 mV step each 2.0 s. 1 25 mV step each 4.0 s. SW1 configuration register (SW1CONF) This register is used to configure DVS, switching frequency, phase and current limit settings of the SW1 regulator. Table 136. SW1 configuration register (SW1CONF) Access: user read/write X (88) Address: 0x32 functional page 7 R 6 5 SW1DVSSPEED W Default 0 X (89) 4 3 SW1PHASE 0 2 1 SW1FREQ 0 X (89) 0 SW1ILIM X (89) 0 X (89) = Unimplemented or reserved Notes 88. Read: Anytime Write: Anytime 89. Default value depends on OTP content. Table 137. SW1CONF field descriptions Field 6 SW1DVSSPEED 5:4 SW1PHASE 3:2 SW1FREQ 0 SW1ILIM Description SW1 DVS speed bit— This bit configures the DVS stepping rates speed for SW1. Refer to the Table 42. 0 25 mV step each 2.0 s. 1 25 mV step each 4.0 s. SW1 phase clock bit— SW1PHASE is used to set the phase clock for SW1. Refer to Table 43. SW1 switching frequency— SW1PHASE is used to set the desired switching frequency for SW1. Refer to Table 45. SW1 current limiter bit— This bit configures the current limit for SW1. 0 4.0 A (typ). 1 2.0 A (typ). VR5100 NXP Semiconductors 77 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.25 SW2 voltage control register (SW2VOLT) This register is used to set the output voltage of the SW2 regulator in normal operation. Table 138. SW2 voltage control register (SW2VOLT) Access: user read/write (90) Address: 0x35 functional page 7 6 R 4 3 SW2_HI W Default 5 0 0 X (91) 2 1 0 X (91) X (91) SW2 X (91) X (91) X (91) = Unimplemented or reserved Notes 90. Read: Anytime Write: Anytime 91. Default value depends on OTP content. Table 139. SW2VOLT field descriptions Field 4:0 SW2 5 SW2_HI 6.6.5.3.26 Description SW2 output voltage — Refer to Table 48. SW2 output voltage range —This bit configures the range of SW2 Output voltage. Refer to Table 48. 0 Low output voltage settings 1 High output voltage settings SW2 standby voltage control register (SW2STBY) This register is used to set the output voltage of the SW2 regulator in standby operation. Table 140. SW2 standby voltage control register (SW2STBY) Access: user read/write (92) Address: 0x36 functional page 7 6 R 4 3 SW2_HI W Default 5 0 0 X (93) 2 1 0 X (93) X (93) SW2STBY X (93) X (93) X (93) = Unimplemented or reserved Notes 92. Read: Anytime Write: Anytime 93. Default value depends on OTP content. Table 141. SW2STBY field descriptions Field 4:0 SW2STBY 5 SW2_HI Description SW2 standby output voltage — Refer to Table 48. SW2 output voltage range —This bit configures the range of SW2 output voltage. Refer to Table 48. 0 Low output voltage settings 1 High output voltage settings VR5100 78 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.27 SW2 Sleep mode voltage control register (SW2OFF) This register is used to set the output voltage of the SW2 regulator in Sleep mode operation. Table 142. SW2 Sleep mode voltage control register (SW2OFF) Access: user read/write (94) Address: 0x37 functional page 7 6 R 4 3 SW2_HI W Default 5 0 0 X (95) 2 1 0 X (95) X (95) SW2OFF X (95) X (95) X (95) = Unimplemented or reserved Notes 94. Read: Anytime Write: Anytime 95. Default value depends on OTP content. Table 143. SW2OFF field descriptions Field 4:0 SW2STBY 5 SW2_HI 6.6.5.3.28 Description SW2 Sleep mode output voltage — Refer to Table 48. SW2 output voltage range —This bit configures the range of SW2 output voltage. Refer to Table 48. 0 Low output voltage settings 1 High output voltage settings SW2 Switching mode selector register (SW2MODE) This register is used to set the switching mode of the SW2 regulator. Table 144. SW2 Switching mode selector register (SW2MODE) Access: user read/write (96) Address: 0x38 functional page 7 6 R 4 3 2 SW2OMODE W Default 5 0 0 0 1 0 X (97) X (97) SW2MODE 0 X (97) X (97) = Unimplemented or reserved Notes 96. Read: Anytime Write: Anytime 97. Default value depends on OTP content. Table 145. SW2MODE field descriptions Field 5 SW2OMODE 3:0 SW2MODE Description SW2 Off mode bit— This bit configures the mode entered by SW2 after a turn-off event 0 OFF mode entered after a turn-off event. 1 Sleep mode entered after a turn-off event. SW2 Switching mode selector — Refer to Table 41. VR5100 NXP Semiconductors 79 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.29 SW2 configuration register (SW2CONF) This register is used to configure DVS, switching frequency, phase and current limit settings of the SW2 regulator. Table 146. SW2 configuration register (SW2CONF) Access: user read/write (98) Address: 0x39 functional page 7 R 6 5 SW2DVSSPEE D W Default 0 X (99) 4 3 SW2PHASE 0 2 1 0 SW2FREQ X (99) 0 SW2ILIM X (99) X (99) 0 = Unimplemented or reserved Notes 98. Read: Anytime Write: Anytime 99. Default value depends on OTP content. Table 147. SW2CONF field descriptions Field Description 6 SW2DVSSPEED 5:4 SW2PHASE 3:2 SW2FREQ 0 SW2ILIM 6.6.5.3.30 SW2 DVS Speed bit- This bit configures the DVS stepping rates speed for SW2. Refer to the Table 42. 0 25 mV step each 2.0 s. 1 25 mV step each 4.0 s. SW2 phase clock bit— SW2PHASE is used to set the phase clock for SW2. Refer to Table 43. SW2 switching frequency— SW2PHASE is used to set the desired switching frequency for SW2. Refer to Table 45. SW2 current limiter bit— This bit configures the current limit for SW2. 0 2.75 A (typ). 1 2.0 A (typ). SW3 voltage control register (SW3VOLT) This register is used to set the output voltage of the SW3 regulator in normal operation. Table 148. SW3 voltage control register (SW3VOLT) Access: user read/write (100) Address: 0x3C functional page 7 6 5 4 3 R 1 0 X (101) X (101) SW3 W Default 2 0 0 0 X (101) X (101) X (101) = Unimplemented or reserved Notes 100. Read: Anytime Write: Anytime 101. Default value depends on OTP content. VR5100 80 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 149. SW3VOLT field descriptions Field 4:0 SW3 6.6.5.3.31 Description SW3 output voltage — Refer to Table 50. SW3 standby voltage control register (SW3STBY) This register is used to set the output voltage of the SW3 regulator in standby operation. Table 150. SW3 standby voltage control register (SW3STBY) Access: user read/write (102) Address: 0x3D functional page 7 6 5 4 3 R 1 0 X (103) X (103) SW3STBY W Default 2 0 0 0 X (103) X (103) X (103) = Unimplemented or reserved Notes 102. Read: Anytime Write: Anytime 103. Default value depends on OTP content. Table 151. SW3STBY field descriptions Field 4:0 SW3STBY 6.6.5.3.32 Description SW3 standby output voltage — Refer to Table 50. SW3 Sleep mode voltage control register (SW3OFF) This register is used to set the output voltage of the SW3 regulator in sleep mode operation. Table 152. SW3 Sleep mode voltage control register (SW3OFF) Access: user read/write (104) Address: 0x3E functional page 7 6 5 4 3 R 1 0 X (105) X (105) SW3OFF W Default 2 0 0 0 X (105) X (105) X (105) = Unimplemented or reserved Notes 104. Read: Anytime Write: Anytime 105. Default value depends on OTP content. Table 153. SW3OFF field descriptions Field 4:0 SW3STBY Description SW3 Sleep mode output voltage — Refer to Refer to Table 50. VR5100 NXP Semiconductors 81 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.33 SW3 Switching mode selector register (SW3MODE) This register is used to set the switching mode of the SW3 regulator. Table 154. SW3 Switching mode selector register (SW3MODE) Access: user read/write (106) Address: 0x3F functional page 7 6 R 4 3 2 SW3OMODE W Default 5 0 0 0 1 0 X (107) X (107) SW3MODE X (107) 0 X (107) = Unimplemented or reserved Notes 106. Read: Anytime Write: Anytime 107. Default value depends on OTP content. Table 155. SW3MODE field descriptions Field 5 SW3OMODE 3:0 SW3MODE 6.6.5.3.34 Description SW3 Off mode bit— This bit configures the mode entered by SW3 after a turn-off event 0 OFF mode entered after a turn-off event. 1 Sleep mode entered after a turn-off event. SW3 Switching mode selector — Refer to Table 41. SW3 configuration register (SW3CONF) This register is used to configure DVS, switching frequency, phase and current limit settings of the SW3 regulator. Table 156. SW3 configuration register (SW3CONF) Access: user read/write (108) Address: 0x40 functional page 7 R 5 SW3DVSSPEE D W Default 6 0 X (109) 4 SW3PHASE 0 3 2 1 SW3FREQ 0 X (109) X (109) 0 SW3ILIM 0 X (109) = Unimplemented or reserved Notes 108. Read: Anytime Write: Anytime 109. Default value depends on OTP content. VR5100 82 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 157. SW3CONF field descriptions Field Description SW3 DVS speed bit— This bit configures the DVS stepping rates speed for SW3. Refer to the Table 42. 0 25 mV step each 2.0 s. 1 25 mV step each 4.0 s. 6 SW3DVSSPEED 5:4 SW3PHASE SW3 phase clock bit— SW3PHASE is used to set the phase clock for SW3. Refer to Table 43. 3:2 SW3FREQ SW3 switching frequency— SW3PHASE is used to set the desired switching frequency for SW3. Refer to Table 45. SW3 current limiter bit— This bit configures the current limit for SW3. 0 2.75 A (typ). 1 2.0 A (typ). 0 SW3ILIM 6.6.5.3.35 SWBST setup and control register (SWBSTCTL) This register is used to configure both the output voltage and switching modes of the SWBST regulator. Table 158. SWBST configuration register (SWBSTCTL) Access: user read/write (110) Address: 0x66 functional page 7 R 6 5 4 SWBST1STBYMODE W Default 0 X (111) X (111) 3 2 SWBST1MODE 0 X (111) X (111) 1 0 SWBST1VOLT X (111) X (111) = Unimplemented or reserved Notes 110. Read: Anytime Write: Anytime 111. Default value depends on OTP content. Table 159. SWBSTCTL Field Descriptions Field Description SWBST Switching mode in standby— SWBST1MODE is used to set the switching mode in Standby mode. 00 OFF 6:5 01 PFM SWBST1STBYMODE 10 Auto (112) 11 APS 3:2 SWBST1MODE SWBST Switching mode in normal operation— SWBST1MODE is used to set the switching mode on Normal operation. 00 OFF 01 PFM 10 Auto (112) 11 APS 1:0 SWBST1VOLT SWBST output voltage— SWBST1VOLT is used to set the output voltage for SWBST. 00 5.000 V (typ). 01 5.050 V (typ). 10 5.100 V (typ). 11 5.150 V (typ). Notes 112. In Auto mode, the controller automatically switches between PFM and APS modes depending on the load current. Regulator switches in Auto mode if enabled in the startup sequence. VR5100 NXP Semiconductors 83 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.36 REFOUT control register (REFOUTCTL) This register is used to control the REFOUT supply operation. Table 160. REFOUT control register (REFOUTCTL) Access: user read/write (113) Address: 0x6A functional page 7 6 5 4 3 2 1 0 R REFOUTEN W Default 0 0 0 0 0 0 0 0 = Unimplemented or reserved Notes 113. Read: Anytime Write: Anytime Table 161. REFOUT field descriptions Field 0 REFOUTEN Description REFOUT supply enable bit— REFOUTEN is used to enable or disable the REFOUT supply. 0 REFOUT supply disabled 1 REFOUT supply enabled VR5100 84 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.37 VSNVS control register (VSNVSCTL) This register is used to control the VSNVS supply operation. Table 162. VSNVS control register (VSNVSCTL) Access: user read/write (114) Address: 0x6B functional page 7 6 5 4 3 2 1 0 R VSNVSVOLT W Default 0 0 0 0 X (115) 0 X (115) X (115) = Unimplemented or Reserved Notes 114. Read: Anytime Write: Anytime 115. Default value depends on OTP content. Table 163. VSNVSCTL field descriptions Field Description VSNVS output voltage configuration— VSNVSVOLT is used to configure the VSNVS output voltage. Values below are typical voltages. 000 = RSVD 001 = RSVD 010 = RSVD 011 = RSVD 100 = RSVD 101 = RSVD 110 = 3.0 V (default) 111 = RSVD 2:0 VSNVSVOLT 6.6.5.3.38 LDO1 control register (LDO1CTL) This register is used to configure output voltage, normal and standby mode operation of the LDO1 regulator. Table 164. LDO1 control register (LDO1CTL) Access: user read/write (116) Address: 0x6C functional page R W Default 7 6 5 4 LDO1OMODE LDO1LPWR LDO1STBY LDO1EN 0 0 0 X (117) 3 2 1 0 X (117) X (117) LDO1 X (117) X (117) = Unimplemented or reserved Notes 116. Read: Anytime Write: Anytime 117. Default value depends on OTP content. VR5100 NXP Semiconductors 85 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 165. LDO1CTL field descriptions Field Description 7 LDO1OMODE LDO1 OFF mode bit—LDO1OMODE is used to configure LDO1 operating mode when a EN turn-off event occurs. 0 LDO1 in OFF mode if a EN turn off event occurs 1 LDO1 in Sleep mode if a EN turn off event occurs 6 LDO1LPWR LDO1 Low-power mode enable bit— When LDO1LPWR is set to 1, LDO1 can enter Low-power mode per the conditions in the Table 59. 0 Low-power mode disabled 1 Low-power mode enabled 5 LDO1STBY LDO1 standby enable bit— When LDO1STBY is set to 1, LDO1 is turned off during Standby mode. Refer to Table 59. 0 LDO1 is ON during Standby mode. 1 LDO1 is OFF during Standby mode. 4 LDO1EN 3:0 LDO1 LDO1 enable bit — LDO1EN is used to enable or disable the LDO1 regulator. 0 LDO1 disabled 1 LDO1 enabled LDO1 output voltage configuration— Refer to Table 55. 6.6.5.3.39 LDO2 control register (LDO2CTL) This register is used to configure output voltage, Normal and Standby mode operation of the LDO2 regulator. Table 166. LDO2 control register (LDO2CTL) Access: user read/write (118) Address: 0x6D functional page R W Default 7 6 5 4 LDO2OMODE LDO2LPWR LDO2STBY LDO2EN 0 0 0 X (119) 3 2 1 0 X (119) X (119) LDO2 X (119) X (119) = Unimplemented or reserved Notes 118. Read: Anytime Write: Anytime 119. Default value depends on OTP content. VR5100 86 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 167. LDO2CTL field descriptions Field Description 7 LDO2OMODE LDO2 OFF mode bit—LDO2OMODE is used to configure LDO2 operating mode when a EN turn-off event occurs. 0 LDO2 in OFF mode if a EN turn off event occurs 1 LDO2 in Sleep mode if a EN turn off event occurs 6 LDO2LPWR LDO2 low power mode enable bit— When LDO2LPWR is set to 1, LDO2 can enter Low-power mode per the conditions in the LDO Control table. 0 Low-power mode disabled 1 Low-power mode enabled 5 LDO2STBY LDO2 standby enable bit— When LDO2STBY is set to 1, LDO2 is turned off during Standby mode. Refer to Table 59. 0 LDO2 is ON during Standby mode. 1 LDO2 is OFF during Standby mode. 4 LDO2EN 3:0 LDO2 LDO2 enable bit — LDO2EN is used to enable or disable the LDO2 regulator. 0 LDO2 disabled 1 LDO2 enabled LDO2 output voltage configuration— Refer to Table 55. 6.6.5.3.40 VSD control register (VSDCTL) This register is used to configure output voltage, Normal and Standby mode operation of the VSD regulator. Table 168. VSD control register (VSDCTL) Access: user read/write (120) Address: 0x6E functional page R W Default 7 6 5 4 VSDOMODE VSDLPWR VSDSTBY VSDEN 0 0 0 X (121) 3 2 1 0 VSD 0 0 X (121) X (121) = Unimplemented or reserved Notes 120. Read: Anytime Write: Anytime 121. Default value depends on OTP content. VR5100 NXP Semiconductors 87 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 169. VSDCTL field descriptions Field Description 7 VSDOMODE VSD OFF mode bit— VSDOMODE is used to configure VSD operating mode when a EN turn-off event occurs. 0 VSD in OFF mode if a EN turn off event occurs 1 VSD in Sleep mode if a EN turn off event occurs 6 VSDLPWR VSD low-power mode enable bit— When VSDLPWR is set to 1, VSD can enter Low-power mode per the conditions in Table 58. 0 Low-power mode disabled 1 Low-power mode enabled 5 VSDSTBY VSD standby enable bit— When VSDSTBY is set to 1, VSD is turned off during Standby mode. Refer to Table 58. 0 VSD is ON during Standby mode. 1 VSD is OFF during Standby mode. VSD enable bit — VSDEN is used to enable or disable the VSD regulator. 0 VSD disabled 1 VSD enabled 4 VSDEN 1:0 VSD VSD output voltage configuration— Refer to Table 58. 6.6.5.3.41 V33 control register (V33CTL) This register is used to configure output voltage, Normal and Standby mode operation of the V33 regulator. Table 170. V33 control register (V33CTL) Access: user read/write (122) Address: 0x6F functional page R W 7 6 5 4 V33OMODE V33LPWR V33STBY V33EN 0 0 0 X (123) Default 3 2 1 0 V33 0 0 X (123) X (123) = Unimplemented or reserved Notes 122. Read: Anytime Write: Anytime 123. Default value depends on OTP content. Table 171. V33CTL field descriptions Field 7 V33OMODE Description V33 OFF mode bit— V33OMODE is used to configure V33 operating mode when a turn-off event (using pin EN) occurs. 0 V33 in OFF mode if a PWRON turn-off event (using pin EN) occurs 1 V33 in Sleep mode if a PWRON turn-off event (using pin EN) occurs 6 V33LPWR V33 Low-power mode enable bit— When V33LPWR is set to 1, V33 can enter Low-power mode per the conditions in the Table 57. 0 Low-power mode disabled 1 Low-power mode enabled 5 V33STBY V33 standby enable bit— When V33STBY is set to 1, V33 is turned off during Standby mode. Refer to Table 57. 0 V33 is ON during Standby mode. 1 V33 is OFF during Standby mode. 4 V33EN 1:0 V33 V33 enable bit — V33EN is used to enable or disable the V33 regulator. 0 V33 disabled 1 V33 enabled V33 output voltage configuration— Refer to Table 57. VR5100 88 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.42 LDO3 control register (LDO3CTL) This register is used to configure output voltage, Normal and Standby mode operation of the LDO3 regulator. Table 172. LDO3 control register (LDO3CTL) Access: user read/write (124) Address: 0x70 functional page R W 7 6 5 4 LDO3OMODE LDO3LPWR LDO3STBY LDO3EN 0 0 0 X (125) Default 3 2 1 0 X (125) X (125) LDO3 X (125) X (125) = Unimplemented or reserved Notes 124. Read: Anytime Write: Anytime 125. Default value depends on OTP content. Table 173. LDO3CTL field descriptions Field 7 LDO3OMODE Description LDO3 OFF mode bit—LDO3OMODE is used to configure LDO3 operating mode when a EN turn-off event occurs. 0 LDO3 in OFF mode if a EN turn off event occurs 1 LDO3 in Sleep mode if a EN turn off event occurs 6 LDO3LPWR LDO3 Low-power mode enable bit— When LDO3LPWR is set to 1, LDO3 can enter Low-power mode per the conditions in Table 59. 0 Low-power mode disabled 1 Low-power mode enabled 5 LDO3STBY LDO3 standby enable bit— When LDO3STBY is set to 1, LDO3 is turned off during Standby mode. Refer to Table 59. 0 LDO3 is ON during Standby mode. 1 LDO3 is OFF during Standby mode. 4 LDO3EN 3:0 LDO3 LDO3 enable bit — LDO3EN is used to enable or disable the LDO3 regulator. 0 LDO3 disabled 1 LDO3 enabled LDO3 output voltage configuration— Refer to Table 56. VR5100 NXP Semiconductors 89 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.5.3.43 LDO4 control register (LDO4CTL) This register is used to configure output voltage, Normal and Standby mode operation of the LDO4 regulator. Table 174. LDO4 control register (LDO4CTL) Access: user read/write (126) Address: 0x71 functional page R W 7 6 5 4 LDO4OMODE LDO4LPWR LDO4STBY LDO4EN 0 0 0 X (127) Default 3 2 1 0 X (127) X (127) LDO4 X (127) X (127) = Unimplemented or reserved Notes 126. Read: Anytime Write: Anytime 127. Default value depends on OTP content. Table 175. LDO4CTL field descriptions Field 7 LDO4OMODE Description LDO4 OFF mode bit—LDO4OMODE is used to configure LDO4 operating mode when a EN turn-off event occurs. 0 LDO4 in OFF mode if a EN turn off event occurs 1 LDO4 in Sleep mode if a EN turn off event occurs 6 LDO4LPWR LDO4 Low-power mode enable bit— When LDO4LPWR is set to 1, LDO4 can enter Low-power mode per the conditions in Table 59. 0 Low-power mode disabled 1 Low-power mode enabled 5 LDO4STBY LDO4 standby enable bit— When LDO4STBY is set to 1, LDO4 is turned off during Standby mode. Refer to Table 59. 0 LDO4 is ON during Standby mode. 1 LDO4 is OFF during Standby mode. 4 LDO4EN 3:0 LDO4 6.6.5.3.44 LDO4 Enable bit — LDO4EN is used to enable or disable the LDO4 regulator. 0 LDO4 disabled 1 LDO4 enabled LDO4 output voltage configuration— Refer to Table 56. Page selection register This register is used to access the extended register pages. Table 176. Page Selection Register Access: user read/write (128) Address: 0x7F functional page 7 6 5 4 3 2 R 0 0 0 PAGE W Default 1 0 0 0 0 0 0 = Unimplemented or reserved Notes 128. Read: Anytime Write: Anytime VR5100 90 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 177. Page register field descriptions Field Description 3:0 PAGE 6.6.6 Register page selection — The PAGE field is used to select one of the three available register pages. 0000 Functional page selected 0001 Extended page 1 selected 0010 Extended page 2 selected Register map The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page, the functional registers are the same, but the extended registers are different. To access registers in Extended page 1, one must first write 0x01 to the page register at address 0x7F, and to access registers Extended page 2, one must first write 0x02 to the page register at address 0x7F. To access the Functional page from one of the extended pages, no write to the page register is necessary. Registers missing in the sequence are reserved; reading from them returns a value 0x00, and writing to them has no effect. The contents of all registers are given in the tables defined in this chapter; each table is structure as follows: Name: Name of the bit Bit #: The bit location in the register (7-0) R/W: Read / Write access and control • R is read-only access • R/W is read and write access • RW1C is read and write access with write 1 to clear Reset: Reset signals are color coded based on the following legend. Bits reset by SC and VDIG_PORB Bits reset by EN or loaded default or OTP configuration Bits reset by DIGRESETB Bits reset by PORB Bits reset by VDIG_PORB Bits reset by POR or OFFB Default: The value after reset, as noted in the Default column of the memory map. • Fixed defaults are explicitly declared as 0 or 1. • “X” corresponds to Read/Write bits initialized at start-up, based on the OTP fuse settings or default if VDDOTP = 1.5 V. Bits are subsequently I2C modifiable, when their reset has been released. “X” may also refer to bits which may have other dependencies. For example, some bits may depend on the version of the IC, or a value from an analog block, for instance the sense bits for the interrupts. VR5100 NXP Semiconductors 91 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION 6.6.6.1 Register map Table 178. Functional page BITS[7:0] Add Register name R/W Default 00 DeviceID R 8'b0011_0000 03 04 05 06 07 08 09 0A 0E 0F 10 11 12 13 1A 1B SILICONREVID FABID INTSTAT0 INTMASK0 R RW1C R/W R INTSTAT1 RW1C INTSENSE1 INTSTAT3 INTMASK3 R/W R RW1C R/W INTSENSE3 R INTSTAT4 RW1C INTMASK4 R/W INTSENSE4 R COINCTL R/W PWRCTL 6 5 4 – – – – 0 0 1 1 3 2 R/W 1 0 DEVICE ID [3:0] 0 0 FULL_LAYER_REV[3:0] R INTSENSE0 INTMASK1 7 0 0 METAL_LAYER_REV[3:0] 8'b0001_0000 0 0 0 1 – – – – 0 0 0 0 0 0 0 0 0 0 0 – – THERM130I THERM125I THERM120I THERM110I LOWVINI ENI 0 0 0 0 0 0 0 0 – – THERM130M THERM125M THERM120M THERM110M LOWVINM ENM 0 0 1 1 1 1 1 1 VDDOTPS ICTESTS THERM130S THERM125S THERM120S THERM110S LOWVINS ENS 0 0 x x x x x x – – – SW3FAULTI SW2FAULTI – SW1FAULTI SW1FAULTI FAB[1:0] 0 FIN[1:0] 8'b0000_0000 8'b0000_0000 8'b0011_1111 8'b00xx_xxxx 8'b0000_0000 0 0 0 0 0 x 0 0 – – – SW3FAULTM SW2FAULTM – SW1FAULTM SW1FAULTM 0 1 1 1 1 1 1 1 – – – SW3FAULTS SW2FAULTS – SW1FAULTS SW1FAULTS 0 x x x x x x x OTP_ECCI OTP AUTO BLOW DONE – – – – – SWBSTFAULT I 0 0 0 0 0 0 0 0 OTP_ECCM OTP_AUTO_B LOW_DONEM – – – – – SWBSTFAULT M 1 1 0 0 0 1 0 1 OTP_ECCS OTP_AUTO_B LOW_DONES – – – – – SWBSTFAULT S 0 0 0 0 0 0 0 0 – – LDO4FAULTI LDO3FAULTI V33FAULTI VSDFAULTI LDO2FAULTI LDO1FAULTI 0 0 0 0 0 0 0 0 – – LDO4 FAULTM LDO3 FAULTM V33 FAULTM VSDFAULTM 0 0 1 1 1 1 1 1 – – LDO4 FAULTS LDO3 FAULTS V33 FAULTS VSD FAULTS LDO2 FAULTS LDO1 FAULTS 0 0 x x x x x x – – – – COINCHEN 0 0 0 0 0 REGSCPEN STBYINV 0 0 8'b0111_1111 8'b0xxx_xxxx 8'b0000_0000 8'b1100_0101 8'b0000_000x 8'b0000_0000 8'b0011_1111 8'b00xx_xxxx LDO2FAULTM LDO1FAULTM VCOIN[2:0] 8'b0000_0000 STBYDLY[1:0] 0 ENBDBNC[1:0] 0 0 ENRSTEN RESTARTEN 0 0 8'b0001_0000 0 1 0 0 VR5100 92 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 178. Functional page (continued) BITS[7:0] Add Register name R/W Default 1C MEMA R/W 8'b0000_0000 7 1E 1F 20 21 22 23 24 32 35 36 37 38 39 3C 3D 3E MEMB MEMC MEMD SW1VOLT SW1STBY SW1OFF R/W R/W R/W R/W SW2OFF R/W R/W R/W R/W SW2MODE R/W SW2CONF R/W SW3VOLT SW3STBY SW3OFF 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – – – – – – 8'b0000_0000 0 0 0 0 0 0 0 0 8'b0000_0000 MEMD[7:0] R/W SW1CONF SW2STBY 3 MEMC[7:0] R/W R/W SW2VOLT 4 MEMB[7:0] R/W SW1MODE SW1CONF 5 MEMA[7:0] 0 1D 6 R/W R/W R/W 8'b0000_0000 0 0 0 0 – – – 0 0 0 – – – 0 0 0 – – – 0 0 0 – SW1[4:0] 8'b000x_xxxx – – – SW1STBY[4:0] 8'b000x_xxxx – – – SW1OFF[4:0] 8'b000x_xxxx – – SW1OMODE – 0 0 0 x – SW1DVSSPE ED x -1 – SW1DVSSPE ED – – – – SW1MODE[3:0] 8'b0000_xxxx 8'bxx00_0100 8'bx100_0100 SW1PHASE[1:0] 0 0 SW1PHASE[1:0] SW1FREQ[1:0] – – SW1FREQ[1:0]- x – 0 0 – – – – – SW2_HI – 0 x x x – – – – – SW2_HI 0 x x x – – – – – SW2_HI 0 x x x – – – SW2OMODE – 0 0 1 0 – SW2DVS SPEED x – 0 1 – – – – – – – SW1ILIM 0 0 – SW1ILIM 0 0 SW2[2:0] 8'b0xxx_0110 – – –- SW2STBY[2:0] 8'b0xxx_xxxx – – –- SW2STBY[2:0] 8'b0xxx_xxxx – – –- SW2MODE[3:0] 8'b0010_1000 8'bxx01_0100 1 SW2PHASE[1:0] 0 SW2FREQ[1:0] – – 0 0 – SW2ILIM 0 0 – – – – – – SW3[3:0] 8'b0xxx_1100 0 x x x – – – – 0 x x x – – – – 0 x x x – – SW3STBY[3:0] 8'b0xxx_1100 – – SW3OFF[3:0] 8'b0xxx_1100 – – VR5100 NXP Semiconductors 93 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 178. Functional page (continued) BITS[7:0] Add Register name R/W Default 3F SW3MODE R/W 8'b0011_1000 40 SW3CONF R/W 7 6 5 4 – – SW3OMODE – 0 0 1 1 – SW3DVS SPEED x – 8'bxx10_0100 – 66 69 6A 6B 6C 6D 6E 6F 70 71 7F SWBSTCTL LDOGCTL REFOUTCTL VSNVSCTL LDO1CTL LDO2CTL VSDCTL V33CTL LDO3CTL LDO4CTL Page Register R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 3 SWBST1STBYMODE[1:0] 1 0 SW3MODE[3:0] 1 SW3PHASE[1:0] 1 2 0 SW3FREQ[1:0] 0 – – SWBST1MODE[1:0] – – 8'b0xx0_10xx 0 0 – SW3ILIM 0 0 SWBST1VOLT[1:0] 0 – – 0 – – – – – – – – – – – STBY_LP_B 0 x x x x x x x – – – REFOUTEN – – – – 0 0 0 – 0 0 0 0 – – – – – 0 0 0 0 0 LDO1OMODE LDO1LPWR LDO1STBY LDO1EN 0 0 0 – LDO2OMODE LDO2LPWR LDO2STBY LDO2EN 0 0 0 – – – VSDOMODE VSDLPWR VSDSTBY VSDEN – – 0 0 0 – x x V33OMODE V33LPWR V33STBY V33EN – – 0 0 0 – x x LDO3OMODE LDO3LPWR LDO3STBY LDO3EN 0 0 0 – – – LDO4OMODE LDO4LPWR LDO4STBY LDO4EN 0 0 0 – – – – 0 0 0 8'b0xxx_xxx0 8'b000x_0000 VSNVSVOLT[2:0] 8'b0000_0110 1 1 0 – –- – –- LDO1[3:0] 8'b010x_1110 – – LDO2[3:0] 8'b000x_1000 VSD[1:0] 8'b000x_xx10 – – V33[1:0] 8'b000x_xx10 – – – – – – 0 LDO3[3:0] 8'b010x_0000 LDO4[3:0] 8'b000x_xxxx – – PAGE[4:0] 8'b0000_0000 0 0 0 0 3 2 1 0 Table 179. Extended page 1 Address 80 84 8A Register Name OTP FUSE READ EN OTP LOAD MASK OTP ECC SE1 TYPE R/W R/W R Default BITS[7:0] 7 6 5 4 – – – – – – – OTP FUSE READ EN 0 0 0 x x x x x START RL PWBRTN FORCE PWRCTL RL PWRCTL RL OTP RL OTP ECC RL OTP FUSE RL TRIM FUSE 0 0 0 0 0 0 0 0 – – – ECC5_SE ECC4_SE ECC3_SE ECC2_SE ECC1_SE x x x 0 0 0 0 0 8'b000x_xxx0 8'b0000_0000 8'bxxx0_0000 VR5100 94 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 179. Extended page 1 (continued) Address Register Name TYPE Default 8B RSVD R 8'bxxx0_0000 8C OTP ECC DE1 R 8'bxxx0_0000 8D RSVD R 8'bxxx0_0000 A0 OTP SW1 VOLT R/W 8'b00xx_xxxx BITS[7:0] 7 6 5 4 3 2 1 0 – – – ECC5_DE ECC4_DE ECC3_DE ECC2_DE ECC1_DE x x x 0 0 0 0 0 x x OTP_SW1_VOLT[4:0] x x x x x x OTP_SW1_SEQ[2:0] A1 OTP SW1 SEQ A2 OTP SW1 CONFIG R/W RSVD R/W AA AC – – – – OTP_SW1_CONFIG[1:0] x x x x x x x x x x x x x x x x 8'b00xx_xxxx OTP_SW2_HI OTP SW2 VOLT R/W OTP SW2 SEQ R/W OTP_SW2_VOLT[2:0] 8'b0xxx_xxxx x x x x x x – AD AE B0 OTP SW2 CONFIG R/W R/W OTP SW3 SEQ R/W x x x x x x – – – – – – 0 0 0 x x BC BD C0 C4 C8 C9 OTP SWBST VOLT R/W OTP SWBST SEQ R/W OTP VSNVS VOLT R/W RSVD R/W OTP_SW2_FREQ[1:0] 0 x x OTP_SW3_VOLT[3:0] x x x x x x x OTP_SW3_SEQ[2:0] 8'b0xxx_xxxx x x x x x – R/W x 8'b0xxx_xxxx x OTP SW3 CONFIG x 8'b0000_00xx x B2 x OTP_SW2_SEQ[2:0] – B1 x 8'b0xxx_xxxx – OTP SW3 VOLT OTP_SW1_FREQ[1:0] 8'b000x_xxXx x x OTP_SW3_FREQ[1:0] 8'b0xxx_xxxx x x x x x x – – – – – – 0 0 0 0 0 0 – – – – – x x OTP_SWBST_VOLT[1:0] 8'b0000_00xx 0 0 OTP_SWBST_SEQ[2:0] 8'b0000_xxxx 0 0 0 0 0 – – – – – 0 0 0 0 0 0 0 0 0 0 0 – – – – – – – – 0 0 0 x x x x x OTP_VSNVS_VOLT[2:0] 8'b0000_0xxx 8'b000x_x0xx OTP_LDO1_VOLT[3:0] OTP LDO1 VOLT R/W OTP LDO1 SEQ R/W 8'b0000_xxxx 0 0 0 0 x x x x OTP_LDO1_SEQ[3:0] 8'b0000_xxxx 0 0 0 0 x x x x VR5100 NXP Semiconductors 95 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 179. Extended page 1 (continued) Address Register Name TYPE Default CC OTP LDO2 VOLT R/W 8'b0000_xxxx OTP LDO2 SEQ R/W OTP VSD VOLT R/W OTP VSD SEQ R/W CD D0 BITS[7:0] 7 6 5 4 3 0 0 0 0 x 2 1 0 OTP_LDO2_VOLT[3:0] x x x OTP_LDO2_SEQ[3:0] 8'b0000_xxxx 0 0 0 0 x x x – x OTP_VSD_VOLT[2:0] 8'b0000_xxxx 0 0 0 0 x x x x OTP_VSD_SEQ[2:0] D1 8'b0000_xxxx 0 D4 0 0 0 0 x x x OTP_V33_VOLT[2:0] OTP V33 VOLT R/W OTP V33 SEQ R/W 8'b0000_xxxx 0 0 0 0 x x 0 0 0 0 x x x x OTP_V33_SEQ[3:0] D5 D8 D9 DC DD E0 E4 E5 E6 E7 E8 F0 F1 R/W OTP LDO3 SEQ R/W OTP LDO4 VOLT R/W OTP LDO4 SEQ R/W OTP PU CONFIG1 R/W 0 0 0 x x x x OTP_LDO3_SEQ[3:0] 8'b0000_xxxx 0 0 0 0 x x x x OTP_LDO4_VOLT[3:0] 8'b0000_xxxx 0 0 0 0 x x x x OTP_LDO4_SEQ[3:0] 8'b0000_xxxx 0 0 0 0 x RSVD R/W R/W R OTP PWRGD EN R/W/M RSVD R/W R/W x x OTP_SWDVS _CLK OTP_EN_CFG R/W RSVD x 8'b0000_xxxx 0 OTP FUSE POR1 RSVD x OTP_LDO3_VOLT[3:0] OTP LDO3 VOLT RSVD 8'b0000_xxxx 8'b000x_xxxx x OTP_SEQ_CL K_SPEED x x x x x x x x TBB_POR – – – – – – – 0 0 0 0 0 0 x 0 – – – – – – – 0 0 0 0 0 0 0 – – – – – – – 0 0 0 0 0 0 0 8'b0000_00x0 8'b0000_00x0 8'b0000_00x0 – – – – – – – 0 0 0 0 0 0 0 – – – – – – – OTP_PG_EN 0 0 0 0 0 0 x 0 – – – 0 0 0 x x x x x – – – 0 0 0 x x x x x 8'b0000_00x0 8'b0000_000x 8'b000x_xxxx 8'b000x_xxxx VR5100 96 NXP Semiconductors FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 179. Extended page 1 (continued) Address F7 FF Register Name OTP BLOWN OTP I2C ADDR TYPE R/W R/W Default BITS[7:0] 7 6 5 4 3 2 1 0 – – – – – – – OTP_BLOWN 0 0 0 0 0 0 0 x 8'b0000_000x 8'b0000_1xxx USE_DEFAUL T_ADD I2C_SLV ADDR[3] – 0 0 0 0 OTP_I2C_SLV ADDR[2:0] 1 x 2 x x 1 0 Table 180. Extended page 2 Address 81 83 84 85 Register Name SW1 PWRSTG SW1 PWRSTG SW2 PWRSTG SW3 PWRSTG TYPE R/W R R R Default 8'b1111_1111 8'b1111_1111 8'b1111_1111 8'b1111_1111 88 PWRCTRL OTP CTRL 8D I2C WRITE ADDRESS TRAP R/W 8'b0000_0000 8E I2C TRAP PAGE R/W 8'b0000_0000 R 8'b0000_0001 8F I2C TRAP CNTR R/W 8'b0000_0000 90 IO DRV R/W 8'b00xx_xxxx D0 OTP AUTO ECC0 R/W 8'b0000_0000 D8 Reserved – 8'b0000_0000 D9 Reserved – 8'b0000_0000 E1 E2 E3 E4 OTP ECC CTRL1 R/W OTP ECC CTRL2 R/W OTP ECC CTRL3 R/W OTP ECC CTRL4 R/W 8'b0000_0000 8'b0000_0000 8'b0000_0000 8'b0000_0000 BITS[7:0] 7 6 5 4 3 RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 SW1_PWRSTG[2:0] 1 RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 1 1 SW1_PWRSTG[2:0] RSVD 1 1 1 SW2_PWRSTG[2:0] RSVD 1 1 1 SW3_PWRSTG[2:0] RSVD RSVD RSVD RSVD RSVD RSVD 1 1 1 1 1 1 1 1 – – – – – – OTP_PWRGD _EN PG_SHDWN_ EN 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 I2C_WRITE_ADDRESS_TRAP[7:0] 0 0 0 LET_IT_ ROLL RSVD RSVD 0 0 0 0 0 0 0 I2C_TRAP_PAGE[4:0] I2C_WRITE_ADDRESS_COUNTER[7:0] 0 0 0 0 0 0 x x x x x x AUTO_ECC _BANK5 AUTO_ECC _BANK4 AUTO_ECC_B ANK3 AUTO_ECC _BANK2 AUTO_ECC_B ANK1 0 0 0 0 0 0 0 0 SDA_DRV[1:0] 0 RSVD – – – 0 0 0 INTB_DRV[1:0] PORBMCU_DRV[1:0] AUTO_BLOW_TIME[7:0] 0 0 0 START RELOAD EN_RW 0 0 0 RSVD ECC1_CALC_ CIN 0 0 RSVD ECC2_CALC_ CIN 0 0 RSVD ECC3_CALC_ CIN 0 0 RSVD ECC4_CALC_ CIN 0 0 0 0 AUTO_FUSE_ AUTO_FUSE_ AUTO_FUSE_ AUTO_FUSE_ AUTO_FUSE_ BLOW5 BLOW4 BLOW3 BLOW2 BLOW1 0 0 0 0 0 0 0 0 0 0 0 0 0 ECC1_CIN_TBB[5:0] 0 0 0 0 ECC2_CIN_TBB[5:0] 0 0 0 0 ECC3_CIN_TBB[5:0] 0 0 0 0 ECC4_CIN_TBB[5:0] 0 0 0 0 VR5100 NXP Semiconductors 97 FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION CONTROL INTERFACE I2C BLOCK DESCRIPTION Table 180. Extended page 2 (continued) Address E5 F1 F2 F3 F4 F5 Register Name OTP ECC CTRL5 OTP FUSE CTRL1 OTP FUSE CTRL2 OTP FUSE CTRL3 OTP FUSE CTRL4 OTP FUSE CTRL5 TYPE R/W R/W R/W R/W R/W R/W Default 8'b0000_0000 8'b0000_0000 8'b0000_0000 8'b0000_0000 8'b0000_0000 8'b0000_0000 BITS[7:0] 7 6 RSVD ECC5_CALC_ CIN 0 0 5 4 3 2 1 0 0 0 ECC5_CIN_TBB[5:0] 0 0 – – – – 0 0 0 0 – – – – 0 0 0 0 – – – – 0 0 0 0 – – – – 0 0 0 0 – – – – 0 0 0 0 0 0 ANTIFUSE1_E ANTIFUSE1_L ANTIFUSE1_R N OAD W 0 0 0 ANTIFUSE2_E ANTIFUSE2_L ANTIFUSE2_R N OAD W 0 0 0 ANTIFUSE3_E ANTIFUSE3_L ANTIFUSE3_R N OAD W 0 0 0 ANTIFUSE4_E ANTIFUSE4_L ANTIFUSE4_R N OAD W 0 0 0 ANTIFUSE5_E ANTIFUSE5_L ANTIFUSE5_R N OAD W 0 0 0 BYPASS1 0 BYPASS2 0 BYPASS3 0 BYPASS4 0 BYPASS5 0 VR5100 98 NXP Semiconductors TYPICAL APPLICATIONS APPLICATION DIAGRAM 7 Typical applications 7.1 Application diagram Figure 37. Typical application schematic VR5100 NXP Semiconductors 99 BILL OF MATERIALS APPLICATION DIAGRAM 8 Bill of materials The following table provides a complete list of the recommended components on a full featured system using the VR5100 device for -40 °C to 85 °C applications. Components are provided with an example part number; equivalent components may be used. Table 181. Bill of material for -40 °C to 85 °C applications Value Qty Description Part# Manufacturer Component/Pin PMIC N/A 1 Power management IC VR5100 NXP IC IND PWR 1.5 uH at 1.0 MHz 7.1 A XAL4020-152ME 20% 2016 Coilcraft SW1 inductor IND PWR 1.5 uH at 1.0 MHz 2.6 A LPS4012-152MR 20% 2016 Coilcraft SW2 and SW3 inductors Buck regulators 1.5 μH 4 4.7 μF 4 CAP CER 4.7 μF 10 V 20% X5R 0402 GRM155R61A475MEAA Murata SW1, SW2, SW3 input capacitors 0.1 μF 4 CAP CER 0.1 μF 10 V 20% X5R 0201 GRM033R61A104ME84 Murata SW1, SW2, SW3 input capacitors (optional) 22 μF 8 CAP CER 22 μF 10 V 20% X5R 0603 GRM188R61A226ME15 Murata SW1, SW2, SW3 output capacitors IND PWR 2.2 μH at 1.0 MHz 2.4 A DFE201610E-2R2M 20% 2016 TOKO INC. SWBST inductor IND PWR 2.2 μH at 1.0 MHz 1.85 A BRL3225T2R2M 20% 1210 Taiyo Yuden Alternate for low power applications Boost regulator 2.2 μH 1 10 μF 1 CAP CER 10 μF 10 V 20% X5R 0402 GRM155R61A106ME11 Murata SWBST input capacitor N/A 1 DIODE SCH PWR RECT 1.0 A 20 V SMT MBR120LSFT3G ON Semi SWBST diode 22 μF 2 CAP CER 22 μF 10 V 20% X5R 0603 GRM188R61A226ME15D Murata SWBST output capacitors Linear regulators 1.0 μF 3 CAP CER 1.0 μF 10 V 20% X5R 0201 GRM033R61A105ME44 Murata LDO1, LDO2, LDO3 and LDO4 input capacitors 2.2 μF 3 CAP CER 2.2 μF 10 V 20% X5R 0201 GRM033R61A225ME47 Murata LDO1, LDO3, VSD output capacitors 10 μF 1 CAP CER 10 μF 10 V 20% X5R 0402 GRM155R61A106ME11 Murata V33 and VSD input capacitor 4.7 μF 3 CAP CER 4.7 μF 10 V 20% X5R 0402 GRM155R61A475MEAA Murata LDO2, LDO4, V33 output capacitors 1.0 μF 4 CAP CER 1.0 μF 10 V 20% X5R 0201 GRM033R61A105ME44 Murata VCC, VBG, REFOUT, VINREFOUT capacitors 0.22 μF 2 CAP CER 0.22 μF 10 V 20% X5R 0201 GRM033R61A224ME90 Murata VDIG and coin cell output capacitors 0.47 μF 1 CAP CER 0.47 μF 10 V 20% X5R 0201 GRM033R61A474ME90 Murata VSNVS output capacitor 2.2 μF 1 CAP CER 2.2 μF 10 V 20% X5R 0201 GRM033R61A225ME47 Murata VIN input capacitor when not using Front-end LDO Miscellaneous VR5100 100 NXP Semiconductors BILL OF MATERIALS APPLICATION DIAGRAM Table 181. Bill of material for -40 °C to 85 °C applications (continued) Value Qty Description Part# Manufacturer Component/Pin 0.1 μF 5 CAP CER 0.1 μF 10 V 10% X5R 0201 GRM033R61A104KE84 Murata VCCI2C, VIN input capacitors 100 k 2 RES MF 100 k 1/16 W 1% 0402 RC0402FR-07100KL YAGEO AMERICA Pull-up resistors 4.7 k 2 RES MF 4.70 k 1/20 W 1% 0201 RC0201FR-074K7L YAGEO AMERICA I²C Pull-up resistors The following table provides a complete list of the recommended components on a full featured system using the VR5100 Device for -40 °C to 105 °C applications. Components are provided with an example part number, equivalent components may be used. Table 182. Bill of material for -40 °C to 105 °C applications Value Qty Description Part# Manufacturer Component/Pin PMIC N/A 1 Power management IC VR5100 NXP IC IND PWR 1.5 μH at 1.0 MHz 2.9 A DFE201610E-1R5M 20% 2016 TOKO INC. SW1, SW2, SW3 inductors IND PWR 1.5 μH at 1.0 MHz 2.2 A BRL3225T1R5M 20% 1210 Taiyo Yuden Alternate for low-power applications Buck regulators 1.5 μH 4 4.7 μF 4 CAP CER 4.7 μF 10 V 10% X7S 0603 GRM188C71A475KE11 Murata SW1, SW2, SW3 input capacitors 0.1 μF 4 CAP CER 0.1 μF 10 V 10% X7S 0201 GRM033C71A104KE14 Murata SW1, SW2, SW3 input capacitors (optional) 22 μF 8 CAP CER 22 μF 10 V 20% X7T 0805 GRM21BD71A226ME44 Murata SW1, SW2, SW3 output capacitors IND PWR 2.2 μH at 1.0 MHz 2.4 A DFE201610E-2R2M 20% 2016 TOKO INC. SWBST inductor IND PWR 2.2 μH at 1.0 MHz 1.85 A BRL3225T2R2M 20% 1210 Taiyo Yuden Alternate for low-power applications Boost regulator 2.2 μH 1 10 μF 1 CAP CER 10 μF 10 V 20% X7T 0603 GRM188D71A106MA73 Murata SWBST input capacitor N/A 1 DIODE SCH PWR RECT 1.0 A 20 V SMT MBR120LSFT3G ON Semi SWBST diode 22 μF 2 CAP CER 22 μF 10 V 20% X5R 0603 GRM188R61A226ME15D Murata SWBST output capacitors Linear regulators 1.0 μF 3 CAP CER 1.0 μF 10 V 10% X7S 0402 GRM155C71A105KE11 Murata LDO1, LDO2, LDO3 and LDO4 input capacitors 2.2 μF 3 CAP CER 2.2 μF 10 V 10% X7S 0402 GRM155C71A225KE11 Murata LDO1, LDO3, VSD output capacitors 10 μF 1 CAP CER 10 μF 10 V 20% X7T 0603 GRM188D71A106MA73 Murata V33 and VSD input capacitor 4.7 μF 3 CAP CER 4.7 μF 10 V 10% X7S 0603 GRM188C71A475KE11 Murata LDO2, LDO4, V33 output capacitors 1.0 μF 4 CAP CER 1.0 μF 10 V 10% X7R 0402 GRM155C71A105KE11 Murata VCC, VDIG, REFOUT, VINREFOUT capacitors 0.22 μF 2 CAP CER 0.22 μF 10 V 10% X7R 0402 GRM155R71A224KE01 Murata VBG and coin cell output capacitors Miscellaneous VR5100 NXP Semiconductors 101 BILL OF MATERIALS APPLICATION DIAGRAM Table 182. Bill of material for -40 °C to 105 °C applications (continued) Value Qty Description Part# Manufacturer Component/Pin 0.47 μF 1 CAP CER 0.47 μF 10 V 20% X5R 0201 GRM155R71A474KE01 Murata VSNVS output capacitor 2.2 μF 1 CAP CER 2.2 μF 10 V 10% X7S 0402 GRM155C71A225KE11 Murata VIN input capacitor 0.1 μF 5 CAP CER 0.1 μF 10 V 10% X7S 0201 GRM033C71A104KE14 Murata VCCI2C, VHALF, VIN input capacitors 100 k 2 RES MF 100 k 1/16 W 1% 0402 RC0402FR-07100KL YAGEO AMERICA Pull-up resistors 4.7 k 2 RES MF 4.70 K 1/20 W 1% 0201 RC0201FR-074K7L YAGEO AMERICA I²C pull-up resistors VR5100 102 NXP Semiconductors THERMAL INFORMATION RATING DATA 9 Thermal information 9.1 Rating data The thermal rating data of the packages has been simulated with the results listed in Thermal ratings. Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol RJA or JA (Theta-JA) strictly for junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RJMA or JMA (Theta-JMA) is used for both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated the generic name, Theta-JA, continues to be commonly used. The JEDEC standards can be consulted at http://www.jedec.org. 9.2 Estimation of junction temperature An estimation of the chip junction temperature TJ can be obtained from the equation: TJ = TA + (RJA x PD) with: TA = Ambient temperature for the package in °C RJA = Junction to ambient thermal resistance in °C/W PD = Power dissipation in the package in W The junction to ambient thermal resistance is an industry standard value providing a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board RJA and the value obtained on a four layer board RJMA. Actual application PCBs show a performance close to the simulated four layer board value, although this may be somewhat degraded in case of significant power dissipated by other components placed close to the device. At a known board temperature, the junction temperature TJ is estimated using the following equation TJ = TB + (RJB x PD) with TB = Board temperature at the package perimeter in °C RJB = Junction to board thermal resistance in °C/W PD = Power dissipation in the package in W When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. VR5100 NXP Semiconductors 103 PACKAGING PACKAGING DIMENSIONS 10 Packaging 10.1 Packaging dimensions Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and perform a keyword search for the drawing's document number. See the Thermal characteristics section for specific thermal characteristics for each package. Table 183. Package drawing information Package Suffix 48-pin QFN 7X7 mm - 0.5 mm pitch EP Package outline drawing number 98ASA00719D VR5100 104 NXP Semiconductors PACKAGING PACKAGING DIMENSIONS VR5100 NXP Semiconductors 105 PACKAGING PACKAGING DIMENSIONS VR5100 106 NXP Semiconductors REVISION HISTORY PACKAGING DIMENSIONS 11 Revision history Revision Date 1.0 12/2015 • Initial release 2.0 2/2016 • Relabeled REFDDR as REFOUT • Updated form and style 3.0 2/2016 • VLDOIN34 max. voltage updated to 3.6 V 4.0 2/2017 5.0 12/2018 Description of changes • • • • • • • • • • Replaced Figure 1 Removed PC34VR5100A2EP from Table 1 Corrected Figure 4 Removed A2 column from Table 37 Updated Figure 25 Corrected title for Figure 26 Changed PC parts to MC in Table 1 Updated Table 73 (changed default values to 1 for bits [5:0]) Added MC34VR5100A2EP to Table 1 Added A2 and its values in Table 37 VR5100 NXP Semiconductors 107 Ho w to Re ac h Us : Information in this document is provided solely to enable system and software implementers to use NXP products. Ho me Pag e : NXP.com There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits We b S uppo rt: http://www.nxp.com/support products herein. based on the information in this document. NXP reserves the right to make changes without further notice to any NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.nxp.com/terms-of-use.html. NXP, the NXP logo, Freescale, the Freescale logo, and SMARTMOS are trademarks of NXP Semiconductors N.V. All other product or service names are the property of their respective owners. All rights reserved. © NXP Semiconductors N.V. 2017 Docume nt Numbe r: VR5100 Re v. 5.0 12/2018
PC34VR5100A1EP 价格&库存

很抱歉,暂时无法提供与“PC34VR5100A1EP”相匹配的价格&库存,您可以联系我们找货

免费人工找货