0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC5200CBV400B

SPC5200CBV400B

  • 厂商:

    NXP(恩智浦)

  • 封装:

    BBGA272

  • 描述:

    IC MPU MPC52XX 400MHZ 272BGA

  • 数据手册
  • 价格&库存
SPC5200CBV400B 数据手册
Freescale Semiconductor Data Sheet: Technical Data Document Number: MPC5200BDS Rev. 4, 02/2010 MPC5200B Data Sheet Key features are shown below. • MPC603e series e300 core – Superscalar architecture – 760 MIPS at 400 MHz (–40 oC to +85 oC) – 16 KB Instruction cache, 16 KB Data cache – Double precision FPU – Instruction and Data MMU – Standard and Critical interrupt capability • SDRAM / DDR Memory Interface – Up to 133 MHz operation – SDRAM and DDR SDRAM support – 256 MB addressing range per CS, two CS available – 32-bit data bus – Built-in initialization and refresh • Flexible multi-function External Bus Interface – Supports interfacing to ROM/Flash/SRAM memories or other memory mapped devices – 8 programmable Chip Selects – Non-multiplexed data access using 8-/16-/32-bit databus with up to 26-bit address – Short or Long Burst capable – Multiplexed data access using 8-/16-/32-bit databus with up to 25-bit address • Peripheral Component Interconnect (PCI) Controller – Version 2.2 PCI compatibility – PCI initiator and target operation – 32-bit PCI Address/Data bus – 33 and 66 MHz operation – PCI arbitration function • ATA Controller – Version 4 ATA compatible external interface—IDE Disk Drive connectivity • BestComm DMA subsystem – Intelligent virtual DMA Controller – Dedicated DMA channels to control peripheral reception and transmission – Local memory (SRAM 16 KB) • 6 Programmable Serial Controllers (PSC) – UART or RS232 interface – CODEC interface for Soft Modem, Master/Slave CODEC Mode, I2S and AC97 TEPBGA–272 27 mm x 27 mm • • • • • • • • • • • • – Full duplex SPI mode – IrDA mode from 2400 bps to 4 Mbps Fast Ethernet Controller (FEC) – Supports 100Mbps IEEE 802.3 MII, 10 Mbps IEEE 802.3 MII, 10 Mbps 7-wire interface Universal Serial Bus Controller (USB) – USB Revision 1.1 Host – Open Host Controller Interface (OHCI) – Integrated USB Hub, with two ports. Two Inter-Integrated Circuit Interfaces (I2C) Serial Peripheral Interface (SPI) Dual CAN 2.0 A/B Controller (MSCAN) – Implementation of version 2.0A/B CAN protocol – Standard and extended data frames J1850 Byte Data Link Controller (BDLC) J1850 Class B data communication network interface compatible and ISO compatible for low speed ( LB = 1 Data bus width is 8 bit. => DS = 8 => 41 × 2 × (32/8) = 32 => ACK is asserted for 32 PCI cycles to transfer one cache line. Wait State is set to 10. => WS = 10 1 + 10 + 32 = 43 => CS is asserted for 43 PCI cycles. 3. ACK is output and indicates the burst. 4. Deadcycles are only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If arbitration happens the bus can be driven within 4 IPB clocks by an other modules. PCI CLK CS[x] t1 t2 t3 ADDR t5 t4 OE t6 t7 R/W t8 t10 DATA (rd) t9 t11 t12 ACK t14 t15 t13 TS Figure 12. Timing Diagram—Burst Mode MPC5200B Data Sheet, Rev. 4 26 Freescale Semiconductor 1.3.8.3 MUXed Mode Table 26. MUXed Mode Timing Sym Description Min Max Units Notes SpecID t CSA PCI CLK to CS assertion 4.6 10.6 ns — A7.39 t CSN PCI CLK to CS negation 2.9 7.0 ns — A7.40 tALEA PCI CLK to ALE assertion — 3.6 ns — A7.41 t1 ALE assertion before Address, Bank, TSIZ assertion — 5.7 ns — A7.42 t2 CS assertion before Address, Bank, TSIZ negation — –1.2 ns — A7.43 t3 CS assertion before Data wr valid — –1.2 ns — A7.44 t4 Data wr hold after CS negation tIPBIck — ns — A7.45 t5 Data rd setup before CS negation 8.5 — ns — A7.46 t6 Data rd hold after CS negation 0 (DC + 1) × tPCIck ns (1),(3) A7.47 t7 ALE pulse width — tPCIck ns — A7.48 tTSA CS assertion after TS assertion — 6.9 ns — A7.49 t8 TS pulse width — tPCIck ns — A7.50 t9 CS pulse width ns — A7.51 tOEA OE assertion before CS assertion — 4.7 ns — A7.52 tOEN OE negation before CS negation — 5.9 ns — A7.53 t10 RW assertion before ALE assertion tIPBIck — ns — A7.54 t11 RW negation after CS negation — tPCIck ns — A7.55 t12 ACK assertion after CS assertion tIPBIck — ns (2) A7.56 (2) A7.57 (2 + WS) × tPCIck (2 + WS) × tPCIck t13 ACK negation after CS negation — tPCIck ns t14 ALE negation to CS assertion — tPCIck ns A7.58 t15 ACK change before PCI clock — 2.0 ns (2) t16 ACK change after PCI clock — 4.4 ns (2) A7.59 A7.60 NOTES: 1. ACK can shorten the CS pulse width. Wait States (WS) can be programmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified from 0–65535. 2. ACK is input and can be used to shorten the CS pulse width. 3. Deadcycles are only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If arbitration happens the bus can be driven within 4 IPB clocks by an other modules. MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 27 PCI CLK t2 t1 t4 AD[31,27] (wr) Data AD[30:28] (wr) TSIZ[0:2] bits Data AD[26:25] (wr) Bank[0:1] bits Data AD[24:0] (wr) Address[7:31] Data t3 t5 AD[31:0] (rd) t6 Data t7 t14 ALE t8 Address latch TS t9 CSx OE t10 t11 R/W t16 t12 ACK t15 Address tenure t13 Data tenure Figure 13. Timing Diagram—MUXed Mode 1.3.9 ATA The MPC5200B ATA Controller is completely software programmable. It can be programmed to operate with ATA protocols using their respective timing, as described in the ANSI ATA-4 specification. The ATA interface is completely asynchronous in nature. Signal relationships are based on specific fixed timing in terms of timing units (nanoseconds). ATA data setup and hold times, with respect to Read/Write strobes, are software programmable inside the ATA Controller. Data setup and hold times are implemented using counters. The counters count the number of ATA clock cycles needed to meet the ANSI ATA-4 timing specifications. For details, see the ANSI ATA-4 specification and how to program an ATA Controller and ATA drive for different ATA protocols and their respective timing. See the MPC5200B User’s Manual (MPC5200BUM). The MPC5200B ATA Host Controller design makes data available coincidentally with the active edge of the WRITE strobe in PIO and Multiword DMA modes. • • Write data is latched by the drive at the inactive edge of the WRITE strobe. This gives ample setup time beyond that required by the ATA-4 specification. Data is held unchanged until the next active edge of the WRITE strobe. This gives ample hold time beyond that required by the ATA-4 specification. MPC5200B Data Sheet, Rev. 4 28 Freescale Semiconductor All ATA transfers are programmed in terms of system clock cycles (IP bus clocks) in the ATA Host Controller timing registers. This puts constraints on the ATA protocols and their respective timing modes in which the ATA Controller can communicate with the drive. Faster ATA modes (i.e., UDMA 0, 1, 2) are supported when the system is running at a sufficient frequency to provide adequate data transfer rates. Adequate data transfer rates are a function of the following: • The MPC5200B operating frequency (IP bus clock frequency) • Internal MPC5200B bus latencies • Other system load dependent variables The ATA clock is the same frequency as the IP bus clock in MPC5200B. See the MPC5200B User’s Manual (MPC5200B). NOTE All output timing numbers are specified for nominal 50 pF loads. Table 27. PIO Mode Timing Specifications Sym PIO Timing Parameter Min/Max (ns) Mode 0 (ns) Mode 1 (ns) Mode 2 (ns) Mode 3 (ns) Mode 4 (ns) SpecID t0 Cycle Time min 600 383 240 180 120 A8.1 t1 Address valid to DIOR/DIOW setup min 70 50 30 30 25 A8.2 t2 DIOR/DIOW pulse width 16-bit 8-bit min min 165 290 125 290 100 290 80 80 70 70 A8.3 t2i DIOR/DIOW recovery time min — — — 70 25 A8.4 t3 DIOW data setup min 60 45 30 30 20 A8.5 t4 DIOW data hold min 30 20 15 10 10 A8.6 t5 DIOR data setup min 50 35 20 20 20 A8.7 t6 DIOR data hold min 5 5 5 5 5 A8.8 t9 DIOR/DIOW to address valid hold min 20 15 10 10 10 A8.9 tA IORDY setup max 35 35 35 35 35 A8.10 tB IORDY pulse width max 1250 1250 1250 1250 1250 A8.11 MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 29 CS[0]/CS[3]/DA[2:0] t2 DIOR/DIOW t9 t1 t0 t3 t4 WDATA t5 t6 RDATA tA tB IORDY Figure 14. PIO Mode Timing Table 28. Multiword DMA Timing Specifications Sym Multiword DMA Timing Parameters Min/Max Mode 0(ns) Mode 1(ns) Mode 2(ns) SpecID t0 Cycle Time min 480 150 120 A8.12 tC DMACK to DMARQ delay max — — — A8.13 tD DIOR/DIOW pulse width (16-bit) min 215 80 70 A8.14 tE DIOR data access max 150 60 50 A8.15 tG DIOR/DIOW data setup min 100 30 20 A8.16 tF DIOR data hold min 5 5 5 A8.17 tH DIOW data hold min 20 15 10 A8.18 tI DMACK to DIOR/DIOW setup min 0 0 0 A8.19 tJ DIOR/DIOW to DMACK hold min 20 5 5 A8.20 tKr DIOR negated pulse width min 50 50 25 A8.21 tKw DIOW negated pulse width min 215 50 25 A8.22 tLr DIOR to DMARQ delay max 120 40 35 A8.23 tLw DIOW to DMARQ delay max 40 40 35 A8.24 MPC5200B Data Sheet, Rev. 4 30 Freescale Semiconductor t0 DMARQ (Drive) tL tC DMACK (Host) tD tI tJ tK DIOR DIOW (Host) tE RDATA (Drive) tF WDATA (Host) tG tH Figure 15. Multiword DMA Timing NOTE The direction of signal assertion is towards the top of the page, and the direction of negation is towards the bottom of the page, irrespective of the electrical properties of the signal. Table 29. Ultra DMA Timing Specification Sym MODE 0 (ns) MODE 1 (ns) MODE 2 (ns) Comment SpecID Min Max Min Max Min Max t CYC 114 — 75 — 55 — Cycle time allowing for asymmetry and clock variations from STROBE edge to STROBE edge A8.26 t 2CYC 235 — 156 — 117 — Two-cycle time allowing for clock variations, from rising edge to next rising edge or from falling edge to next falling edge of STROBE. A8.27 t DS 15 — 10 — 7 — Data setup time at recipient. A8.28 t DH 5 — 5 — 5 — Data hold time at recipient. A8.29 t DVS 70 — 48 — 34 — Data valid setup time at sender, to STROBE edge. A8.30 t DVH 6 — 6 — 6 — Data valid hold time at sender, from STROBE edge. A8.31 t FS 0 230 0 200 0 170 First STROBE time for drive to first negate DSTROBE from STOP during a data-in burst. A8.32 t LI 0 150 0 150 0 150 Limited Interlock time. A8.33 t MLI 20 — 20 — 20 — Interlock time with minimum. A8.34 t UI 0 — 0 — 0 — Unlimited interlock time. A8.35 MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 31 Table 29. Ultra DMA Timing Specification (continued) Sym MODE 0 (ns) MODE 1 (ns) MODE 2 (ns) Comment SpecID Min Max Min Max Min Max t AZ — 10 — 10 — 10 Maximum time allowed for output drivers to release from being asserted or negated A8.36 t ZAH 20 — 20 — 20 — A8.37 t ZAD 0 — 0 — 0 — Minimum delay time required for output drivers to assert or negate from released state t ENV 20 70 20 70 20 70 Envelope time—from DMACK to STOP and HDMARDY during data out burst initiation. A8.39 t SR — 50 — 30 — 20 STROBE to DMARDY time, if DMARDY is negated before this long after STROBE edge, the recipient receives no more than one additional data word. A8.40 t RFS — 75 — 60 — 50 Ready-to-Final STROBE time—no STROBE edges are sent this long after negation of DMARDY. A8.41 t RP 160 — 125 — 100 — Ready-to-Pause time—the time recipient waits to initiate pause after negating DMARDY. A8.42 t IORDYZ — 20 — 20 — 20 Pull-up time before allowing IORDY to be released. A8.43 t ZIORDY 0 — 0 — 0 — Minimum time drive waits before driving IORDY A8.44 t ACK 20 — 20 — 20 — Setup and hold times for DMACK, before assertion or negation. A8.45 t SS 50 — 50 — 50 — Time from STROBE edge to negation of DMARQ or assertion of STOP, when sender terminates a burst. A8.46 A8.38 NOTES: 1 t UI, t MLI, t LI indicate sender-to-recipient or recipient-to-sender interlocks. That is, one agent (sender or recipient) is waiting for the other agent to respond with a signal before proceeding. • t UI is an unlimited interlock that has no maximum time value. • t MLI is a limited time-out that has a defined minimum. • t LI is a limited time-out that has a defined maximum. 2 All timing parameters are measured at the connector of the drive to which the parameter applies. For example, the sender shall stop generating STROBE edges t RFS after negation of DMARDY. STROBE and DMARDY timing measurements are taken at the connector of the sender. Even though the sender stops generating STROBE edges, the receiver may receive additional STROBE edges due to propagation delays. All timing measurement switching points (low to high and high to low) are taken at 1.5 V. MPC5200B Data Sheet, Rev. 4 32 Freescale Semiconductor DMARQ (device) t UI DMACK (device) t ACK t ENV t FS t ZAD STOP (host) t ACK t ENV t FS HDMARDY (host) t ZAD t ZIORDY DSTROBE (device) t DVS t AZ t DVH DD(0:15) t ACK DA0, DA1, DA2, CS[0:1]1 Figure 16. Timing Diagram—Initiating an Ultra DMA Data In Burst t 2CYC t CYC t CYC t 2CYC DSTROBE at device tDVH tDVS tDVH tDVS tDVH DD(0:15) at device DSTROBE at host tDH tDS tDH tDS tDH DD(0:15) at host Figure 17. Timing Diagram—Sustained Ultra DMA Data In Burst MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 33 DMARQ (device) DMARQ (host) t RP STOP (host) t SR HDMARDY (host) t RFS DSTROBE (device) DD[0:15] (device) Figure 18. Timing Diagram—Host Pausing an Ultra DMA Data In Burst DMARQ (device) DMACK (host) t LI t MLI t LI t ACK STOP (host) tLI t ACK HDMARDY (host) t SS t IORDYZ DSTROBE (device) t ZAH t DVS t AZ t DVH CRC DD[0:15] t ACK DA0,DA1,DA2, CS[0:1] Figure 19. Timing Diagram—Drive Terminating Ultra DMA Data In Burst MPC5200B Data Sheet, Rev. 4 34 Freescale Semiconductor DMARQ (device) t LI t MLI DMACK (host) t RP t ZAH t ACK STOP (host) tACK t AZ HDMARDY (host) t RFS t MLI t LI DSTROBE (device) t IORDYZ t DVS t DVH DD[0:15] CRC t ACK DA0,DA1,DA2, CS[0:1] Figure 20. Timing Diagram—Host Terminating Ultra DMA Data In Burst DMARQ (device) tUI DMACK (host) tACK tENV STOP (host) tLI tZIORDY tUI DDMARDY (host) tACK HSTROBE (device) tDVS tDVH DD[0:15] (host) tACK DA0,DA1,DA2, CS[0:1] Figure 21. Timing Diagram—Initiating an Ultra DMA Data Out Burst MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 35 t 2CYC t CYC t CYC t 2CYC HSTROBE (host) t DVS t DVH t DVS t DVH t DVH DD[0:15] (host) HSTROBE (device) t DH t DS t DS t DH t DH DD[0:15] (device) Figure 22. Timing Diagram—Sustained Ultra DMA Data Out Burst t RP DMARQ (device) DMACK (host) STOP (host) t SR DDMARDY (device) t RFS HSTROBE DD[0:15] (host) Figure 23. Timing Diagram—Drive Pausing an Ultra DMA Data Out Burst MPC5200B Data Sheet, Rev. 4 36 Freescale Semiconductor DMARQ (device) t LI t MLI DMACK (host) t SS t ACK t LI STOP (host) t LI t IORDYZ DDMARDY (device) tACK HSTROBE (host) t DVS DD[0:15] (host) t DVH CRC t ACK DA0,DA1,DA2, CS[0:1] Figure 24. Timing Diagram—Host Terminating Ultra DMA Data Out Burst DMARQ (device) DMACK (host) t LI t MLI t ACK STOP (host) t RP t IORDYZ DDMARDY (device) t RFS t LI t MLI t ACK HSTROBE (host) t DVS DD[0:15] (host) t DVH CRC t ACK DA0,DA1,DA2, CS[0:1] Figure 25. Timing Diagram—Drive Terminating Ultra DMA Data Out Burst MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 37 Table 30. Timing Specification ata_isolation Sym Description Min Max Units SpecID 1 ata_isolation setup time 7 — IP Bus cycles A8.48 2 ata_isolation hold time — 19 IP Bus cycles A8.49 DIOR ATA_ISOLATION 1 2 Figure 26. Timing Diagram—ATA-ISOLATION 1.3.10 Ethernet AC Test Timing Conditions: • Output Loading All Outputs: 25 pF Table 31. MII Rx Signal Timing Sym Description Min Max Unit SpecID t1 RXD[3:0], RX_DV, RX_ER to RX_CLK setup 10 — ns A9.1 t2 RX_CLK to RXD[3:0], RX_DV, RX_ER hold 10 — ns A9.2 t3 t4 1 RX_CLK pulse width high 35% RX_CLK pulse width low 65% 35% 65% RX_CLK Period(1) A9.3 RX_CLK Period(1) A9.4 RX_CLK shall have a frequency of 25% of data rate of the received signal. See the IEEE 802.3 Specification. t3 RX_CLK (Input) t4 RXD[3:0] (inputs) RX_DV RX_ER t1 t2 Figure 27. Ethernet Timing Diagram—MII Rx Signal MPC5200B Data Sheet, Rev. 4 38 Freescale Semiconductor Table 32. MII Tx Signal Timing Sym Description Min Max Unit SpecID t5 TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER invalid 5 — ns A9.5 t6 TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER valid — 25 ns A9.6 t7 TX_CLK pulse width high 35% 65% TX_CLK Period(1) A9.7 65% (1) A9.8 TX_CLK pulse width low t8 1 35% TX_CLK Period The TX_CLK frequency shall be 25% of the nominal transmit frequency, e.g., a PHY operating at 100 Mb/s must provide a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5 MHz. See the IEEE 802.3 Specification. t7 TX_CLK (Input) t5 t8 TXD[3:0] (Outputs) TX_EN TX_ER t6 Figure 28. Ethernet Timing Diagram—MII Tx Signal Table 33. MII Async Signal Timing Sym Description Min Max Unit SpecID t9 CRS, COL minimum pulse width 1.5 — TX_CLK Period A9.9 CRS, COL t9 Figure 29. Ethernet Timing Diagram—MII Async MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 39 Table 34. MII Serial Management Channel Signal Timing Sym Description Min Max Unit SpecID t10 MDC falling edge to MDIO output delay 0 25 ns A9.10 t11 MDIO (input) to MDC rising edge setup 10 — ns A9.11 t12 MDIO (input) to MDC rising edge hold 10 — ns A9.12 160 — ns A9.13 t13 MDC pulse width high (1) t14 MDC pulse width low(1) 160 — ns A9.14 t15 MDC period(2) 400 — ns A9.15 1 MDC is generated by MPC5200B with a duty cycle of 50% except when MII_SPEED in the FEC MII_SPEED control register is changed during operation. See the MPC5200B User’s Manual (MPC5200BUM). 2 The MDC period must be set to a value of less than or equal to 2.5 MHz (to be compliant with the IEEE MII characteristic) by programming the FEC MII_SPEED control register. See the MPC5200B User’s Manual (MPC5200BUM). t13 t14 MDC (Output) t15 t10 MDIO (Output) MDIO (Input) t11 t12 Figure 30. Ethernet Timing Diagram—MII Serial Management 1.3.11 USB Table 35. Timing Specifications—USB Output Line Sym 1 1 Description USB Bit width(1) Min Max Units SpecID 83.3 667 ns A10.1 2 Transceiver enable time 83.3 667 ns A10.2 3 Signal falling time — 7.9 ns A10.3 4 Signal rising time — 7.9 ns A10.4 Defined in the USB config register, (12 Mbit/s or 1.5 Mbit/s mode). NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 40 Freescale Semiconductor 2 USB_OE 4 3 USB_TXN 1 1 3 4 USB_TXP Figure 31. Timing Diagram—USB Output Line 1.3.12 SPI Table 36. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0) 1 Sym Description Min Max Units SpecID 1 Cycle time 4 1024 IP-Bus Cycle(1) A11.1 Cycle(1) A11.2 2 Clock high or low time 2 512 IP-Bus 3 Slave select to clock delay 15.0 — ns A11.3 4 Output Data valid after Slave Select (SS) — 20.0 ns A11.4 5 Output Data valid after SCK — 20.0 ns A11.5 6 Input Data setup time 20.0 — ns A11.6 7 Input Data hold time 20.0 — ns A11.7 8 Slave disable lag time 15.0 — ns A11.8 9 Sequential transfer delay 1 — IP-Bus Cycle(1) A11.9 10 Clock falling time — 7.9 ns A11.10 11 Clock rising time — 7.9 ns A11.11 Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM). NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 41 1 10 SCK (CLKPOL=0) Output 2 2 11 SCK (CLKPOL=1) Output 11 10 9 8 3 SS Output 5 4 MOSI Output 6 6 MISO Input 7 7 Figure 32. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0) Table 37. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0) Sym Description Min Max Units 1 Cycle time 4 1024 IP-Bus Cycle(1) A11.12 (1) A11.13 2 Clock high or low time 2 512 3 Slave select to clock delay 15.0 — ns A11.14 4 Output Data valid after Slave Select (SS) — 50.0 ns A11.15 5 Output Data valid after SCK — 50.0 ns A11.16 6 Input Data setup time 50.0 — ns A11.17 7 Input Data hold time 0.0 — ns A11.18 8 Slave disable lag time 15.0 — ns 9 1 SpecID Sequential Transfer delay 1 — IP-Bus Cycle A11.19 (1) IP-Bus Cycle A11.20 Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM). NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 42 Freescale Semiconductor 1 SCK (CLKPOL=0) Input 2 2 SCK (CLKPOL=1) Input 8 3 9 SS Input 6 7 MOSI Input 4 5 MISO Output Figure 33. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0) Table 38. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1) 1 Sym Description Min Max Units SpecID 1 Cycle time 4 1024 IP-Bus Cycle(1) A11.21 2 Clock high or low time 2 512 IP-Bus Cycle(1) A11.22 3 Slave select to clock delay 15.0 — ns A11.23 4 Output data valid — 20.0 ns A11.24 5 Input Data setup time 20.0 — ns A11.25 6 Input Data hold time 20.0 — ns A11.26 7 Slave disable lag time 15.0 — ns A11.27 (1) IP-Bus Cycle A11.28 8 Sequential Transfer delay 1 — 9 Clock falling time — 7.9 ns A11.29 10 Clock rising time — 7.9 ns A11.30 Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM). NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 43 1 9 SCK (CLKPOL=0) Output 2 2 10 SCK (CLKPOL=1) Output 10 9 7 3 8 SS Output 4 MOSI Output 5 MISO Input 6 Figure 34. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1) Table 39. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1) 1 Sym Description Min Max Units SpecID 1 Cycle time 4 1024 IP-Bus Cycle(1) A11.31 2 Clock high or low time 2 512 IP-Bus Cycle(1) A11.32 3 Slave select to clock delay 15.0 — ns A11.33 4 Output data valid — 50.0 ns A11.34 5 Input Data setup time 50.0 — ns A11.35 6 Input Data hold time 0.0 — ns A11.36 7 Slave disable lag time 15.0 — ns A11.37 8 Sequential Transfer delay 1 — IP-Bus Cycle(1) A11.38 Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM). NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 44 Freescale Semiconductor 1 SCK (CLKPOL=0) Input 2 2 SCK (CLKPOL=1) Input 8 7 3 SS Input 5 6 MOSI Input 4 MISO Output Figure 35. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1) 1.3.13 MSCAN The CAN functions are available as RX and TX pins at normal IO pads (I2C1+GPTimer or PSC2). There is no filter for the WakeUp dominant pulse. Any High-to-Low edge can cause WakeUp, if configured. 1.3.14 I2C Table 40. I2C Input Timing Specifications—SCL and SDA 1 Sym Description Min Max Units SpecID 1 Start condition hold time 2 — IP-Bus Cycle(1) A13.1 Cycle(1) A13.2 2 Clock low time 8 — IP-Bus 4 Data hold time 0.0 — ns A13.3 6 Clock high time 4 — IP-Bus Cycle(1) A13.4 7 Data setup time 0.0 — ns A13.5 (1) 8 Start condition setup time (for repeated start condition only) 2 — IP-Bus Cycle A13.6 9 Stop condition setup time 2 — IP-Bus Cycle(1) A13.7 Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM). MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 45 Table 41. I2C Output Timing Specifications—SCL and SDA Sym Description Min (1) Start condition hold time 6 2(1) Clock low time (2) SCL/SDA rise time 1 3 4 (1) Max Units SpecID — IP-Bus Cycle(3) A13.8 10 — IP-Bus Cycle(3) A13.9 — 7.9 ns A13.10 (3) Data hold time 7 — IP-Bus Cycle 5(1) SCL/SDA fall time — 7.9 6(1) Clock high time 10 — IP-Bus Cycle(3) A13.13 7(1) Data setup time 2 — IP-Bus Cycle(3) A13.14 8(1) Start condition setup time (for repeated start condition only) 20 — IP-Bus Cycle(3) A13.15 9(1) Stop condition setup time 10 — IP-Bus Cycle(3) A13.16 ns A13.11 A13.12 1 Programming IFDR with the maximum frequency (IFDR=0x20) results in the minimum output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IFDR. 2 Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values. 3 Inter Peripheral Clock is defined in the MPC5200B User’s Manual (MPC5200BUM). NOTE Output timing is specified at a nominal 50 pF load. 2 6 5 SCL 1 4 7 8 3 9 SDA Figure 36. Timing Diagram—I2C Input/Output 1.3.15 J1850 See the MPC5200B User’s Manual (MPC5200BUM). MPC5200B Data Sheet, Rev. 4 46 Freescale Semiconductor 1.3.16 PSC 1.3.16.1 Codec Mode (8-,16-, 24-, and 32-bit)/I2S Mode Table 42. Timing Specifications—8-, 16-, 24-, and 32-bit CODEC / I2S Master Mode 1 Sym Description Min Typ Max Units SpecID 1 Bit Clock cycle time, programmed in CCS register 40.0 — — ns A15.1 (1) 2 Clock duty cycle — 50 — % A15.2 3 Bit Clock fall time — — 7.9 ns A15.3 4 Bit Clock rise time — — 7.9 ns A15.4 5 FrameSync valid after clock edge — — 8.4 ns A15.5 6 FrameSync invalid after clock edge — — 8.4 ns A15.6 7 Output Data valid after clock edge — — 9.3 ns A15.7 8 Input Data setup time 6.0 — — ns A15.8 Bit Clock cycle time. NOTE Output timing is specified at a nominal 50 pF load. 1 BitClk (CLKPOL=0) Output 3 2 2 4 BitClk (CLKPOL=1) Output 4 5 FrameSync (SyncPol = 1) Output FrameSync (SyncPol = 0) Output 3 6 7 TxD Output 8 RxD Input Figure 37. Timing Diagram — 8-, 16-, 24-, and 32-bit CODEC / I2S Master Mode MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 47 Table 43. Timing Specifications — 8-, 16-, 24-, and 32-bit CODEC / I2S Slave Mode 1 Sym Description Min Typ Max Units SpecID 1 Bit Clock cycle time 40.0 — — ns A15.9 2 Clock duty cycle — 50 — %(1) A15.10 3 FrameSync setup time 1.0 — — ns A15.11 4 Output Data valid after clock edge — — 14.0 ns A15.12 5 Input Data setup time 1.0 — — ns A15.13 6 Input Data hold time 1.0 — — ns A15.14 Bit Clock cycle time. NOTE Output timing is specified at a nominal 50 pF load. 1 BitClk (CLKPOL=0) Input 2 2 BitClk (CLKPOL=1) Input 3 FrameSync (SyncPol = 1) Input FrameSync (SyncPol = 0) Input 4 TxD Output 5 RxD Input 6 Figure 38. Timing Diagram — 8-, 16-, 24-, and 32-bit CODEC / I2S Slave Mode MPC5200B Data Sheet, Rev. 4 48 Freescale Semiconductor 1.3.16.2 AC97 Mode Table 44. Timing Specifications — AC97 Mode Sym Description Min Typ Max Units SpecID 1 Bit Clock cycle time — 81.4 — ns A15.15 2 Clock pulse high time — 40.7 — ns A15.16 3 Clock pulse low time — 40.7 — ns A15.17 4 FrameSync valid after rising clock edge — — 13.0 ns A15.18 5 Output Data valid after rising clock edge — — 14.0 ns A15.19 6 Input Data setup time 1.0 — — ns A15.20 7 Input Data hold time 1.0 — — ns A15.21 NOTE Output timing is specified at a nominal 50 pF load. 1 BitClk (CLKPOL=0) Input 4 FrameSync (SyncPol = 1) Output 5 3 2 Sdata_out Output 6 7 Sdata_in Input Figure 39. Timing Diagram — AC97 Mode 1.3.16.3 IrDA Mode Table 45. Timing Specifications — IrDA Transmit Line Sym Description Min Max Units SpecID 1 Pulse high time, defined in the IrDA protocol definition 0.125 10000 μs A15.22 2 Pulse low time, defined in the IrDA protocol definition 0.125 10000 μs A15.23 3 Transmitter rising time — 7.9 ns A15.24 4 Transmitter falling time — 7.9 ns A15.25 NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 49 3 IrDA_TX (SIR / FIR / MIR) 4 1 2 Figure 40. Timing Diagram — IrDA Transmit Line 1.3.16.4 SPI Mode Table 46. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0) Sym Description Min Max Units SpecID 1 SCK cycle time, programable in the PSC CCS register 30.0 — ns A15.26 2 SCK pulse width, 50% SCK duty cycle 15.0 — ns A15.27 3 Slave select clock delay, programable in the PSC CCS register 30.0 — ns A15.28 4 Output Data valid after Slave Select (SS) — 8.9 ns A15.29 5 Output Data valid after SCK — 8.9 ns A15.30 6 Input Data setup time 6.0 — ns A15.31 7 Input Data hold time 1.0 — ns A15.32 8 Slave disable lag time — 8.9 ns A15.33 9 Sequential Transfer delay, programable in the PSC CTUR / CTLR register 15.0 — ns A15.34 10 Clock falling time — 7.9 ns A15.35 11 Clock rising time — 7.9 ns A15.36 NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 50 Freescale Semiconductor 1 10 SCK (CLKPOL=0) Output 2 2 11 SCK (CLKPOL=1) Output 11 10 9 8 3 SS Output 5 4 MOSI Output 6 6 MISO Input 7 7 Figure 41. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0) Table 47. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0) Sym Description Min Max Units SpecID 1 SCK cycle time, programable in the PSC CCS register 30.0 — ns A15.37 2 SCK pulse width, 50% SCK duty cycle 15.0 — ns A15.38 3 Slave select clock delay 1.0 — ns A15.39 4 Input Data setup time 1.0 — ns A15.40 5 Input Data hold time 1.0 — ns A15.41 6 Output data valid after SS — 14.0 ns A15.42 7 Output data valid after SCK — 14.0 ns A15.43 8 Slave disable lag time 0.0 — ns A15.44 9 Minimum Sequential Transfer delay = 2 × IP Bus clock cycle time 30.0 — — A15.45 NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 51 1 SCK (CLKPOL=0) Input 2 2 SCK (CLKPOL=1) Input 9 8 3 SS Input 5 4 MOSI Input 6 7 MISO Output Figure 42. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0) Table 48. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1) Sym Description Min Max Units SpecID 1 SCK cycle time, programable in the PSC CCS register 30.0 — ns A15.46 2 SCK pulse width, 50% SCK duty cycle 15.0 — ns A15.47 3 Slave select clock delay, programable in the PSC CCS register 30.0 — ns A15.48 4 Output data valid — 8.9 ns A15.49 5 Input Data setup time 6.0 — ns A15.50 6 Input Data hold time 1.0 — ns A15.51 7 Slave disable lag time — 8.9 ns A15.52 8 Sequential Transfer delay, programable in the PSC CTUR / CTLR register 15.0 — ns A15.53 9 Clock falling time — 7.9 ns A15.54 10 Clock rising time — 7.9 ns A15.55 NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 52 Freescale Semiconductor 1 9 SCK (CLKPOL=0) Output 2 2 10 SCK (CLKPOL=1) Output 10 9 8 7 3 SS Output 4 MOSI Output 5 MISO Input 6 Figure 43. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1) Table 49. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1) Sym Description Min Max Units SpecID 1 SCK cycle time, programable in the PSC CCS register 30.0 — ns A15.56 2 SCK pulse width, 50% SCK duty cycle 15.0 — ns A15.57 3 Slave select clock delay 0.0 — ns A15.58 4 Output data valid — 14.0 ns A15.59 5 Input Data setup time 2.0 — ns A15.60 6 Input Data hold time 1.0 — ns A15.61 7 Slave disable lag time 0.0 — ns A15.62 8 Minimum Sequential Transfer delay = 2 × IP-Bus clock cycle time 30.0 — ns A15.63 NOTE Output timing is specified at a nominal 50 pF load. MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 53 1 SCK (CLKPOL=0) Input 2 2 SCK (CLKPOL=1) Input 7 3 8 SS Input 5 6 MOSI Input 4 MISO Output Figure 44. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1) 1.3.17 1.3.17.1 GPIOs and Timers General and Asynchronous Signals The MPC5200B contains several sets if I/Os that do not require special setup, hold, or valid requirements. Most of these are asynchronous to the system clock. The following numbers are provided for test and validation purposes only, and they assume a 133 MHz internal bus frequency. Figure 45 shows the GPIO Timing Diagram. Table 50 gives the timing specifications. Table 50. Asynchronous Signals Sym Description Min Max Units SpecID tCK Clock Period 7.52 — ns A16.1 tIS Input Setup 12 — ns A16.2 tIH Input Hold 1 — ns A16.3 tDV Output Valid — 15.33 ns A16.4 tDH Output Hold 1 — ns A16.5 MPC5200B Data Sheet, Rev. 4 54 Freescale Semiconductor tCK tDH tDV Output valid tIH tIS Input valid Figure 45. Timing Diagram—Asynchronous Signals MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 55 1.3.18 IEEE 1149.1 (JTAG) AC Specifications Table 51. JTAG Timing Specification Sym Characteristic Min Max Unit SpecID — TCK frequency of operation. 0 25 MHz A17.1 1 TCK cycle time. 40 — ns A17.2 2 TCK clock pulse width measured at 1.5V. 1.08 — ns A17.3 3 TCK rise and fall times. 0 3 ns A17.4 (1) 4 TRST setup time to tck falling edge . 10 — ns A17.5 5 TRST assert time. 5 — ns A17.6 5 — ns A17.7 15 — ns A17.8 0 30 ns A17.9 0 30 ns A17.10 (2) 6 Input data setup time . 7 Input data hold 8 time(2) TCK to output data . valid(3). (3). 9 TCK to output high impedance 10 TMS, TDI data setup time. 5 — ns A17.11 11 TMS, TDI data hold time. 1 — ns A17.12 12 TCK to TDO data valid. 0 15 ns A17.13 13 TCK to TDO high impedance. 0 15 ns A17.14 1 TRST is an asynchronous signal. The setup time is for test purposes only. Non-test, other than TDI and TMS, signal input timing with respect to TCK. 3 Non-test, other than TDO, signal output timing with respect to TCK. 2 1 2 VM TCK VM 3 3 2 VM VM = Midpoint Voltage Numbers shown reference Table 51. Figure 46. Timing Diagram—JTAG Clock Input TCK 4 TRST 5 Numbers shown reference Table 51. Figure 47. Timing Diagram—JTAG TRST MPC5200B Data Sheet, Rev. 4 56 Freescale Semiconductor TCK 6 7 INPUT DATA VALID DATA INPUTS 8 OUTPUT DATA VALID DATA OUTPUTS 9 DATA OUTPUTS Numbers shown reference Table 51. Figure 48. Timing Diagram—JTAG Boundary Scan TCK 10 11 INPUT DATA VALID TDI, TMS 12 OUTPUT DATA VALID TDO 13 TDO Numbers shown reference Table 51. Figure 49. Timing Diagram—Test Access Port 2 Package Description 2.1 Package Parameters The MPC5200B uses a 27 mm x 27 mm TE-PBGA package. The package parameters are as provided in the following list: • • • Package outline: 27 mm x 27 mm Interconnects: 2 Pitch: 1.27 mm MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 57 2.2 Mechanical Dimensions Figure 50 provides the mechanical dimensions, top surface, side profile, and pinout for the MPC5200B, 272 TE-PBGA package. PIN A1 INDEX D C 0.2 4X A 272X 0.2 A E 0.35 A E2 D2 0.2 M NOTES: 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. 3. DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER PARALLEL TO PRIMARY DATUM A. 4. PRIMARY DATUM A AND THE SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. A B C B TOP VIEW DIM A A1 A2 A3 b D D1 D2 E E1 E2 e (D1) 19X 19X e Y W V U T R P N M L K J H G F E D C B A e (E1) 4X e /2 A1 A3 A2 A SIDE VIEW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 b 3 272X BOTTOM VIEW MILLIMETERS MIN MAX 2.05 2.65 0.50 0.70 0.50 0.70 1.05 1.25 0.60 0.90 27.00 BSC 24.13 REF 23.30 24.70 27.00 BSC 24.13 REF 23.30 24.70 1.27 BSC 0.3 M A B C 0.15 M A CASE 1135A–01 ISSUE B DATE 10/15/1997 Figure 50. Mechanical Dimensions and Pinout Assignments for the MPC5200B, 272 TE-PBGA MPC5200B Data Sheet, Rev. 4 58 Freescale Semiconductor 2.3 Pinout Listings See details in the MPC5200B User’s Manual (MPC5200BUM). Table 52. MPC5200B Pinout Listing Name Alias Type Power Supply Output Driver Type Input Type Pull-up/ down SDRAM MEM_CAS CAS I/O VDD_MEM_IO DRV16_MEM TTL MEM_CLK_EN CLK_EN I/O VDD_MEM_IO DRV16_MEM TTL I/O VDD_MEM_IO DRV16_MEM TTL MEM_CS MEM_DQM[3:0] DQM I/O VDD_MEM_IO DRV16_MEM TTL MEM_MA[12:0] MA I/O VDD_MEM_IO DRV16_MEM TTL MEM_MBA[1:0] MBA I/O VDD_MEM_IO DRV16_MEM TTL MEM_MDQS[3:0] MDQS I/O VDD_MEM_IO DRV16_MEM TTL MEM_MDQ[31:0] MDQ I/O VDD_MEM_IO DRV16_MEM TTL MEM_CLK I/O VDD_MEM_IO DRV16_MEM TTL MEM_CLK I/O VDD_MEM_IO DRV16_MEM TTL I/O VDD_MEM_IO DRV16_MEM TTL I/O VDD_MEM_IO DRV16_MEM TTL MEM_RAS MEM_WE RAS PCI EXT_AD[31:0] I/O VDD_IO PCI PCI PCI_CBE_0 I/O VDD_IO PCI PCI PCI_CBE_1 I/O VDD_IO PCI PCI PCI_CBE_2 I/O VDD_IO PCI PCI PCI_CBE_3 I/O VDD_IO PCI PCI PCI_CLOCK I/O VDD_IO PCI PCI PCI_DEVSEL I/O VDD_IO PCI PCI PCI_FRAME I/O VDD_IO PCI PCI PCI_GNT I/O VDD_IO DRV8 TTL PCI_IDSEL I/O VDD_IO DRV8 TTL PCI_IRDY I/O VDD_IO PCI PCI PCI_PAR I/O VDD_IO PCI PCI PCI_PERR I/O VDD_IO PCI PCI PCI_REQ I/O VDD_IO DRV8 TTL PCI_RESET I/O VDD_IO PCI PCI PCI_SERR I/O VDD_IO PCI PCI PCI_STOP I/O VDD_IO PCI PCI MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 59 Table 52. MPC5200B Pinout Listing (continued) Name Alias PCI_TRDY Type Power Supply Output Driver Type Input Type I/O VDD_IO PCI PCI Pull-up/ down Local Plus LP_ACK I/O VDD_IO DRV8 TTL LP_ALE I/O VDD_IO DRV8 TTL LP_OE I/O VDD_IO DRV8 TTL LP_RW I/O VDD_IO DRV8 TTL LP_TS I/O VDD_IO DRV8 TTL LP_CS0 I/O VDD_IO DRV8 TTL LP_CS1 I/O VDD_IO DRV8 TTL LP_CS2 I/O VDD_IO DRV8 TTL LP_CS3 I/O VDD_IO DRV8 TTL LP_CS4 I/O VDD_IO DRV8 TTL LP_CS5 I/O VDD_IO DRV8 TTL PULLUP ATA ATA_DACK I/O VDD_IO DRV8 TTL ATA_DRQ I/O VDD_IO DRV8 TTL PULLDOWN ATA_INTRQ I/O VDD_IO DRV8 TTL PULLDOWN ATA_IOCHRDY I/O VDD_IO DRV8 TTL PULLUP ATA_IOR I/O VDD_IO DRV8 TTL ATA_IOW I/O VDD_IO DRV8 TTL ATA_ISOLATION I/O VDD_IO DRV8 TTL Ethernet ETH_0 TX, TX_EN I/O VDD_IO DRV4 TTL ETH_1 RTS, TXD[0] I/O VDD_IO DRV4 TTL ETH_2 USB_TXP, RTX, TXD[1] I/O VDD_IO DRV4 TTL ETH_3 USB_PRTPWR, TXD[2] I/O VDD_IO DRV4 TTL ETH_4 USB_SPEED, TXD[3] I/O VDD_IO DRV4 TTL ETH_5 USB_SUPEND, TX_ER I/O VDD_IO DRV4 TTL ETH_6 USB_OE, RTS, MDC I/O VDD_IO DRV4 TTL ETH_7 TXN, MDIO I/O VDD_IO DRV4 TTL MPC5200B Data Sheet, Rev. 4 60 Freescale Semiconductor Table 52. MPC5200B Pinout Listing (continued) Name Alias Type Power Supply Output Driver Type Input Type ETH_8 RX_DV I/O VDD_IO DRV4 TTL ETH_9 CD, RX_CLK I/O VDD_IO DRV4 Schmitt ETH_10 CTS, COL I/O VDD_IO DRV4 TTL ETH_11 TX_CLK I/O VDD_IO DRV4 Schmitt ETH_12 RXD[0] I/O VDD_IO DRV4 TTL ETH_13 USB_RXD, CTS, RXD[1] I/O VDD_IO DRV4 TTL ETH_14 USB_RXP, UART_RX, RXD[2] I/O VDD_IO DRV4 TTL ETH_15 USB_RXN, RX, RXD[3] I/O VDD_IO DRV4 TTL ETH_16 USB_OVRCNT, CTS, RX_ER I/O VDD_IO DRV4 TTL ETH_17 CD, CRS I/O VDD_IO DRV4 TTL Pull-up/ down IRDA PSC6_0 IRDA_RX, RxD I/O VDD_IO DRV4 TTL PSC6_1 Frame, CTS I/O VDD_IO DRV4 TTL PSC6_2 IRDA_TX, TxD I/O VDD_IO DRV4 TTL PSC6_3 IR_USB_CLK,BitC lk, RTS I/O VDD_IO DRV4 Schmitt USB USB_0 USB_OE I/O VDD_IO DRV4 TTL USB_1 USB_TXN I/O VDD_IO DRV4 TTL USB_2 USB_TXP I/O VDD_IO DRV4 TTL USB_3 USB_RXD I/O VDD_IO DRV4 TTL USB_4 USB_RXP I/O VDD_IO DRV4 TTL USB_5 USB_RXN I/O VDD_IO DRV4 TTL USB_6 USB_PRTPWR I/O VDD_IO DRV4 TTL USB_7 USB_SPEED I/O VDD_IO DRV4 TTL USB_8 USB_SUPEND I/O VDD_IO DRV4 TTL USB_9 USB_OVRCNT I/O VDD_IO DRV4 TTL I2C I2C_0 SCL I/O VDD_IO DRV4 Schmitt I2C_1 SDA I/O VDD_IO DRV4 Schmitt I2C_2 SCL I/O VDD_IO DRV4 Schmitt MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 61 Table 52. MPC5200B Pinout Listing (continued) Name Alias Type Power Supply Output Driver Type Input Type Pull-up/ down I2C_3 SDA I/O VDD_IO DRV4 Schmitt PSC PSC1_0 TxD, Sdata_out, MOSI, TX I/O VDD_IO DRV4 TTL PSC1_1 RxD, Sdata_in, MISO, TX I/O VDD_IO DRV4 TTL PSC1_2 Mclk, Sync, RTS I/O VDD_IO DRV4 TTL PSC1_3 BitClk, SCK, CTS I/O VDD_IO DRV4 Schmitt PSC1_4 Frame, SS, CD I/O VDD_IO DRV4 TTL PSC2_0 TxD, Sdata_out, MOSI, TX I/O VDD_IO DRV4 TTL PSC2_1 RxD, Sdata_in, MISO, TX I/O VDD_IO DRV4 TTL PSC2_2 Mclk, Sync, RTS I/O VDD_IO DRV4 TTL PSC2_3 BitClk, SCK, CTS I/O VDD_IO DRV4 Schmitt PSC2_4 Frame, SS, CD I/O VDD_IO DRV4 TTL PSC3_0 USB_OE, TxDS, TX I/O VDD_IO DRV4 TTL PSC3_1 USB_TXN, RxD, RX I/O VDD_IO DRV4 TTL PSC3_2 USB_TXP, BitClk, RTS I/O VDD_IO DRV4 Schmitt PSC3_3 USB_RXD, Frame, SS, CTS I/O VDD_IO DRV4 TTL PSC3_4 USB_RXP, CD I/O VDD_IO DRV4 TTL PSC3_5 USB_RXN I/O VDD_IO DRV4 TTL PSC3_6 USB_PRTPWR, Mclk, MOSI I/O VDD_IO DRV4 TTL PSC3_7 USB_SPEED. MISO I/O VDD_IO DRV4 TTL PSC3_8 USB_SUPEND, SS I/O VDD_IO DRV4 TTL PSC3_9 USB_OVRCNT, SCK I/O VDD_IO DRV4 TTL GPIO/TIMER GPIO_WKUP_6 MEM_CS1 I/O VDD_MEM_IO DRV16_MEM TTL GPIO_WKUP_7 I/O VDD_IO DRV8 TTL TIMER_0 I/O VDD_IO DRV4 TTL PULLUP_MEM MPC5200B Data Sheet, Rev. 4 62 Freescale Semiconductor Table 52. MPC5200B Pinout Listing (continued) Name Alias TIMER_1 Type Power Supply Output Driver Type Input Type I/O VDD_IO DRV4 TTL TIMER_2 MOSI I/O VDD_IO DRV4 TTL TIMER_3 MISO I/O VDD_IO DRV4 TTL TIMER_4 SS I/O VDD_IO DRV4 TTL TIMER_5 SCK I/O VDD_IO DRV4 TTL TIMER_6 I/O VDD_IO DRV4 TTL TIMER_7 I/O VDD_IO DRV4 TTL Pull-up/ down Clock SYS_XTAL_IN Input VDD_IO SYS_XTAL_OUT Output VDD_IO RTC_XTAL_IN Input VDD_IO RTC_XTAL_OUT Output VDD_IO Misc PORRESET Input VDD_IO DRV4 Schmitt 1 HRESET I/O VDD_IO DRV8_OD Schmitt SRESET I/O VDD_IO DRV8_OD1 Schmitt IRQ0 I/O VDD_IO DRV4 TTL IRQ1 I/O VDD_IO DRV4 TTL IRQ2 I/O VDD_IO DRV4 TTL IRQ3 I/O VDD_IO DRV4 TTL Test/Configuration SYS_PLL_TPA I/O VDD_IO DRV4 TTL TEST_MODE_0 Input VDD_IO DRV4 TTL TEST_MODE_1 Input VDD_IO DRV4 TTL TEST_SEL_0 I/O VDD_IO DRV4 TTL TEST_SEL_1 I/O VDD_IO DRV8 TTL PULLUP JTAG_TCK TCK Input VDD_IO DRV4 Schmitt PULLUP JTAG_TDI TDI Input VDD_IO DRV4 TTL PULLUP JTAG_TDO TDO I/O VDD_IO DRV8 TTL JTAG_TMS TMS Input VDD_IO DRV4 TTL PULLUP JTAG_TRST TRST Input VDD_IO DRV4 TTL PULLUP Power and Ground VDD_IO — MPC5200B Data Sheet, Rev. 4 Freescale Semiconductor 63 Table 52. MPC5200B Pinout Listing (continued) Name 1 Alias Type VDD_MEM_IO — VDD_CORE — VSS_IO/CORE — SYS_PLL_AVDD — CORE_PLL_AVDD — Power Supply Output Driver Type Input Type Pull-up/ down All “open drain” outputs of the MPC5200B are actually regular three-state output drivers with the output data tied low and the output enable controlled. Thus, unlike a true open drain, there is a current path from the external system to the MPC5200B I/O power rail if the external signal is driven above the MPC5200B I/O power rail voltage. 3 System Design Information 3.1 Power Up/Down Sequencing DC Power Supply Voltage Figure 51 shows situations in sequencing the I/O VDD (VDD_IO), Memory VDD (VDD_IO_MEM), PLL VDD (PLL_AVDD), and Core VDD (VDD_CORE). 3.3 V VDD_IO, VDD_IO_MEM (SDR) 2.5 V VDD_IO_MEM (DDR) 1 VDD_CORE, PLL_AVDD 1.5 V 2 0 Time Note: VDD_CORE should not exceed VDD_IO, VDD_IO_MEM or PLL_AVDD by more than 0.4 V at any time, including power-up. Note: It is recommended that VDD_CORE/PLL_AVDD should track VDD_IO/VDD_IO_MEM up to 0.9 V then separate for completion of ramps. Note: Input voltage must not be greater than the supply voltage (VDD_IO) VDD_IO_MEM, VDD_CORE, or PLL_AVDD) by more than 0.5 V at any time, including during power-up. Note: Use 1 microsecond or slower rise time for all supplies. Figure 51. Supply Voltage Sequencing MPC5200B Data Sheet, Rev. 4 64 Freescale Semiconductor The relationship between VDD_IO_MEM and VDD_IO is non-critical during power-up and power-down sequences. VDD_IO_MEM (2.5 V or 3.3 V) and VDD_IO are specified relative to VDD_CORE. 3.1.1 Power Up Sequence If VDD_IO/VDD_IO_MEM are powered up with the VDD_CORE at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the VDD_IO/VDD_IO_MEM to be in a high-impedance state. There is no limit to how long after VDD_IO/VDD_IO_MEM powers up before VDD_CORE must power up. VDD_CORE should not lead the VDD_IO, VDD_IO_MEM or PLL_AVDD by more than 0.4 V during power ramp up or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 microsecond to avoid turning on the internal ESD protection clamp diodes. The recommended power up sequence is as follows: Use one microsecond or slower rise time for all supplies. VDD_CORE/PLL_AVDD and VDD_IO/VDD_IO_MEM should track up to 0.9 V and then separate for the completion of ramps with VDD_IO/VDD_IO_MEM going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator. 3.1.2 Power Down Sequence If VDD_CORE/PLL_AVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after VDD_CORE and PLL_AVDD power down before VDD_IO or VDD_IO_MEM must power down. VDD_CORE should not lag VDD_IO, VDD_IO_MEM, or PLL_AVDD going low by more than 0.5 V during power down or there will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies. The recommended power down sequence is as follows: 1. 2. 3.2 Drop VDD_CORE/PLL_AVDD to 0 V. Drop VDD_IO/VDD_IO_MEM supplies. System and CPU Core AVDD Power Supply Filtering Each of the independent PLL power supplies require filtering external to the device. The following drawing is a recommendation for the required filter circuit.
SPC5200CBV400B 价格&库存

很抱歉,暂时无法提供与“SPC5200CBV400B”相匹配的价格&库存,您可以联系我们找货

免费人工找货