0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PRFX1K80HR5

PRFX1K80HR5

  • 厂商:

    NXP(恩智浦)

  • 封装:

    SOT979A

  • 描述:

    RF FET 65V 1800W

  • 数据手册
  • 价格&库存
PRFX1K80HR5 数据手册
NXP Semiconductors Technical Data Document Number: MRFX1K80H Rev. 0, 08/2017 RF Power LDMOS Transistor High Ruggedness N--Channel Enhancement--Mode Lateral MOSFET MRFX1K80H This high ruggedness device is designed for use in high VSWR industrial, medical, broadcast, aerospace and mobile radio applications. Its unmatched input and output design supports frequency use from 1.8 to 400 MHz. Typical Performance Frequency (MHz) Signal Type VDD (V) Pout (W) Gps (dB) KD (%) 27 (1) CW 65 1800 CW 27.8 75.6 64 Pulse (100 Psec, 10% Duty Cycle) 65 1800 Peak 27.1 69.5 81.36 CW 63 1700 CW 24.5 76.3 87.5–108 (2,3) CW 60 1600 CW 23.6 82.5 123/128 Pulse (100 Psec, 10% Duty Cycle) 65 1800 Peak 25.9 69.0 144 CW 65 1800 CW 23.5 78.0 Pulse (100 Psec, 20% Duty Cycle) 65 1800 Peak 25.1 75.1 Pulse (12 Psec, 10% Duty Cycle) 63 1700 Peak 22.8 64.9 230 (4) 325 1.8–400 MHz, 1800 W CW, 65 V WIDEBAND RF POWER LDMOS TRANSISTOR NI--1230H--4S Load Mismatch/Ruggedness Frequency (MHz) 230 (4) Signal Type VSWR Pulse (100 Psec, 20% Duty Cycle) > 65:1 at all Phase Angles Pin (W) Test Voltage 14 W Peak (3 dB Overdrive) 65 Result No Device Degradation 1. Data from 27 MHz narrowband reference circuit (page 5). 2. Data from 87.5–108 MHz broadband reference circuit (page 10). 3. The values shown are the center band performance numbers across the indicated frequency range. 4. Data from 230 MHz narrowband production test fixture (page 16). Gate A 3 1 Drain A Gate B 4 2 Drain B (Top View) Note: The backside of the package is the source terminal for the transistor. Features Figure 1. Pin Connections x Unmatched input and output allowing wide frequency range utilization x Device can be used single--ended or in a push--pull configuration x Qualified up to a maximum of 65 VDD operation x Characterized from 30 to 65 V for extended power range x High breakdown voltage for enhanced reliability x Suitable for linear application with appropriate biasing x Integrated ESD protection with greater negative gate--source voltage range for improved Class C operation x Lower thermal resistance option in over--molded plastic package: MRFX1K80N x Included in NXP product longevity program with assured supply for a minimum of 15 years after launch Typical Applications x Radio and VHF TV broadcast x Industrial, scientific, medical (ISM) – Laser generation x Aerospace – Plasma generation – VHF omnidirectional range (VOR) – Particle accelerators – HF communications – MRI, RF ablation and skin treatment – Weather radar – Industrial heating, welding and drying systems ¤ 2017 NXP B.V. RF Device Data NXP Semiconductors MRFX1K80H 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +179 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Storage Temperature Range Tstg – 65 to +150 qC Case Operating Temperature Range TC –40 to +150 qC Operating Junction Temperature Range (1,2) TJ –40 to +225 qC PD 2247 11.2 W W/qC Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 99qC, 1800 W CW, 65 Vdc, IDQ(A+B) = 150 mA, 98 MHz RTJC 0.09 qC/W Thermal Impedance, Junction to Case Pulse: Case Temperature 65qC, 1800 W Peak, 100 Psec Pulse Width, 20% Duty Cycle, 65 Vdc, IDQ(A+B) = 100 mA, 230 MHz ZTJC 0.017 qC/W Total Device Dissipation @ TC = 25qC Derate above 25qC Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Charge Device Model (per JESD22--C101) C3, passes 2000 V Table 4. Electrical Characteristics (TA = 25qC unless otherwise noted) Characteristic Off Characteristics Symbol Min Typ Max Unit IGSS — — 1 PAdc 179 193 — Vdc (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 100 mAdc) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 PAdc Zero Gate Voltage Drain Leakage Current (VDS = 179 Vdc, VGS = 0 Vdc) IDSS — — 100 mAdc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 740 PAdc) VGS(th) 2.1 2.5 2.9 Vdc Gate Quiescent Voltage (VDD = 65 Vdc, ID(A+B) = 100 mAdc, Measured in Functional Test) VGS(Q) 2.4 2.8 3.2 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 2.76 Adc) VDS(on) — 0.21 — Vdc gfs — 44.7 — S On Characteristics Forward Transconductance (4) (VDS = 10 Vdc, ID = 43 Adc) 1. 2. 3. 4. Continuous use at maximum temperature will affect MTTF. MTTF calculator available at http://www.nxp.com/RF/calculators. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955. Each side of device measured separately. (continued) MRFX1K80H 2 RF Device Data NXP Semiconductors Table 4. Electrical Characteristics (TA = 25qC unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 65 Vdc r 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 2.9 — pF Output Capacitance (VDS = 65 Vdc r 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 203 — pF Input Capacitance (VDS = 65 Vdc, VGS = 0 Vdc r 30 mV(rms)ac @ 1 MHz) Ciss — 760 — pF Dynamic Characteristics (1) Functional Tests (In NXP Production Test Fixture, 50 ohm system) VDD = 65 Vdc, IDQ(A+B) = 100 mA, Pout = 1800 W Peak (360 W Avg.), f = 230 MHz, 100 Psec Pulse Width, 20% Duty Cycle Power Gain Gps 24.0 25.1 26.5 dB Drain Efficiency KD 70.0 75.1 — % Input Return Loss IRL — –14.4 –9 dB Table 5. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) 230 Signal Type VSWR Pin (W) Pulse (100 Psec, 20% Duty Cycle) > 65:1 at all Phase Angles 14 W Peak (3 dB Overdrive) Test Voltage, VDD Result 65 No Device Degradation Table 6. Ordering Information Device MRFX1K80HR5 Tape and Reel Information R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel Package NI--1230H--4S 1. Each side of device measured separately. MRFX1K80H RF Device Data NXP Semiconductors 3 TYPICAL CHARACTERISTICS 2000 1.08 1000 NORMALIZED VGS(Q) C, CAPACITANCE (pF) Coss 100 10 1 1.04 1.02 VDD = 50 Vdc 500 mA 1.06 Ciss IDQ(A+B) = 100 mA 1000 mA 1500 mA 1.00 0.98 0.96 Measured with r30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 0 10 20 30 40 0.94 Crss 50 60 0.92 –50 70 –25 0 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) 25 50 75 100 TC, CASE TEMPERATURE (qC) Note: Each side of device measured separately. IDQ (mA) Slope (mV/qC) 100 –3.21 500 –2.79 1000 –2.69 1500 –2.61 Figure 2. Capacitance versus Drain--Source Voltage Figure 3. Normalized VGS versus Quiescent Current and Case Temperature 109 MTTF (HOURS) 108 VDD = 65 Vdc ID = 28.1 Amps ID = 32.2 Amps 107 ID = 35.6 Amps 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (qC) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http:/www.nxp.com/RF/calculators. Figure 4. MTTF versus Junction Temperature – CW MRFX1K80H 4 RF Device Data NXP Semiconductors 27 MHz NARROWBAND REFERENCE CIRCUIT – 2.9s u 6.9s (73 mm u 175 mm) Table 7. 27 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system) IDQ(A+B) = 200 mA, Pin = 3 W, CW Frequency (MHz) VDD (V) Pout (W) Gps (dB) KD (%) 27 50 1200 26.0 82.3 57.5 1520 27.0 80.1 65 1800 27.8 75.6 MRFX1K80H RF Device Data NXP Semiconductors 5 27 MHz NARROWBAND REFERENCE CIRCUIT – 2.9s u 6.9s (73 mm u 175 mm) Temperature Compensation D94843 L2 Q2 C12 C17 C7 C6 C15 C19 R1 L1 C10 C5 Q1 T1 C1 C2 C11 R2 C16 C8 C9 C18 C20 MRFX1K80H MRF1K50H MRFE6VP61K25H T2 Rev. 0 R3 D1 C13 Note: Component numbers C3, C4 and C14 are not used. C101 C109 C103 C104 C105 C106 U101 D101 R103 R104 R105 R101 R102 R109 C107 C108 R106 C110 Q101 C102 R107 R108 Temperature Compensation Detail D50876 T2 Transformer Detail Figure 5. MRFX1K80H Narrowband Reference Circuit Component Layout – 27 MHz MRFX1K80H 6 RF Device Data NXP Semiconductors 27 MHz NARROWBAND REFERENCE CIRCUIT – 2.9s u 6.9s (73 mm u 175 mm) Table 8. MRFX1K80H Narrowband Reference Circuit Component Designations and Values – 27 MHz Part Description Part Number Manufacturer C1, C17, C18 1000 pF Chip Capacitor ATC100B102JT50XT ATC C2, C15, C16 39 K pF Chip Capacitor ATC200B393KT50XT ATC C5 470 pF Chip Capacitor ATC100C471JT2500XT ATC C6, C8 2.2 PF Chip Capacitor HMK432B7225KM-T Taiyo Yuden C7, C9, C19, C20 470 pF Chip Capacitor ATC100B471JT200XT ATC C10, C11 22 pF Chip Capacitor ATC100B220JT500XT ATC C12 470 PF, 100 V Electrolytic Capacitor MCGPR100V477M16X32-RH Multicomp C13 1000 pF Chip Capacitor C2012X7R2E102M TDK D1 Green LED, 1206 LG N971-KN-1 OSRAM L1 82 nH Inductor 1812SMS-82NJLC Coilcraft L2 7 Turns, #16 AWG, ID = 10 mm Inductor, Hand Wound 8074 Belden Q1 RF Power LDMOS Transistor MRFX1K80H NXP R1, R2 33 :, 3 W Chip Resistor 1-2176070-3 TE Connectivity R3 9.1 k: 1/4 W Chip Resistor CRCW12069K10FKEA Vishay PCB Arlon TC350 0.030s Hr = 3.5 D94843 MTL T1 Core Multi-Aperture Core, 43 Material 2843000302 Fair-Rite T1 Primary 2 Turns, #20 AWG Magnetic Wire 8076 Belden T1 Secondary 1 Turn, #24 AWG Teflon Wire 5854/7 BL005 Alpha Wire T2 Core 61 Round Cable Core, x4 2661102002 Fair-Rite T2 Primary Copper Pipe, Type L, ID = 3/8s, OD = 1/2s, cut to 2.4s LH03010 Mueller T2 Secondary 3 Turns, #16 AWG PTFE Covered Wire, Twisted TEF16 RF Parts Company T2 PCB Arlon TC350 0.030s Hr = 3.5, x2 D50876 MTL C101, C102, C104, C106, C108, C110 1 PF Chip Capacitor GRM21BR71H105KA12L Murata C103, C105, C107, C109 1 nF Chip Capacitor C2012X7R2E102M TDK D101 Red LED, 1206 LH N974-KN-1 OSRAM Q101 NPN Bipolar Transistor BC847ALT1G ON Semiconductor R101 2.2 k:, 1/8 W Chip Resistor CRCW08052K20JNEA Vishay R102, R109 1.2 k:, 1/8 W Chip Resistor CRCW08051K20FKEA Vishay R103 10 :, 1/8 W Chip Resistor RK73H2ATTD10R0F KOA Speer R104 1 k:, 1/8 W Chip Resistor RR1220P-102-D Susumu R105 3.9 k:, 1/8 W Chip Resistor CRCW08053K90JNEA Vishay R106 200 : 1/8 W Chip Resistor CRCW0805200RJNEA Vishay R107 5 k: Multi--turn Cermet Trimming Potentiometer, 11 Turns 3224W-1-502E Bourns R108 10 : 1/4 W Chip Resistor CRCW120610R0JNEA Vishay U101 Voltage Regulator 5 V, Micro8 LP2951ACDMR2G ON Semiconductor Transformer Temperature Compensation Note: Refer to MRFX1K80H’s printed circuit boards and schematics to download the 27 MHz heatsink drawing. MRFX1K80H RF Device Data NXP Semiconductors 7 TYPICAL CHARACTERISTICS VDD = 65 V 32 57.5 V 30 1600 1400 1200 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) 1800 50 V 1000 800 600 400 0 IDQ(A+B) = 200 mA, f = 27 MHz 0 1 2 3 4 5 6 7 8 9 27 60 26 50 Gps 24 22 57.5 V 50 V 65 V 200 400 600 30 20 IDQ(A+B) = 200 mA, f = 27 MHz 0 40 10 800 1000 1200 1400 1600 1800 2000 Pout, OUTPUT POWER (WATTS) Pin, INPUT POWER (WATTS) f (MHz) 65 V 80 70 28 18 57.5 V KD 20 200 90 VDD = 50 V KD, DRAIN EFFICIENCY (%) 34 2000 VDD (V) P1dB (W) Psat (W) 50 825 1250 57.5 1010 1600 65 1150 1900 Figure 7. Power Gain and Drain Efficiency versus CW Output Power and Drain--Source Voltage Figure 6. CW Output Power versus Input Power and Drain--Source Voltage MRFX1K80H 8 RF Device Data NXP Semiconductors 27 MHz NARROWBAND REFERENCE CIRCUIT f MHz Zsource : Zload : 27 8.70 + j6.28 6.21 + j2.68 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 : Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 : + Zload Figure 8. Narrowband Series Equivalent Source and Load Impedance – 27 MHz MRFX1K80H RF Device Data NXP Semiconductors 9 87.5–108 MHz BROADBAND REFERENCE CIRCUIT – 2.9s u 5.1s (73 mm u 130 mm) Table 9. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system) IDQ(A+B) = 200 mA, Pin = 7 W, CW Frequency (MHz) VDD (V) Pout (W) Gps (dB) KD (%) 87.5 60 1521 23.4 84.9 98 60 1600 23.6 82.5 108 60 1556 23.5 80.0 MRFX1K80H 10 RF Device Data NXP Semiconductors 87.5–108 MHz BROADBAND REFERENCE CIRCUIT – 2. 9s u 5.1s (73 mm u 130 mm) C28 C25 D94849 C26 C22 C6 C7 C27 C21 C5 L4 L1 R2 C4 C16 R1 C3 C20 C19 C18 C17 Q1 C24 C11 C1 L3 C2 L2 C23* C15* R3 C14 C8 MRFX1K80H MRF1K50H MRFE6VP61K25H C9 C10 *C15 and C23 are mounted vertically. Rev. 0 0.34 (9) 0.45 (11) 0.22 (6) L3 total wire length = 1.7s (43 mm) Inches (mm) Figure 9. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Layout Figure 10. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Layout – Bottom MRFX1K80H RF Device Data NXP Semiconductors 11 Table 10. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C3, C6, C9, C18, C19, C20, C21, C22 1000 pF Chip Capacitor ATC100B102JT50XT ATC C2 33 pF Chip Capacitor ATC100B330JT500XT ATC C4, C5, C8 10 nF Chip Capacitor ATC200B103KT50XT ATC C7, C10, C15, C16, C17, C23 470 pF Chip Capacitor ATC100B471JT200XT ATC C11 100 pF, 300 V Mica Capacitor MIN02-002EC101J-F CDE C14, C24 12 pF Chip Capacitor ATC100B120GT500XT ATC C25, C26, C27 220 PF, 100 V Electrolytic Capacitor EEV-FC2A221M Panasonic--ECG C28 22 PF, 35 V Electrolytic Capacitor UUD1V220MCL1GS Nichicon L1, L2 17.5 nH Inductor, 6 Turns B06TJLC Coilcraft L3 1.5 mm Non--Tarnish Silver Plated Copper Wire, Total Wire Length = 1.7s/43 mm SP1500NT-001 Scientific Wire Company L4 22 nH Inductor 1212VS-22NMEB Coilcraft Q1 RF Power LDMOS Transistor MRFX1K80H NXP R1 10 :, 1/4 W Chip Resistor CRCW120610R0JNEA Vishay R2, R3 33 :, 2 W Chip Resistor 1-2176070-3 TE Connectivity Thermal Pad TG Series Soft Thermal Conductive Pad TG6050-150-150-5.0-0 t-Global Technology PCB Arlon TC350 0.030s, Hr = 3.5 D94849 MTL Note: Refer to MRFX1K80H’s printed circuit boards and schematics to download the 87.5–108 MHz heatsink drawing. MRFX1K80H 12 RF Device Data NXP Semiconductors 90 26 85 25 KD, DRAIN EFFICIENCY (%) 27 80 KD 24 75 Gps 23 70 1700 22 21 1600 Pout 20 19 18 87 1500 VDD = 60 Vdc, Pin = 7 W, lDQ(A+B) = 200 mA 89 91 95 93 97 99 101 103 105 1400 Pout, OUTPUT POWER (WATTS) Gps, POWER GAIN (dB) TYPICAL CHARACTERISTICS – 87.5–108 MHz, 60 V BROADBAND REFERENCE CIRCUIT 1300 107 109 f, FREQUENCY (MHz) Figure 11. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power 1800 98 MHz Pout, OUTPUT POWER (WATTS) 1600 1400 1200 87.5 MHz 108 MHz 1000 800 600 400 200 0 VDD = 60 Vdc, IDQ(A+B) = 200 mA 0 4 2 8 6 10 12 Pin, INPUT POWER (WATTS) Figure 12. CW Output Power versus Input Power and Frequency 90 34 f = 87.5 MHz 80 Gps 30 28 26 60 50 87.5 MHz KD 24 98 MHz 40 108 MHz 22 20 70 108 MHz 98 MHz KD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 32 30 VDD = 60 Vdc, lDQ(A+B) = 200 mA 0 200 400 600 800 1000 1200 1400 1600 20 1800 Pout, OUTPUT POWER (WATTS) Figure 13. Power Gain and Drain Efficiency versus CW Output Power and Frequency MRFX1K80H RF Device Data NXP Semiconductors 13 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Zo = 10 : Zsource f = 87.5 MHz f = 108 MHz f = 87.5 MHz f = 108 MHz Zload f MHz Zsource : Zload : 87.5 3.69 + j5.19 3.90 + j4.73 98 3.60 + j4.90 3.88 + j3.99 108 3.16 + j4.69 3.35 + j3.95 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 : = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network 50 : + Z load Figure 14. Broadband Series Equivalent Source and Load Impedance – 87.5–108 MHz MRFX1K80H 14 RF Device Data NXP Semiconductors HARMONIC MEASUREMENTS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT F1 H2 H3 H4 Fundamental (F1) 87.5 MHz 175 MHz –33 dB 262.5 MHz –28 dB 350 MHz –51 dB H3 H4 H2 (175 MHz) (262.5 MHz) (350 MHz) –33 dB –28 dB –51 dB H3 H2 H4 Center: 228.5 MHz 35 MHz Span: 350 MHz Figure 15. 87.5 MHz Harmonics @ 1300 W CW MRFX1K80H RF Device Data NXP Semiconductors 15 230 MHz NARROWBAND PRODUCTION TEST FIXTURE – 6.0s u 4.0s (152 mm u 102 mm) C10 C6 C28 C27 C12 C9 C26 D93270 C24 Coax1 Coax3 R1 C4* L2 C3 C1 R2 Coax2 C5 C7 L1 C17* C18* C19* C13 C14 C23* L4 Coax4 MRFX1K80H Rev. 0 C11 C20* C21* C22* C15 C16 CUT OUT AREA C2 L3 C25 C29 C30 C31 C8 *C4, C17, C18, C19, C20, C21, C22 and C23 are mounted vertically. Figure 16. MRFX1K80H Narrowband Test Fixture Component Layout – 230 MHz Table 11. MRFX1K80H Narrowband Test Fixture Component Designations and Values – 230 MHz Part Description Part Number Manufacturer C1, C2, C3 22 pF Chip Capacitor ATC100B220JT500XT ATC C4 27 pF Chip Capacitor ATC100B270JT500XT ATC C5, C6 22 PF, 35 V Tantalum Capacitor T491X226K035AT Kemet C7, C9 0.1 PF Chip Capacitor CDR33BX104AKWS AVX C8, C10 220 nF Chip Capacitor C1812C224K5RACTU Kemet C11, C12, C24, C25 1000 pF Chip Capacitor ATC100B102JT50XT ATC C13 24 pF Chip Capacitor ATC800R240JT500XT ATC C14, C15, C16 20 pF Chip Capacitor ATC800R200JT500XT ATC C17, C18, C19, C20, C21, C22 240 pF Chip Capacitor ATC100B241JT200XT ATC C23 7.5 pF Chip Capacitor ATC100B7R5CT500XT ATC C26, C27, C28, C29, C30, C31 470 PF, 100 V Electrolytic Capacitor MCGPR100V477M16X32-RH Multicomp Coax1, 2, 3, 4 25 : Semi Rigid Coax Cable, 2.2s Shield Length UT-141C-25 Micro--Coax L1, L2 5 nH Inductor, 2 Turns A02TJLC Coilcraft L3, L4 6.6 nH Inductor, 2 Turns GA3093-ALC Coilcraft R1, R2 10 :, 1/4 W Chip Resistor CRCW120610R0JNEA Vishay PCB Arlon AD255A 0.030s, Hr = 2.55 D93270 MTL MRFX1K80H 16 RF Device Data NXP Semiconductors TYPICAL CHARACTERISTICS — 230 MHz, TC = 25_C PRODUCTION TEST FIXTURE Pout, OUTPUT POWER (WATTS) PEAK 2500 VDD = 65 Vdc, f = 230 MHz Pulse Width = 100 Psec, 20% Duty Cycle 2000 Pin = 5.6 W 1500 1000 Pin = 2.8 W 500 0 0.5 0 1.5 1.0 2.0 2.5 3.0 3.5 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 17. Output Power versus Gate--Source Voltage at a Constant Input Power 64 26 60 56 52 48 25 24 28 32 36 40 23 300 mA P1dB (W) P3dB (W) 230 2080 2300 40 Gps 900 mA 30 600 mA 100 mA 3 50 KD 21 100 mA Pin, INPUT POWER (dBm) PEAK f (MHz) 70 60 22 19 44 80 600 mA 20 44 24 90 VDD = 65 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 Psec 20% Duty Cycle IDQ(A+B) = 900 mA 20 300 mA 100 10 3000 1000 Pout, OUTPUT POWER (WATTS) PEAK Figure 19. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 18. Output Power versus Input Power 90 –40_C 25_C 24 22 20 18 Gps TC = –40_C KD 25_C 60 50 40 85_C 30 16 14 30 80 85_C 70 26 20 100 1000 26 10 4000 24 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) VDD = 65 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz 28 Pulse Width = 100 Psec, 20% Duty Cycle KD, DRAIN EFFICIENCY (%) 30 22 65 V 20 50 V 18 55 V 40 V 16 14 60 V VDD = 30 V 0 500 IDQ = 100 mA, f = 230 MHz Pulse Width = 100 Psec, 20% Duty Cycle 1000 1500 2000 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 20. Power Gain and Drain Efficiency versus Output Power Figure 21. Power Gain versus Output Power and Drain--Source Voltage 2500 MRFX1K80H RF Device Data NXP Semiconductors 17 KD, DRAIN EFFICIENCY (%) 27 VDD = 65 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 Psec, 20% Duty Cycle Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 68 230 MHZ NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource : Zload : 230 1.1 + j2.7 2.2 + j2.9 Zsource = Test fixture impedance as measured from gate to gate, balanced configuration. Zload 50 : Input Matching Network = Test fixture impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 : + Zload Figure 22. Narrowband Series Equivalent Source and Load Impedance – 230 MHz MRFX1K80H 18 RF Device Data NXP Semiconductors PACKAGE DIMENSIONS MRFX1K80H RF Device Data NXP Semiconductors 19 MRFX1K80H 20 RF Device Data NXP Semiconductors PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes x AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages x AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins x EB212: Using Data Sheet Impedances for RF LDMOS Devices Software x Electromigration MTTF Calculator x RF High Power Model x .s2p File Development Tools x Printed Circuit Boards To Download Resources Specific to a Given Part Number: 1. Go to http://www.nxp.com/RF 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Aug. 2017 Description x Initial release of data sheet MRFX1K80H RF Device Data NXP Semiconductors 21 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. E 2017 NXP B.V. MRFX1K80H Document Number: MRFX1K80H Rev. 0, 08/2017 22 RF Device Data NXP Semiconductors
PRFX1K80HR5 价格&库存

很抱歉,暂时无法提供与“PRFX1K80HR5”相匹配的价格&库存,您可以联系我们找货

免费人工找货