0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SPC5606BK0VLL6R

SPC5606BK0VLL6R

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP-100_14X14MM

  • 描述:

    IC MCU 32BIT 1MB FLASH 100LQFP

  • 数据手册
  • 价格&库存
SPC5606BK0VLL6R 数据手册
NXP Semiconductors Data Sheet: Technical Data Document Number: MPC5606B Rev. 5, 11/2017 MPC5606BK 100 LQFP 14 mm x 14 mm MPC5606BK Microcontroller Data Sheet 1 Introduction 1.1 Document overview This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device. 1.2 176 LQFP 24 mm x 24 mm 1 2 3 Description This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient e200z0 host processor core of this automotive controller family complies with the Power Architecture® technology and only implements the VLE (variable-length encoding) APU (Auxiliary Processor Unit), providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. 144 LQFP 20 mm x 20 mm 4 5 6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . 4 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Recommended operating conditions . . . . . . . . . . . . . . . 28 3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.6 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . . 33 3.7 RESET electrical characteristics . . . . . . . . . . . . . . . . . . 45 3.8 Power management electrical characteristics . . . . . . . . 48 3.9 Power consumption in different application modes . . . . 53 3.10 Flash memory electrical characteristics . . . . . . . . . . . . . 54 3.11 Electromagnetic compatibility (EMC) characteristics . . . 56 3.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.13 Slow external crystal oscillator (32 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.14 FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . . 63 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.17 ADC electrical characteristics. . . . . . . . . . . . . . . . . . . . . 66 3.18 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1 Package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . 85 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. 1.3 Device comparison Table 1 summarizes the functions of the blocks present on the MPC5606BK. Table 1. MPC5606BK family comparison1 Feature MPC5605BK Package 100 LQFP 144 LQFP MPC5606BK 176 LQFP CPU 100 LQFP 144 LQFP 176 LQFP e200z0h Execution speed2 Up to 64 MHz Code flash memory 768 KB 1 MB Data flash memory 64 (4 x 16) KB SRAM 64 KB 80 KB MPU 8-entry eDMA 16 ch 10-bit ADC Yes dedicated3 7 ch 15 ch 29 ch shared with 12-bit ADC 7 ch 15 ch 29 ch 19 ch 12-bit ADC Yes dedicated4 5 ch shared with 10-bit ADC 19 ch Total timer I/O5 eMIOS 37 ch, 16-bit 64 ch, 16-bit 37 ch, 16-bit Counter / OPWM / ICOC6 10 ch 7 7 ch O(I)PWM / OPWFMB / OPWMCB / ICOC O(I)PWM / ICOC8 9 OPWM / ICOC 64 ch, 16-bit 7 ch 14 ch 13 ch 33 ch SCI (LINFlex) 4 6 8 4 6 8 SPI (DSPI) 3 5 6 3 5 6 77 121 149 CAN (FlexCAN) 6 I2C 1 32 KHz oscillator GPIO10 Debug Yes 77 121 149 JTAG 1 Feature set dependent on selected peripheral multiplexing; table shows example. Based on 125 °C ambient operating temperature. 3 Not shared with 12-bit ADC, but possibly shared with other alternate functions. 4 Not shared with 10-bit ADC, but possibly shared with other alternate functions. 5 Refer to eMIOS section of device reference manual for information on the channel configuration and functions. 6 Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare. 7 Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare. 8 Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement. 9 Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare. 10 Maximum I/O count based on multiplexing with peripherals. 2 MPC5606BK Microcontroller Data Sheet, Rev. 5 2 NXP Semiconductors 1.4 Block diagram Figure 1 shows a top-level block diagram of the MPC5606BK. SRAM 80 KB Code Flash Data Flash 1.0 MB 64 KB SRAM Controller Flash memory controller eDMA JTAG (Master) Data NMI (Master) SIUL Voltage Regulator Interrupt requests from peripheral blocks NMI INTC Clocks MPU Instructions e200z0h 64-bit 3 × 3 Crossbar Switch (Master) JTAG Port (Slave) (Slave) Interrupt request with wakeup functionality (Slave) MPU Registers WKPU CMU FMPLL RTC STM SWT ECSM MC_RGM MC_CGM PIT MC_ME MC_PCU BAM SSCM I2C 6x FlexCAN Peripheral Bridge Interrupt Request SIUL Reset Control 19 ch 10-bit/12-bit ADC External Interrupt Request 29 ch 10-bit ADC 8x LINFlex 64 ch eMIOS CTU 6x DSPI 5 ch 12-bit ADC IMUX GPIO & Pad Control I/O ... ... ... ... ... Legend: ADC BAM FlexCAN CFlash CMU CTU DFlash DSPI eDMA eMIOS FMPLL I2C IMUX INTC JTAG Analog-to-Digital Converter Boot Assist Module Controller Area Network Code flash memory Clock Monitor Unit Cross Triggering Unit Data flash memory Deserial Serial Peripheral Interface Enhanced Direct Memory Access Enhanced Modular Input Output System Frequency-Modulated Phase-Locked Loop Inter-integrated Circuit Bus Internal Multiplexer Interrupt Controller JTAG controller LINFlex MC_CGM MC_ME MPU NMI MC_PCU MC_RGM PIT RTC SIUL SRAM SSCM STM SWT WKPU Serial Communication Interface (LIN support) Clock Generation Module Mode Entry Module Memory Protection Unit Non-Maskable Interrupt Power Control Unit Reset Generation Module Periodic Interrupt Timer Real-Time Clock System Integration Unit Lite Static Random-Access Memory System Status Configuration Module System Timer Module Software Watchdog Timer Wakeup Unit Figure 1. MPC5606BK block diagram MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 3 2 Package pinouts and signal descriptions 2.1 Package pinouts The available LQFP pinouts are provided in the following figures. For pin signal descriptions, please see Table 2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176 LQFP Top view 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 PA[11] PA[10] PA[9] PA[8] PA[7] PE[13] PF[14] PF[15] VDD_HV VSS_HV PG[0] PG[1] PH[3] PH[2] PH[1] PH[0] PG[12] PG[13] PA[3] PI[13] PI[12] PI[11] PI[10] PI[9] PI[8] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] PD[12] VDD_HV_ADC1 VSS_HV_ADC1 PB[11] PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC0 VSS_HV_ADC0 PC[7] PF[10] PF[11] PA[15] PF[13] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PJ[3] PJ[2] PJ[1] PJ[0] PI[15] PI[14] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] VDD_HV VSS_HV PD[8] PB[4] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PB[3] PC[9] PC[14] PC[15] PJ[4] VDD_HV VSS_HV PH[15] PH[13] PH[14] PI[6] PI[7] PG[5] PG[4] PG[3] PG[2] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PG[9] PG[8] PC[11] PC[10] PG[7] PG[6] PB[0] PB[1] PF[9] PF[8] PF[12] PC[6] 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 PB[2] PC[8] PC[13] PC[12] PI[0] PI[1] PI[2] PI[3] PE[7] PE[6] PH[8] PH[7] PH[6] PH[5] PH[4] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PI[4] PI[5] PH[12] PH[11] PG[11] PG[10] PE[15] PE[14] PG[15] PG[14] PE[12] Figure 2 shows the MPC5606BK in the 176 LQFP package. Figure 2. 176 LQFP pinout MPC5606BK Microcontroller Data Sheet, Rev. 5 4 NXP Semiconductors 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 PB[2] PC[8] PC[13] PC[12] PE[7] PE[6] PH[8] PH[7] PH[6] PH[5] PH[4] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PG[11] PG[10] PE[15] PE[14] PG[15] PG[14] PE[12] Figure 3 shows the MPC5606BK in the 144 LQFP package. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 LQFP Top view 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 PA[11] PA[10] PA[9] PA[8] PA[7] PE[13] PF[14] PF[15] VDD_HV VSS_HV PG[0] PG[1] PH[3] PH[2] PH[1] PH[0] PG[12] PG[13] PA[3] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] VDD_HV_ADC1 VSS_HV_ADC1 PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC0 VSS_HV_ADC0 PC[7] PF[10] PF[11] PA[15] PF[13] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] PD[8] PB[4] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PB[3] PC[9] PC[14] PC[15] PG[5] PG[4] PG[3] PG[2] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PG[9] PG[8] PC[11] PC[10] PG[7] PG[6] PB[0] PB[1] PF[9] PF[8] PF[12] PC[6] Figure 3. 144 LQFP pinout MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 5 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PB[2] PC[8] PC[13] PC[12] PE[7] PE[6] PE[5] PE[4] PC[4] PC[5] PE[3] PE[2] PH[9] PC[0] VSS_LV VDD_LV VDD_HV VSS_HV PC[1] PH[10] PA[6] PA[5] PC[2] PC[3] PE[12] Figure 4 shows the MPC5606BK in the 100 LQFP package. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 100 LQFP Top view 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PA[11] PA[10] PA[9] PA[8] PA[7] VDD_HV VSS_HV PA[3] PB[15] PD[15] PB[14] PD[14] PB[13] PD[13] PB[12] VDD_HV_ADC1 VSS_HV_ADC1 PD[11] PD[10] PD[9] PB[7] PB[6] PB[5] VDD_HV_ADC0 VSS_HV_ADC0 PC[7] PA[15] PA[14] PA[4] PA[13] PA[12] VDD_LV VSS_LV XTAL VSS_HV EXTAL VDD_HV PB[9] PB[8] PB[10] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] PD[8] PB[4] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PB[3] PC[9] PC[14] PC[15] PA[2] PE[0] PA[1] PE[1] PE[8] PE[9] PE[10] PA[0] PE[11] VSS_HV VDD_HV VSS_HV RESET VSS_LV VDD_LV VDD_BV PC[11] PC[10] PB[0] PB[1] PC[6] Figure 4. 100 LQFP pinout MPC5606BK Microcontroller Data Sheet, Rev. 5 6 NXP Semiconductors 2.2 Pin muxing Table 2 defines the pin list and muxing for this device. Each entry of Table 2 shows all the possible configurations for each pin, via the alternate functions. The default function assigned to each pin after reset is indicated by AF0. Pad type2 RESET config.3 Pin number I/O direction Peripheral Table 2. Functional port pins 100 LQFP PA[0] PCR[0] AF0 AF1 AF2 AF3 — GPIO[0] E0UC[0] CLKOUT E0UC[13] WKUP[19]4 SIUL eMIOS_0 MC_CGM eMIOS_0 WKUP I/O I/O O I/O I M Tristate 12 16 24 PA[1] PCR[1] AF0 AF1 AF2 AF3 — GPIO[1] E0UC[1] NMI5 — WKUP[2]4 SIUL eMIOS_0 WKUP — WKUP I/O I/O I — I S Tristate 7 11 19 PA[2] PCR[2] AF0 AF1 AF2 AF3 — GPIO[2] E0UC[2] — MA[2] WKUP[3]4 SIUL eMIOS_0 — ADC_0 WKUP I/O I/O — O I S Tristate 5 9 17 PA[3] PCR[3] AF0 AF1 AF2 AF3 — — GPIO[3] E0UC[3] LIN5TX CS4_1 EIRQ[0] ADC1_S[0] SIUL eMIOS_0 LINFlex_5 DSPI_1 SIUL ADC_1 I/O I/O O O I I J Tristate 68 90 114 PA[4] PCR[4] AF0 AF1 AF2 AF3 — — GPIO[4] E0UC[4] — CS0_1 LIN5RX WKUP[9]4 SIUL eMIOS_0 — DSPI_1 LINFlex_5 WKUP I/O I/O — I/O I I S Tristate 29 43 51 PA[5] PCR[5] AF0 AF1 AF2 AF3 GPIO[5] E0UC[5] LIN4TX — SIUL eMIOS_0 LINFlex_4 — I/O I/O O — M Tristate 79 118 146 PA[6] PCR[6] AF0 AF1 AF2 AF3 — — GPIO[6] E0UC[6] — CS1_1 EIRQ[1] LIN4RX SIUL eMIOS_0 — DSPI_1 SIUL LINFlex_4 I/O I/O — O I I S Tristate 80 119 147 Port pin PCR Alternate register function1 Function 144 LQFP 176 LQFP Port A MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 7 GPIO[7] E0UC[7] LIN3TX — EIRQ[2] ADC1_S[1] SIUL eMIOS_0 LINFlex_3 — SIUL ADC_1 I/O I/O O — I I PCR[8] AF0 AF1 AF2 AF3 — N/A6 — GPIO[8] E0UC[8] E0UC[14] — EIRQ[3] ABS[0] LIN3RX SIUL eMIOS_0 eMIOS_0 — SIUL BAM LINFlex_3 I/O I/O I/O — I I I PA[9] PCR[9] AF0 AF1 AF2 AF3 N/A6 GPIO[9] E0UC[9] — CS2_1 FAB SIUL eMIOS_0 — DSPI_1 BAM PA[10] PCR[10] AF0 AF1 AF2 AF3 — GPIO[10] E0UC[10] SDA LIN2TX ADC1_S[2] PA[11] PCR[11] AF0 AF1 AF2 AF3 — — — PA[12] PCR[12] PA[13] PA[14] RESET config.3 I/O direction AF0 AF1 AF2 AF3 — — Pin number Pad type2 Function Peripheral Table 2. Functional port pins (continued) 100 LQFP 144 LQFP 176 LQFP J Tristate 71 104 128 S Input, weak pull-up 72 105 129 I/O I/O — O I S Pulldown 73 106 130 SIUL eMIOS_0 I2C_0 LINFlex_2 ADC_1 I/O I/O I/O O I J Tristate 74 107 131 GPIO[11] E0UC[11] SCL — EIRQ[16] LIN2RX ADC1_S[3] SIUL eMIOS_0 I2C_0 — SIUL LINFlex_2 ADC_1 I/O I/O I/O — I I I J Tristate 75 108 132 AF0 AF1 AF2 AF3 — — GPIO[12] — E0UC[28] CS3_1 EIRQ[17] SIN_0 SIUL — eMIOS_0 DSPI_1 SIUL DSPI_0 I/O — I/O O I I S Tristate 31 45 53 PCR[13] AF0 AF1 AF2 AF3 GPIO[13] SOUT_0 E0UC[29] — SIUL DSPI_0 eMIOS_0 — I/O O I/O — M Tristate 30 44 52 PCR[14] AF0 AF1 AF2 AF3 — GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4] SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL I/O I/O I/O I/O I M Tristate 28 42 50 Port pin PCR Alternate register function1 PA[7] PCR[7] PA[8] MPC5606BK Microcontroller Data Sheet, Rev. 5 8 NXP Semiconductors AF0 AF1 AF2 AF3 — GPIO[15] CS0_0 SCK_0 E0UC[1] WKUP[10]4 RESET config.3 PCR[15] Function Pad type2 PA[15] PCR Alternate register function1 I/O direction Port pin Peripheral Table 2. Functional port pins (continued) 100 LQFP SIUL DSPI_0 DSPI_0 eMIOS_0 WKUP I/O I/O I/O I/O I M Tristate 27 40 48 Pin number 144 LQFP 176 LQFP Port B PB[0] PCR[16] AF0 AF1 AF2 AF3 GPIO[16] CAN0TX E0UC[30] LIN0TX SIUL FlexCAN_0 eMIOS_0 LINFlex_0 I/O O I/O O M Tristate 23 31 39 PB[1] PCR[17] AF0 AF1 AF2 AF3 — — — GPIO[17] — E0UC[31] — WKUP[4]4 CAN0RX LIN0RX SIUL — eMIOS_0 — WKUP FlexCAN_0 LINFlex_0 I/O — I/O — I I I S Tristate 24 32 40 PB[2] PCR[18] AF0 AF1 AF2 AF3 GPIO[18] LIN0TX SDA E0UC[30] SIUL LINFlex_0 I2C_0 eMIOS_0 I/O O I/O I/O M Tristate 100 144 176 PB[3] PCR[19] AF0 AF1 AF2 AF3 — — GPIO[19] E0UC[31] SCL — WKUP[11]4 LIN0RX SIUL eMIOS_0 I2C_0 — WKUP LINFlex_0 I/O I/O I/O — I I S Tristate 1 1 1 PB[4] PCR[20] AF0 AF1 AF2 AF3 — — — — — — — ADC0_P[0] ADC1_P[0] GPIO[20] — — — — ADC_0 ADC_1 SIUL — — — — I I I I Tristate 50 72 88 PB[5] PCR[21] AF0 AF1 AF2 AF3 — — — — — — — ADC0_P[1] ADC1_P[1] GPIO[21] — — — — ADC_0 ADC_1 SIUL — — — — I I I I Tristate 53 75 91 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 9 — — — — ADC0_P[2] ADC1_P[2] GPIO[22] — — — — ADC_0 ADC_1 SIUL — — — — I I I PCR[23] AF0 AF1 AF2 AF3 — — — — — — — ADC0_P[3] ADC1_P[3] GPIO[23] — — — — ADC_0 ADC_1 SIUL — — — — I I I PB[8] PCR[24] AF0 AF1 AF2 AF3 — — — — GPIO[24] — — — OSC32K_XTAL7 WKUP[25] ADC0_S[0] ADC1_S[4] SIUL — — — OSC32K WKUP ADC_0 ADC_1 PB[9] PCR[25] AF0 AF1 AF2 AF3 — — — — GPIO[25] — — — OSC32K_EXTAL7 WKUP[26] ADC0_S[1] ADC1_S[5] PB[10] PCR[26] AF0 AF1 AF2 AF3 — — — PB[11] PCR[27] PB[12] PCR[28] RESET config.3 I/O direction AF0 AF1 AF2 AF3 — — — Pin number Pad type2 Function Peripheral Table 2. Functional port pins (continued) 100 LQFP 144 LQFP 176 LQFP I Tristate 54 76 92 I Tristate 55 77 93 I — — — — I I I I — 39 53 61 SIUL — — — OSC32K WKUP ADC_0 ADC_1 I — — — — I I I I — 38 52 60 GPIO[26] — — — WKUP[8]4 ADC0_S[2] ADC1_S[6] SIUL — — — WKUP ADC_0 ADC_1 I/O — — — I I I J Tristate 40 54 62 AF0 AF1 AF2 AF3 — GPIO[27] E0UC[3] — CS0_0 ADC0_S[3] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — I/O I J Tristate — — 97 AF0 AF1 AF2 AF3 — GPIO[28] E0UC[4] — CS1_0 ADC0_X[0] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I J Tristate 61 83 101 Port pin PCR Alternate register function1 PB[6] PCR[22] PB[7] MPC5606BK Microcontroller Data Sheet, Rev. 5 10 NXP Semiconductors Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PB[13] PCR[29] AF0 AF1 AF2 AF3 — GPIO[29] E0UC[5] — CS2_0 ADC0_X[1] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I J Tristate 63 85 103 PB[14] PCR[30] AF0 AF1 AF2 AF3 — GPIO[30] E0UC[6] — CS3_0 ADC0_X[2] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I J Tristate 65 87 105 PB[15] PCR[31] AF0 AF1 AF2 AF3 — GPIO[31] E0UC[7] — CS4_0 ADC0_X[3] SIUL eMIOS_0 — DSPI_0 ADC_0 I/O I/O — O I J Tristate 67 89 107 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP Port C PC[0]8 PCR[32] AF0 AF1 AF2 AF3 GPIO[32] — TDI — SIUL — JTAGC — I/O — I — M Input, weak pull-up 87 126 154 PC[1]8 PCR[33] AF0 AF1 AF2 AF3 GPIO[33] — TDO — SIUL — JTAGC — I/O — O — F9 Tristate 82 121 149 PC[2] PCR[34] AF0 AF1 AF2 AF3 — GPIO[34] SCK_1 CAN4TX DEBUG[0] EIRQ[5] SIUL DSPI_1 FlexCAN_4 SSCM SIUL I/O I/O O O I M Tristate 78 117 145 PC[3] PCR[35] AF0 AF1 AF2 AF3 — — — GPIO[35] CS0_1 MA[0] DEBUG[1] EIRQ[6] CAN1RX CAN4RX SIUL DSPI_1 ADC_0 SSCM SIUL FlexCAN_1 FlexCAN_4 I/O I/O O O I I I S Tristate 77 116 144 PC[4] PCR[36] AF0 AF1 AF2 AF3 — — — GPIO[36] E1UC[31] — DEBUG[2] EIRQ[18] SIN_1 CAN3RX SIUL eMIOS_1 — SSCM SIUL DSPI_1 FlexCAN_3 I/O I/O — O I I I M Tristate 92 131 159 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 11 GPIO[37] SOUT_1 CAN3TX DEBUG[3] EIRQ[7] SIUL DSPI_1 FlexCAN_3 SSCM SIUL I/O O O O I PCR[38] AF0 AF1 AF2 AF3 GPIO[38] LIN1TX E1UC[28] DEBUG[4] SIUL LINFlex_1 eMIOS_1 SSCM I/O O I/O O PC[7] PCR[39] AF0 AF1 AF2 AF3 — — GPIO[39] — E1UC[29] DEBUG[5] LIN1RX WKUP[12]4 SIUL — eMIOS_1 SSCM LINFlex_1 WKUP PC[8] PCR[40] AF0 AF1 AF2 AF3 GPIO[40] LIN2TX E0UC[3] DEBUG[6] PC[9] PCR[41] AF0 AF1 AF2 AF3 — — PC[10] PCR[42] RESET config.3 I/O direction AF0 AF1 AF2 AF3 — Pin number Pad type2 Function Peripheral Table 2. Functional port pins (continued) 100 LQFP 144 LQFP 176 LQFP M Tristate 91 130 158 S Tristate 25 36 44 I/O — I/O O I I S Tristate 26 37 45 SIUL LINFlex_2 eMIOS_0 SSCM I/O O I/O O S Tristate 99 143 175 GPIO[41] — E0UC[7] DEBUG[7] WKUP[13]4 LIN2RX SIUL — eMIOS_0 SSCM WKUP LINFlex_2 I/O — I/O O I I S Tristate 2 2 2 AF0 AF1 AF2 AF3 GPIO[42] CAN1TX CAN4TX MA[1] SIUL FlexCAN_1 FlexCAN_4 ADC_0 I/O O O O M Tristate 22 28 36 PC[11] PCR[43] AF0 AF1 AF2 AF3 — — — GPIO[43] — — MA[2] WKUP[5]4 CAN1RX CAN4RX SIUL — — ADC_0 WKUP FlexCAN_1 FlexCAN_4 I/O — — O I I I S Tristate 21 27 35 PC[12] PCR[44] AF0 AF1 AF2 AF3 — — GPIO[44] E0UC[12] — — EIRQ[19] SIN_2 SIUL eMIOS_0 — — SIUL DSPI_2 I/O I/O — — I I M Tristate 97 141 173 PC[13] PCR[45] AF0 AF1 AF2 AF3 GPIO[45] E0UC[13] SOUT_2 — SIUL eMIOS_0 DSPI_2 — I/O I/O O — S Tristate 98 142 174 Port pin PCR Alternate register function1 PC[5] PCR[37] PC[6] MPC5606BK Microcontroller Data Sheet, Rev. 5 12 NXP Semiconductors Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PC[14] PCR[46] AF0 AF1 AF2 AF3 — GPIO[46] E0UC[14] SCK_2 — EIRQ[8] SIUL eMIOS_0 DSPI_2 — SIUL I/O I/O I/O — I S Tristate 3 3 3 PC[15] PCR[47] AF0 AF1 AF2 AF3 — GPIO[47] E0UC[15] CS0_2 — EIRQ[20] SIUL eMIOS_0 DSPI_2 — SIUL I/O I/O I/O — I M Tristate 4 4 4 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP Port D PD[0] PCR[48] AF0 AF1 AF2 AF3 — — — GPIO[48] — — — WKUP[27] ADC0_P[4] ADC1_P[4] SIUL — — — WKUP ADC_0 ADC_1 I — — — I I I I Tristate 41 63 77 PD[1] PCR[49] AF0 AF1 AF2 AF3 — — — GPIO[49] — — — WKUP[28] ADC0_P[5] ADC1_P[5] SIUL — — — WKUP ADC_0 ADC_1 I — — — I I I I Tristate 42 64 78 PD[2] PCR[50] AF0 AF1 AF2 AF3 — — GPIO[50] — — — ADC0_P[6] ADC1_P[6] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 43 65 79 PD[3] PCR[51] AF0 AF1 AF2 AF3 — — GPIO[51] — — — ADC0_P[7] ADC1_P[7] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 44 66 80 PD[4] PCR[52] AF0 AF1 AF2 AF3 — — GPIO[52] — — — ADC0_P[8] ADC1_P[8] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 45 67 81 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 13 GPIO[53] — — — ADC0_P[9] ADC1_P[9] SIUL — — — ADC_0 ADC_1 I — — — I I PCR[54] AF0 AF1 AF2 AF3 — — GPIO[54] — — — ADC0_P[10] ADC1_P[10] SIUL — — — ADC_0 ADC_1 I — — — I I PD[7] PCR[55] AF0 AF1 AF2 AF3 — — GPIO[55] — — — ADC0_P[11] ADC1_P[11] SIUL — — — ADC_0 ADC_1 PD[8] PCR[56] AF0 AF1 AF2 AF3 — — GPIO[56] — — — ADC0_P[12] ADC1_P[12] PD[9] PCR[57] AF0 AF1 AF2 AF3 — — PD[10] PCR[58] RESET config.3 I/O direction AF0 AF1 AF2 AF3 — — Pin number Pad type2 Function Peripheral Table 2. Functional port pins (continued) 100 LQFP 144 LQFP 176 LQFP I Tristate 46 68 82 I Tristate 47 69 83 I — — — I I I Tristate 48 70 84 SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 49 71 87 GPIO[57] — — — ADC0_P[13] ADC1_P[13] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 56 78 94 AF0 AF1 AF2 AF3 — — GPIO[58] — — — ADC0_P[14] ADC1_P[14] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 57 79 95 PD[11] PCR[59] AF0 AF1 AF2 AF3 — — GPIO[59] — — — ADC0_P[15] ADC1_P[15] SIUL — — — ADC_0 ADC_1 I — — — I I I Tristate 58 80 96 PD[12] PCR[60] AF0 AF1 AF2 AF3 — GPIO[60] CS5_0 E0UC[24] — ADC0_S[4] SIUL DSPI_0 eMIOS_0 — ADC_0 I/O O I/O — I J Tristate — — 100 Port pin PCR Alternate register function1 PD[5] PCR[53] PD[6] MPC5606BK Microcontroller Data Sheet, Rev. 5 14 NXP Semiconductors Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PD[13] PCR[61] AF0 AF1 AF2 AF3 — GPIO[61] CS0_1 E0UC[25] — ADC0_S[5] SIUL DSPI_1 eMIOS_0 — ADC_0 I/O I/O I/O — I J Tristate 62 84 102 PD[14] PCR[62] AF0 AF1 AF2 AF3 — GPIO[62] CS1_1 E0UC[26] — ADC0_S[6] SIUL DSPI_1 eMIOS_0 — ADC_0 I/O O I/O — I J Tristate 64 86 104 PD[15] PCR[63] AF0 AF1 AF2 AF3 — GPIO[63] CS2_1 E0UC[27] — ADC0_S[7] SIUL DSPI_1 eMIOS_0 — ADC_0 I/O O I/O — I J Tristate 66 88 106 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP Port E PE[0] PCR[64] AF0 AF1 AF2 AF3 — — GPIO[64] E0UC[16] — — WKUP[6]4 CAN5RX SIUL eMIOS_0 — — WKUP FlexCAN_5 I/O I/O — — I I S Tristate 6 10 18 PE[1] PCR[65] AF0 AF1 AF2 AF3 GPIO[65] E0UC[17] CAN5TX — SIUL eMIOS_0 FlexCAN_5 — I/O I/O O — M Tristate 8 12 20 PE[2] PCR[66] AF0 AF1 AF2 AF3 — — GPIO[66] E0UC[18] — — EIRQ[21] SIN_1 SIUL eMIOS_0 — — SIUL DSPI_1 I/O I/O — — I I M Tristate 89 128 156 PE[3] PCR[67] AF0 AF1 AF2 AF3 GPIO[67] E0UC[19] SOUT_1 — SIUL eMIOS_0 DSPI_1 — I/O I/O O — M Tristate 90 129 157 PE[4] PCR[68] AF0 AF1 AF2 AF3 — GPIO[68] E0UC[20] SCK_1 — EIRQ[9] SIUL eMIOS_0 DSPI_1 — SIUL I/O I/O I/O — I M Tristate 93 132 160 PE[5] PCR[69] AF0 AF1 AF2 AF3 GPIO[69] E0UC[21] CS0_1 MA[2] SIUL eMIOS_0 DSPI_1 ADC_0 I/O I/O I/O O M Tristate 94 133 161 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 15 GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22] SIUL eMIOS_0 DSPI_0 ADC_0 SIUL I/O I/O O O I PCR[71] AF0 AF1 AF2 AF3 — GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23] SIUL eMIOS_0 DSPI_0 ADC_0 SIUL I/O I/O O O I PE[8] PCR[72] AF0 AF1 AF2 AF3 GPIO[72] CAN2TX E0UC[22] CAN3TX SIUL FlexCAN_2 eMIOS_0 FlexCAN_3 PE[9] PCR[73] AF0 AF1 AF2 AF3 — — — GPIO[73] — E0UC[23] — WKUP[7]4 CAN2RX CAN3RX PE[10] PCR[74] AF0 AF1 AF2 AF3 — PE[11] PCR[75] PE[12] PE[13] RESET config.3 I/O direction AF0 AF1 AF2 AF3 — Pin number Pad type2 Function Peripheral Table 2. Functional port pins (continued) 100 LQFP 144 LQFP 176 LQFP M Tristate 95 139 167 M Tristate 96 140 168 I/O O I/O O M Tristate 9 13 21 SIUL — eMIOS_0 — WKUP FlexCAN_2 FlexCAN_3 I/O — I/O — I I I S Tristate 10 14 22 GPIO[74] LIN3TX CS3_1 E1UC[30] EIRQ[10] SIUL LINFlex_3 DSPI_1 eMIOS_1 SIUL I/O O O I/O I S Tristate 11 15 23 AF0 AF1 AF2 AF3 — — GPIO[75] E0UC[24] CS4_1 — LIN3RX WKUP[14]4 SIUL eMIOS_0 DSPI_1 — LINFlex_3 WKUP I/O I/O O — I I S Tristate 13 17 25 PCR[76] AF0 AF1 AF2 AF3 — — — GPIO[76] — E1UC[19]10 — EIRQ[11] SIN_2 ADC1_S[7] SIUL — eMIOS_1 — SIUL DSPI_2 ADC_1 I/O — I/O — I I I J Tristate 76 109 133 PCR[77] AF0 AF1 AF2 AF3 GPIO[77] SOUT_2 E1UC[20] — SIUL DSPI_2 eMIOS_1 — I/O O I/O — S Tristate — 103 127 Port pin PCR Alternate register function1 PE[6] PCR[70] PE[7] MPC5606BK Microcontroller Data Sheet, Rev. 5 16 NXP Semiconductors Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PE[14] PCR[78] AF0 AF1 AF2 AF3 — GPIO[78] SCK_2 E1UC[21] — EIRQ[12] SIUL DSPI_2 eMIOS_1 — SIUL I/O I/O I/O — I S Tristate — 112 136 PE[15] PCR[79] AF0 AF1 AF2 AF3 GPIO[79] CS0_2 E1UC[22] — SIUL DSPI_2 eMIOS_1 — I/O I/O I/O — M Tristate — 113 137 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP Port F PF[0] PCR[80] AF0 AF1 AF2 AF3 — GPIO[80] E0UC[10] CS3_1 — ADC0_S[8] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I J Tristate — 55 63 PF[1] PCR[81] AF0 AF1 AF2 AF3 — GPIO[81] E0UC[11] CS4_1 — ADC0_S[9] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I J Tristate — 56 64 PF[2] PCR[82] AF0 AF1 AF2 AF3 — GPIO[82] E0UC[12] CS0_2 — ADC0_S[10] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I J Tristate — 57 65 PF[3] PCR[83] AF0 AF1 AF2 AF3 — GPIO[83] E0UC[13] CS1_2 — ADC0_S[11] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I J Tristate — 58 66 PF[4] PCR[84] AF0 AF1 AF2 AF3 — GPIO[84] E0UC[14] CS2_2 — ADC0_S[12] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I J Tristate — 59 67 PF[5] PCR[85] AF0 AF1 AF2 AF3 — GPIO[85] E0UC[22] CS3_2 — ADC0_S[13] SIUL eMIOS_0 DSPI_2 — ADC_0 I/O I/O O — I J Tristate — 60 68 PF[6] PCR[86] AF0 AF1 AF2 AF3 — GPIO[86] E0UC[23] CS1_1 — ADC0_S[14] SIUL eMIOS_0 DSPI_1 — ADC_0 I/O I/O O — I J Tristate — 61 69 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 17 GPIO[87] — CS2_1 — ADC0_S[15] SIUL — DSPI_1 — ADC_0 I/O — O — I PCR[88] AF0 AF1 AF2 AF3 GPIO[88] CAN3TX CS4_0 CAN2TX SIUL FlexCAN_3 DSPI_0 FlexCAN_2 I/O O O O PF[9] PCR[89] AF0 AF1 AF2 AF3 — — — GPIO[89] E1UC[1] CS5_0 — WKUP[22]4 CAN2RX CAN3RX SIUL eMIOS_1 DSPI_0 — WKUP FlexCAN_2 FlexCAN_3 PF[10] PCR[90] AF0 AF1 AF2 AF3 GPIO[90] CS1_0 LIN4TX E1UC[2] PF[11] PCR[91] AF0 AF1 AF2 AF3 — — PF[12] PCR[92] PF[13] PF[14] RESET config.3 I/O direction AF0 AF1 AF2 AF3 — Pin number Pad type2 Function Peripheral Table 2. Functional port pins (continued) 100 LQFP 144 LQFP 176 LQFP J Tristate — 62 70 M Tristate — 34 42 I/O I/O O — I I I S Tristate — 33 41 SIUL DSPI_0 LINFlex_4 eMIOS_1 I/O O O I/O M Tristate — 38 46 GPIO[91] CS2_0 E1UC[3] — WKUP[15]4 LIN4RX SIUL DSPI_0 eMIOS_1 — WKUP LINFlex_4 I/O O I/O — I I S Tristate — 39 47 AF0 AF1 AF2 AF3 GPIO[92] E1UC[25] LIN5TX — SIUL eMIOS_1 LINFlex_5 — I/O I/O O — M Tristate — 35 43 PCR[93] AF0 AF1 AF2 AF3 — — GPIO[93] E1UC[26] — — WKUP[16]4 LIN5RX SIUL eMIOS_1 — — WKUP LINFlex_5 I/O I/O — — I I S Tristate — 41 49 PCR[94] AF0 AF1 AF2 AF3 GPIO[94] CAN4TX E1UC[27] CAN1TX SIUL FlexCAN_4 eMIOS_1 FlexCAN_1 I/O O I/O O M Tristate — 102 126 Port pin PCR Alternate register function1 PF[7] PCR[87] PF[8] MPC5606BK Microcontroller Data Sheet, Rev. 5 18 NXP Semiconductors AF0 AF1 AF2 AF3 — — — GPIO[95] E1UC[4] — — EIRQ[13] CAN1RX CAN4RX RESET config.3 PCR[95] Function Pad type2 PF[15] PCR Alternate register function1 I/O direction Port pin Peripheral Table 2. Functional port pins (continued) 100 LQFP SIUL eMIOS_1 — — SIUL FlexCAN_1 FlexCAN_4 I/O I/O — — I I I S Tristate — 101 125 Pin number 144 LQFP 176 LQFP Port G PG[0] PCR[96] AF0 AF1 AF2 AF3 GPIO[96] CAN5TX E1UC[23] — SIUL FlexCAN_5 eMIOS_1 — I/O O I/O — M Tristate — 98 122 PG[1] PCR[97] AF0 AF1 AF2 AF3 — — GPIO[97] — E1UC[24] — EIRQ[14] CAN5RX SIUL — eMIOS_1 — SIUL FlexCAN_5 I/O — I/O — I I S Tristate — 97 121 PG[2] PCR[98] AF0 AF1 AF2 AF3 GPIO[98] E1UC[11] SOUT_3 — SIUL eMIOS_1 DSPI_3 — I/O I/O O — M Tristate — 8 16 PG[3] PCR[99] AF0 AF1 AF2 AF3 — GPIO[99] E1UC[12] CS0_3 — WKUP[17]4 SIUL eMIOS_1 DSPI_3 — WKUP I/O I/O O — I S Tristate — 7 15 PG[4] PCR[100] AF0 AF1 AF2 AF3 GPIO[100] E1UC[13] SCK_3 — SIUL eMIOS_1 DSPI_3 — I/O I/O I/O — M Tristate — 6 14 PG[5] PCR[101] AF0 AF1 AF2 AF3 — — GPIO[101] E1UC[14] — — WKUP[18]4 SIN_3 SIUL eMIOS_1 — — WKUP DSPI_3 I/O I/O — — I I S Tristate — 5 13 PG[6] PCR[102] AF0 AF1 AF2 AF3 GPIO[102] E1UC[15] LIN6TX — SIUL eMIOS_1 LINFlex_6 — I/O I/O O — M Tristate — 30 38 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 19 Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PG[7] PCR[103] AF0 AF1 AF2 AF3 — — GPIO[103] E1UC[16] E1UC[30] — WKUP[20]4 LIN6RX SIUL eMIOS_1 eMIOS_1 — WKUP LINFlex_6 I/O I/O I/O — I I S Tristate — 29 37 PG[8] PCR[104] AF0 AF1 AF2 AF3 — GPIO[104] E1UC[17] LIN7TX CS0_2 EIRQ[15] SIUL eMIOS_1 LINFlex_7 DSPI_2 SIUL I/O I/O O I/O I S Tristate — 26 34 PG[9] PCR[105] AF0 AF1 AF2 AF3 — — GPIO[105] E1UC[18] — SCK_2 WKUP[21]4 LIN7RX SIUL eMIOS_1 — DSPI_2 WKUP LINFlex_7 I/O I/O — I/O I I S Tristate — 25 33 PG[10] PCR[106] AF0 AF1 AF2 AF3 — GPIO[106] E0UC[24] E1UC[31] — SIN_4 SIUL eMIOS_0 eMIOS_1 — DSPI_4 I/O I/O I/O — I S Tristate — 114 138 PG[11] PCR[107] AF0 AF1 AF2 AF3 GPIO[107] E0UC[25] CS0_4 — SIUL eMIOS_0 DSPI_4 — I/O I/O O — M Tristate — 115 139 PG[12] PCR[108] AF0 AF1 AF2 AF3 GPIO[108] E0UC[26] SOUT_4 — SIUL eMIOS_0 DSPI_4 — I/O I/O O — M Tristate — 92 116 PG[13] PCR[109] AF0 AF1 AF2 AF3 GPIO[109] E0UC[27] SCK_4 — SIUL eMIOS_0 DSPI_4 — I/O I/O I/O — M Tristate — 91 115 PG[14] PCR[110] AF0 AF1 AF2 AF3 GPIO[110] E1UC[0] — — SIUL eMIOS_1 — — I/O I/O — — S Tristate — 110 134 PG[15] PCR[111] AF0 AF1 AF2 AF3 — GPIO[111] E1UC[1] — — — SIUL eMIOS_1 — — — I/O I/O — — — M Tristate — 111 135 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP Port H MPC5606BK Microcontroller Data Sheet, Rev. 5 20 NXP Semiconductors Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PH[0] PCR[112] AF0 AF1 AF2 AF3 — GPIO[112] E1UC[2] — — SIN_1 SIUL eMIOS_1 — — DSPI_1 I/O I/O — — I M Tristate — 93 117 PH[1] PCR[113] AF0 AF1 AF2 AF3 GPIO[113] E1UC[3] SOUT_1 — SIUL eMIOS_1 DSPI_1 — I/O I/O O — M Tristate — 94 118 PH[2] PCR[114] AF0 AF1 AF2 AF3 GPIO[114] E1UC[4] SCK_1 — SIUL eMIOS_1 DSPI_1 — I/O I/O I/O — M Tristate — 95 119 PH[3] PCR[115] AF0 AF1 AF2 AF3 GPIO[115] E1UC[5] CS0_1 — SIUL eMIOS_1 DSPI_1 — I/O I/O I/O — M Tristate — 96 120 PH[4] PCR[116] AF0 AF1 AF2 AF3 GPIO[116] E1UC[6] — — SIUL eMIOS_1 — — I/O I/O — — M Tristate — 134 162 PH[5] PCR[117] AF0 AF1 AF2 AF3 GPIO[117] E1UC[7] — — SIUL eMIOS_1 — — I/O I/O — — S Tristate — 135 163 PH[6] PCR[118] AF0 AF1 AF2 AF3 GPIO[118] E1UC[8] — MA[2] SIUL eMIOS_1 — ADC_0 I/O I/O — O M Tristate — 136 164 PH[7] PCR[119] AF0 AF1 AF2 AF3 GPIO[119] E1UC[9] CS3_2 MA[1] SIUL eMIOS_1 DSPI_2 ADC_0 I/O I/O O O M Tristate — 137 165 PH[8] PCR[120] AF0 AF1 AF2 AF3 GPIO[120] E1UC[10] CS2_2 MA[0] SIUL eMIOS_1 DSPI_2 ADC_0 I/O I/O O O M Tristate — 138 166 PH[9]8 PCR[121] AF0 AF1 AF2 AF3 GPIO[121] — TCK — SIUL — JTAGC — I/O — I — S Input, weak pull-up 88 127 155 PH[10]8 PCR[122] AF0 AF1 AF2 AF3 GPIO[122] — TMS — SIUL — JTAGC — I/O — I — M Input, weak pull-up 81 120 148 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 21 Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PH[11] PCR[123] AF0 AF1 AF2 AF3 GPIO[123] SOUT_3 CS0_4 E1UC[5] SIUL DSPI_3 DSPI_4 eMIOS_1 I/O O I/O I/O M Tristate — — 140 PH[12] PCR[124] AF0 AF1 AF2 AF3 GPIO[124] SCK_3 CS1_4 E1UC[25] SIUL DSPI_3 DSPI_4 eMIOS_1 I/O I/O I/O — M Tristate — — 141 PH[13] PCR[125] AF0 AF1 AF2 AF3 GPIO[125] SOUT_4 CS0_3 E1UC[26] SIUL DSPI_4 DSPI_3 eMIOS_1 I/O O I/O — M Tristate — — 9 PH[14] PCR[126] AF0 AF1 AF2 AF3 GPIO[126] SCK_4 CS1_3 E1UC[27] SIUL DSPI_4 DSPI_3 eMIOS_1 I/O I/O I/O — M Tristate — — 10 PH[15] PCR[127] AF0 AF1 AF2 AF3 GPIO[127] SOUT_5 — E1UC[17] SIUL DSPI_5 — eMIOS_1 I/O O — — M Tristate — — 8 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP Port I PI[0] PCR[128] AF0 AF1 AF2 AF3 GPIO[128] E0UC[28] — — SIUL eMIOS_0 — — I/O I/O — — S Tristate — — 172 PI[1] PCR[129] AF0 AF1 AF2 AF3 — — GPIO[129] E0UC[29] — — WKUP[24]4 — SIUL eMIOS_0 — — WKUP — I/O I/O — — I — S Tristate — — 171 PI[2] PCR[130] AF0 AF1 AF2 AF3 GPIO[130] E0UC[30] — — SIUL eMIOS_0 — — I/O I/O — — S Tristate — — 170 PI[3] PCR[131] AF0 AF1 AF2 AF3 — — GPIO[131] E0UC[31] — — WKUP[23]4 — SIUL eMIOS_0 — — WKUP — I/O I/O — — I — S Tristate — — 169 PI[4] PCR[132] AF0 AF1 AF2 AF3 GPIO[132] E1UC[28] SOUT_4 — SIUL eMIOS_1 DSPI_4 — I/O I/O O — S Tristate — — 143 MPC5606BK Microcontroller Data Sheet, Rev. 5 22 NXP Semiconductors Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PI[5] PCR[133] AF0 AF1 AF2 AF3 GPIO[133] E1UC[29] SCK_4 — SIUL eMIOS_1 DSPI_4 — I/O I/O I/O — S Tristate — — 142 PI[6] PCR[134] AF0 AF1 AF2 AF3 GPIO[134] E1UC[30] CS0_4 — SIUL eMIOS_1 DSPI_4 — I/O I/O I/O — S Tristate — — 11 PI[7] PCR[135] AF0 AF1 AF2 AF3 GPIO[135] E1UC[31] CS1_4 — SIUL eMIOS_1 DSPI_4 — I/O I/O I/O — S Tristate — — 12 PI[8] PCR[136] AF0 AF1 AF2 AF3 — GPIO[136] — — — ADC0_S[16] SIUL — — — ADC_0 I/O — — — I J Tristate — — 108 PI[9] PCR[137] AF0 AF1 AF2 AF3 — GPIO[137] — — — ADC0_S[17] SIUL — — — ADC_0 I/O — — — I J Tristate — — 109 PI[10] PCR[138] AF0 AF1 AF2 AF3 — GPIO[138] — — — ADC0_S[18] SIUL — — — ADC_0 I/O — — — I J Tristate — — 110 PI[11] PCR[139] AF0 AF1 AF2 AF3 — — GPIO[139] — — — ADC0_S[19] SIN_3 SIUL — — — ADC_0 DSPI_3 I/O — — — I I J Tristate — — 111 PI[12] PCR[140] AF0 AF1 AF2 AF3 — GPIO[140] CS0_3 — — ADC0_S[20] SIUL DSPI_3 — — ADC_0 I/O I/O — — I J Tristate — — 112 PI[13] PCR[141] AF0 AF1 AF2 AF3 — GPIO[141] CS1_3 — — ADC0_S[21] SIUL DSPI_3 — — ADC_0 I/O I/O — — I J Tristate — — 113 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 23 Peripheral I/O direction Pad type2 RESET config.3 Table 2. Functional port pins (continued) 100 LQFP PI[14] PCR[142] AF0 AF1 AF2 AF3 — — GPIO[142] — — — ADC0_S[22] SIN_4 SIUL — — — ADC_0 DSPI_4 I/O — — — I I J Tristate — — 76 PI[15] PCR[143] AF0 AF1 AF2 AF3 — GPIO[143] CS0_4 — — ADC0_S[23] SIUL DSPI_4 — — ADC_0 I/O I/O — — I J Tristate — — 75 Port pin PCR Alternate register function1 Function Pin number 144 LQFP 176 LQFP Port J PJ[0] PCR[144] AF0 AF1 AF2 AF3 — GPIO[144] CS1_4 — — ADC0_S[24] SIUL DSPI_4 — — ADC_0 I/O I/O — — I J Tristate — — 74 PJ[1] PCR[145] AF0 AF1 AF2 AF3 — — GPIO[145] — — — ADC0_S[25] SIN_5 SIUL — — —— ADC_0 DSPI_5 I/O — — — I I J Tristate — — 73 PJ[2] PCR[146] AF0 AF1 AF2 AF3 — GPIO[146] CS0_5 — — ADC0_S[26] SIUL DSPI_5 — — ADC_0 I/O I/O — — I J Tristate — — 72 PJ[3] PCR[147] AF0 AF1 AF2 AF3 — GPIO[147] CS1_5 — — ADC0_S[27] SIUL DSPI_5 — — ADC_0 I/O I/O — — I J Tristate — — 71 PJ[4] PCR[148] AF0 AF1 AF2 AF3 GPIO[148] SCK_5 E1UC[18] — SIUL DSPI_5 eMIOS_1 — I/O I/O — — M Tristate — — 5 1 Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as “—”. 2 See Table 3. 3 The RESET configuration applies during and after reset. MPC5606BK Microcontroller Data Sheet, Rev. 5 24 NXP Semiconductors 4 All WKUP pins also support external interrupt capability. See the WKPU chapter of the MPC5606BK Microcontroller Reference Manual for further details. 5 NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored. 6 “Not applicable” because these functions are available only while the device is booting. See the BAM chapter of the MPC5606BK Microcontroller Reference Manual for details. 7 Value of PCR.IBE bit must be 0. 8 Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively). It is up to the user to configure these pins as GPIO when needed. 9 PC[1] is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode after reset which has TDO functionality. The reset value of PCR.OBE is 1, but this setting has no impact as long as this pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as reset value of PCR.OBE = 1. 10 Not available in 100LQFP package. Table 3. Pad types Type 3 Description F Fast I Input only with analog feature J Input/output with analog feature M Medium S Slow Electrical characteristics This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. 3.1 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 4 are used and the parameters are tagged accordingly in the tables where appropriate. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 25 Table 4. Parameter classifications Classification tag Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. NOTE The classification is shown in the column labeled “C” in the parameter tables where appropriate. 3.2 NVUSRO register Portions of the device configuration, such as high voltage supply, oscillator margin, and watchdog enable/disable after reset are controlled via bit values in the Non-Volatile User Options Register (NVUSRO) register. For a detailed description of the NVUSRO register, please refer to the MPC5606BK Microcontroller Reference Manual. 3.2.1 NVUSRO[PAD3V5V] field description Table 5 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 5. PAD3V5V field description1 Value2 1 2 Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register. The default manufacturing value is ‘1’. This value can be programmed by the customer in Shadow Flash. The DC electrical characteristics are dependent on the PAD3V5V bit value. 3.2.2 NVUSRO[OSCILLATOR_MARGIN] field description Table 6 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration. Table 6. OSCILLATOR_MARGIN field description1 Value2 1 2 Description 0 Low consumption configuration (4 MHz/8 MHz) 1 High margin configuration (4 MHz/16 MHz) See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register. The default manufacturing value is ‘1’. This value can be programmed by the customer in Shadow Flash. The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. MPC5606BK Microcontroller Data Sheet, Rev. 5 26 NXP Semiconductors 3.2.3 NVUSRO[WATCHDOG_EN] field description The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 7 shows how NVUSRO[WATCHDOG_EN] controls the device configuration. Table 7. WATCHDOG_EN field description1 Value2 1 2 3.3 Description 0 Disable after reset 1 Enable after reset See the MPC5606BK Microcontroller Reference Manual for more information on the NVUSRO register. The default manufacturing value is ‘1’. This value can be programmed by the customer in Shadow Flash. Absolute maximum ratings Table 8. Absolute maximum ratings Value Symbol Parameter Conditions Unit Min Max VSS SR Digital ground on VSS_HV pins — 0 0 V VDD SR Voltage on VDD_HV pins with respect to ground (VSS) — –0.3 6.0 V VSS_LV SR Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS) — VDD_BV SR Voltage on VDD_BV pin (regulator supply) with respect to ground (VSS) — Relative to VDD VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (VSS) — VDD_ADC SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (VSS) — VIN SR Voltage on any GPIO pin with respect to ground (VSS) Relative to VDD — Relative to VDD VSS – 0.1 VSS + 0.1 –0.3 6.0 –0.3 VDD + 0.3 VSS – 0.1 VSS + 0.1 –0.3 6.0 –0.3 6.0 — VDD + 0.3 SR Injected input current on any pin during overload condition — –10 10 IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 IAVGSEG SR Sum of all the static I/O current within a supply VDD = 5.0 V ± 10%, segment PAD3V5V = 0 — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — 64 –55 150 — V V V VDD − 0.3 VDD + 0.3 IINJPAD TSTORAGE SR Storage temperature V V mA mA °C MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 27 NOTE Stresses exceeding the recommended absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN > VDD or VIN < VSS), the voltage on pins with respect to ground (VSS) must not exceed the recommended values. 3.4 Recommended operating conditions Table 9. Recommended operating conditions (3.3 V) Value Symbol Parameter Conditions Unit Min Max VSS SR Digital ground on VSS_HV pins — 0 0 V VDD1 SR Voltage on VDD_HV pins with respect to ground (VSS) — 3.0 3.6 V VSS_LV2 SR Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS) — VDD_BV3 SR Voltage on VDD_BV pin (regulator supply) with respect to ground (VSS) — Relative to VDD — VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (VSS) VDD_ADC4 — SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with Relative to VDD respect to ground (VSS) VIN SR Voltage on any GPIO pin with respect to ground (VSS) — Relative to VDD VSS − 0.1 VSS + 0.1 3.0 3.6 V VDD − 0.1 VDD + 0.1 VSS − 0.1 VSS + 0.1 3.05 3.6 V V VDD − 0.1 VDD + 0.1 VSS − 0.1 — — VDD + 0.1 IINJPAD SR Injected input current on any pin during overload condition — −5 5 IINJSUM SR Absolute sum of all injected input currents during overload condition — −50 50 SR VDD slope to ensure correct power up6 — 3.07 TVDD V V mA 0.25 V/µs V/s MPC5606BK Microcontroller Data Sheet, Rev. 5 28 NXP Semiconductors Table 9. Recommended operating conditions (3.3 V) (continued) Value Symbol TA C-Grade Parameter SR Ambient temperature under bias Conditions Unit fCPU < 64 MHz8 Min Max −40 85 −40 110 −40 105 −40 130 −40 125 −40 150 °C Part TJ C-Grade SR Junction temperature under bias — Part TA V-Grade SR Ambient temperature under bias fCPU < 64 MHz8 Part TJ V-Grade SR Junction temperature under bias — Part TA M-Grade SR Ambient temperature under bias fCPU < 64 MHz8 Part TJ M-Grade SR Junction temperature under bias — Part 1 2 3 4 5 6 7 8 100 nF capacitance needs to be provided between each VDD/VSS pair. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/O DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, the device is reset. Guaranteed by device validation Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH). This frequency includes the 4% frequency modulation guard band. Table 10. Recommended operating conditions (5.0 V) Value Symbol Parameter Conditions VSS SR Digital ground on VSS_HV pins — VDD1 SR Voltage on VDD_HV pins with respect to ground (VSS) — 2 Voltage drop Unit Min Max 0 0 V 4.5 5.5 V 3.0 5.5 VSS_LV3 SR Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (VSS) — VSS − 0.1 VSS + 0.1 V VDD_BV4 SR Voltage on VDD_BV pin (regulator supply) with respect to ground (VSS) — 4.5 5.5 V 3.0 5.5 3.0 VDD + 0.1 Voltage drop2 Relative to VDD VSS_ADC SR Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (VSS) — VSS − 0.1 VSS + 0.1 V MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 29 Table 10. Recommended operating conditions (5.0 V) (continued) Value Symbol Parameter Conditions VDD_ADC5 SR Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (VSS) — 2 Voltage drop Relative to VDD VIN SR Voltage on any GPIO pin with respect to ground (VSS) — Relative to VDD Unit Min Max 4.5 5.5 3.0 5.5 V VDD − 0.1 VDD + 0.1 VSS − 0.1 — — VDD + 0.1 V IINJPAD SR Injected input current on any pin during overload condition — −5 5 IINJSUM SR Absolute sum of all injected input currents during overload condition — −50 50 SR VDD slope to ensure correct power up6 — 3.07 0.25 V/µs V/s fCPU < 64 MHz8 −40 85 °C — −40 110 fCPU < 64 MHz8 −40 105 — −40 130 fCPU < 64 MHz8 −40 125 — −40 150 TVDD TA C-Grade SR Ambient temperature under bias mA Part TJ C-Grade SR Junction temperature under bias Part TA V-Grade SR Ambient temperature under bias Part TJ V-Grade SR Junction temperature under bias Part TA M-Grade SR Ambient temperature under bias Part TJ M-Grade SR Junction temperature under bias Part 1 2 3 4 5 6 7 8 100 nF capacitance needs to be provided between each VDD/VSS pair. Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain analog electrical characteristics will not be guaranteed to stay within the stated limits. 330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 470 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed depending on external regulator characteristics). While the supply voltage ramps up, the slope on VDD_BV should be less than 0.9VDD_HV in order to ensure the device does not enter regulator bypass mode. 100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair. Guaranteed by device validation. Please refer to Section 3.5.1, External ballast resistor recommendations for minimum VDD slope to be guaranteed to ensure correct power up in case of external resistor usage. Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH). This frequency includes the 4% frequency modulation guard band. NOTE RAM data retention is guaranteed with VDD_LV not below 1.08 V. MPC5606BK Microcontroller Data Sheet, Rev. 5 30 NXP Semiconductors 3.5 Thermal characteristics 3.5.1 External ballast resistor recommendations External ballast resistor on VDD_BV pin helps in reducing the overall power dissipation inside the device. This resistor is required only when maximum power consumption exceeds the limit imposed by package thermal characteristics. As stated in Table 11 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as 48.3 °C/W, at ambient temperature TA = 125 °C, the junction temperature Tj will cross 150 °C if the total power dissipation is greater than (150 – 125)/48.3 = 517 mW. Therefore, the total device current IDDMAX at 125 °C/5.5 V must not exceed 94.1 mA (i.e., PD/VDD). Assuming an average IDD(VDD_HV) of 15–20 mA consumption typically during device RUN mode, the LV domain consumption IDD(VDD_BV) is thus limited to IDDMAX – IDD(VDD_HV), i.e., 80 mA. Therefore, respecting the maximum power allowed as explained in Section 3.5.2, Package thermal characteristics, it is recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following guidelines: • • • If IDD(VDD_BV) < 80 mA, then no resistor is required. If 80 mA < IDD(VDD_BV) < 90 mA, then 4 Ω resistor can be used. If IDD(VDD_BV) > 90 mA, then 8 Ω resistor can be used. Using resistance in the range of 4–8 Ω, the gain will be around 10–20% of total consumption on VDD_BV. For example, if 8 Ω resistor is used, then power consumption when IDD(VDD_BV) is 110 mA is equivalent to power consumption when IDD(VDD_BV) is 90 mA (approximately) when resistor not used. In order to ensure correct power up, the minimum VDD_BV to be guaranteed is 30 ms/V. If the supply ramp is slower than this value, then LVDHV3B monitoring ballast supply VDD_BV pin gets triggered leading to device reset. Until the supply reaches certain threshold, this low voltage monitor generates destructive reset event in the system. This threshold depends on the maximum IDD(VDD_BV) possible across the external resistor. 3.5.2 Package thermal characteristics Table 11. LQFP thermal characteristics1 Symbol C Parameter Conditions2 Value Pin count Unit Min Typ Max RθJA CC D Thermal resistance, junction-to-ambient natural convection3 Single-layer board — 1s Four-layer board — 2s2p RθJB CC Thermal resistance, junction-to-board4 Single-layer board — 1s Four-layer board — 2s2p 100 — — 64 144 — — 64 176 — — 64 100 — — 49.7 144 — — 48.3 176 — — 47.3 100 — — 36 144 — — 38 176 — — 38 100 — — 33.6 144 — — 33.4 176 — — 33.4 °C/W °C/W MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 31 Table 11. LQFP thermal characteristics1 (continued) Symbol C Conditions2 Parameter Value Pin count Unit Min Typ Max RθJC CC Thermal resistance, junction-to-case5 Single-layer board — 1s Four-layer board — 2s2p 100 — — 23 144 — — 23 176 — — 23 100 — — 19.8 144 — — 19.2 176 — — 18.8 °C/W 1 Thermal characteristics are targets based on simulation. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C. 3 Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as RthJA and RthJMA. 4 Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as RthJB. 5 Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as RthJC. 2 3.5.3 Power considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1: TJ = TA + (PD x RθJA) Eqn. 1 Where: TA is the ambient temperature in °C. RθJA is the package junction-to-ambient thermal resistance, in °C/W. PD is the sum of PINT and PI/O (PD = PINT + PI/O). PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power. PI/O represents the power dissipation on input and output pins; user determined. Most of the time for the applications, PI/O < PINT and may be neglected. On the other hand, PI/O may be significant, if the device is configured to continuously drive external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273 °C) Eqn. 2 K = PD x (TA + 273 °C) + RθJA x PD2 Eqn. 3 Therefore, solving equations 1 and 2: Where: MPC5606BK Microcontroller Data Sheet, Rev. 5 32 NXP Semiconductors K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations 1 and 2 iteratively for any value of TA. 3.6 3.6.1 I/O pad electrical characteristics I/O pad types The device provides four main I/O pad types depending on the associated alternate functions: • • • • Slow pads — are the most common pads, providing a good compromise between transition time and low electromagnetic emission. Medium pads — provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission. Fast pads — provide maximum speed. These are used for improved debugging capability. Input only pads — are associated with ADC channels and 32 kHz low power external crystal oscillator providing low input leakage. Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. 3.6.2 I/O input DC characteristics Table 12 provides input DC electrical characteristics as described in Figure 5. VIN VDD VIH VHYS VIL PDIx = ‘1 (GPDI register of SIUL) PDIx = ‘0’ Figure 5. I/O input DC electrical characteristics definition MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 33 Table 12. I/O input DC electrical characteristics Symbol C Value Conditions1 Parameter Unit Min Typ Max VIH SR P Input high level CMOS (Schmitt Trigger) — 0.65VDD — VDD + 0.4 VIL SR P Input low level CMOS (Schmitt Trigger) — −0.4 — 0.35VDD — 0.1VDD — — TA = −40 °C — 2 — TA = 25 °C — 2 — D TA = 85 °C — 5 300 D TA = 105 °C — 12 500 P TA = 125 °C — 70 1000 VHYS CC C Input hysteresis CMOS (Schmitt Trigger) ILKG CC P Digital input leakage No injection on adjacent pin P WFI 2 WNFI 1 2 V nA SR P Wakeup input filtered pulse — — — 40 ns SR P Wakeup input not filtered pulse — 1000 — — ns VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage. 2 3.6.3 I/O output DC characteristics The following tables provide DC characteristics for bidirectional pads: • • • • Table 13 provides weak pull figures. Both pull-up and pull-down resistances are supported. Table 14 provides output driver characteristics for I/O pads when in SLOW configuration. Table 15 provides output driver characteristics for I/O pads when in MEDIUM configuration. Table 16 provides output driver characteristics for I/O pads when in FAST configuration. Table 13. I/O pull-up/pull-down DC electrical characteristics Symbol C Parameter Value Conditions1 Unit Min |IWPU| CC P Weak pull-up current absolute value C P |IWPD| CC P Weak pull-down current absolute value C P 1 2 VIN = VIL, VDD = 5.0 V ± 10% PAD3V5V = 0 Typ Max 10 — 150 10 — 250 VIN = VIL, VDD = 3.3 V ± 10% PAD3V5V = 1 10 — 150 VIN = VIH, VDD = 5.0 V ± 10% PAD3V5V = 0 10 — 150 PAD3V5V = 1 10 — 250 VIN = VIH, VDD = 3.3 V ± 10% PAD3V5V = 1 10 — 150 PAD3V5V = 12 µA µA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. MPC5606BK Microcontroller Data Sheet, Rev. 5 34 NXP Semiconductors Table 14. SLOW configuration output buffer electrical characteristics Symbol VOH VOL 1 2 C Parameter Value Conditions1 Unit Min Typ Max Push Pull IOH = −2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) 0.8VDD — — C IOH = −2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 0.8VDD — — C IOH = −1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD − 0.8 — — Push Pull IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD C IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CC P Output high level SLOW configuration CC P Output low level SLOW configuration V V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. Table 15. MEDIUM configuration output buffer electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max Push Pull IOH = −3.8 mA, VOH CC C Output high level MEDIUM configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — — P IOH = −2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) 0.8VDD — — C IOH = −1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 0.8VDD — — C IOH = −1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD − 0.8 — — C IOH = −100 µA, VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD — V — MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 35 Table 15. MEDIUM configuration output buffer electrical characteristics (continued) Symbol C Parameter Value Conditions1 Unit Min VOL CC C Output low level Push Pull IOL = 3.8 mA, MEDIUM configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 1 2 Typ Max — — 0.2VDD P IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD C IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — C IOL = 100 µA, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 0.1VDD V 0.5 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. Table 16. FAST configuration output buffer electrical characteristics Symbol Parameter Value Conditions1 Unit Min Typ Max VOH CC P Output high level Push Pull IOH = −14 mA, FAST configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) 0.8VDD — — C IOH = −7 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 0.8VDD — — C IOH = −11 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) VDD − 0.8 — — — — 0.1VDD VOL 1 C CC P Output low level Push Pull IOL = 14 mA, FAST configuration VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) C IOL = 7 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD C IOL = 11 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 V V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified MPC5606BK Microcontroller Data Sheet, Rev. 5 36 NXP Semiconductors 2 The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. 3.6.4 Output pin transition times Table 17. Output pin transition times Symbol C Value Conditions1 Parameter Unit Min Typ Max Ttr CC D Output transition time output pin2 CL = 25 pF SLOW configuration T CL = 50 pF D CL = 100 pF D CL = 25 pF T CL = 50 pF Ttr VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF D Ttr VDD = 5.0 V ± 10%, PAD3V5V = 0 CC D Output transition time output MEDIUM configuration T pin2 CL = 25 pF CL = 50 pF D CL = 100 pF D CL = 25 pF T CL = 50 pF D CL = 100 pF CC D Output transition time output pin2 CL = 25 pF FAST configuration CL = 50 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 100 pF CL = 25 pF CL = 50 pF VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF 1 2 3.6.5 — — 50 — — 100 — — 125 — — 50 — — 100 — — 125 — — 10 — — 20 — — 40 — — 12 — — 25 — — 40 — — 4 — — 6 — — 12 — — 4 — — 7 — — 12 ns ns ns VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified CL includes device and package capacitances (CPKG < 5 pF). I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 18. Table 19 provides I/O consumption figures. In order to ensure device reliability, the average current of the I/O on a single segment should remain below the IAVGSEG maximum value. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 37 Table 18. I/O supply segments Supply segment Package 1 2 3 4 5 6 7 8 176 LQFP pin7 – pin27 pin28 – pin57 pin59 – pin85 pin86 – pin123 pin124 – pin150 pin151 – pin6 — — 144 LQFP pin20 – pin49 pin51 – pin99 pin100 – pin122 pin 123 – pin19 — — — — 100 LQFP pin16 – pin35 pin37 – pin69 pin70 – pin83 pin84 – pin15 — — — — Table 19. I/O consumption Symbol C Value Conditions1 Parameter Unit Min Typ Max ISWTSLW,2 CC D Dynamic I/O current for SLOW configuration ISWTMED2 CC D Dynamic I/O current for MEDIUM configuration ISWTFST2 CC D Dynamic I/O current for FAST configuration IRMSSLW CC D Root medium square I/O current for SLOW configuration CL = 25 pF CL = 25 pF CL = 25 pF CL = 25 pF, 2 MHz CL = 25 pF, 4 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 29 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 17 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 110 mA VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 50 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 2.3 — — 3.2 — — 6.6 — — 1.6 — — 2.3 — — 4.7 — — 6.6 — — 13.4 — — 18.3 — — 5 — — 8.5 — — 11 CL = 100 pF, 2 MHz CL = 25 pF, 2 MHz CL = 25 pF, 4 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz IRMSMED CC D Root medium square I/O current for MEDIUM configuration CL = 25 pF, 13 MHz CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 100 pF, 13 MHz CL = 25 pF, 13 MHz CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 13 MHz mA mA mA mA MPC5606BK Microcontroller Data Sheet, Rev. 5 38 NXP Semiconductors Table 19. I/O consumption (continued) Symbol C Value Conditions1 Parameter Unit Min Typ Max IRMSFST CC D Root medium square I/O current for FAST configuration CL = 25 pF, 40 MHz — — 22 — — 33 — — 56 — — 14 — — 20 CL = 100 pF, 40 MHz — — 35 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65 CL = 25 pF, 64 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 CL = 100 pF, 40 MHz CL = 25 pF, 40 MHz CL = 25 pF, 64 MHz SR D Sum of all the static I/O current within a supply segment IAVGSEG 1 2 VDD = 3.3 V ± 10%, PAD3V5V = 1 mA mA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to125 °C, unless otherwise specified Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. Table 20 provides the weight of concurrent switching I/Os. In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below the 100%. Table 20. I/O weight1 176 LQFP 144/100 LQFP Supply segment Pad 4 — 4 — Weight 3.3 V Weight 5 V Weight 3.3 V SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 176 LQFP 144 LQFP 100 LQFP 6 Weight 5 V PB[3] 5% — 6% — 13% — 15% — PC[9] 4% — 5% — 13% — 15% — PC[14] 4% — 4% — 13% — 15% — PC[15] 3% 4% 4% 4% 12% 18% 15% 16% PJ[4] 3% 4% 3% 3% — — — — MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 39 Table 20. I/O weight1 (continued) 176 LQFP 144/100 LQFP Supply segment Pad Weight 3.3 V Weight 5 V Weight 3.3 V SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 176 LQFP 144 LQFP 100 LQFP 1 Weight 5 V — — PH[15] 2% 3% 3% 3% — — — — — — PH[13] 3% 4% 3% 4% — — — — — — PH[14] 3% 4% 4% 4% — — — — — — PI[6] 4% — 4% — — — — — — — PI[7] 4% — 4% — — — — — 4 — PG[5] 4% — 5% — 10% — 12% — — PG[4] 4% 6% 5% 5% 9% 13% 11% 12% — PG[3] 4% — 5% — 9% — 11% — — PG[2] 4% 6% 5% 5% 9% 12% 10% 11% 4 PA[2] 4% — 5% — 8% — 10% — PE[0] 4% — 5% — 8% — 9% — PA[1] 4% — 5% — 8% — 9% — PE[1] 4% 6% 5% 6% 7% 10% 9% 9% PE[8] 4% 6% 5% 6% 7% 10% 8% 9% PE[9] 4% — 5% — 6% — 8% — PE[10] 4% — 5% — 6% — 7% — PA[0] 4% 6% 5% 5% 6% 8% 7% 7% PE[11] 4% — 5% — 5% — 6% — MPC5606BK Microcontroller Data Sheet, Rev. 5 40 NXP Semiconductors Table 20. I/O weight1 (continued) 176 LQFP 144/100 LQFP Supply segment Pad 1 Weight 3.3 V Weight 5 V Weight 3.3 V SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 176 LQFP 144 LQFP 100 LQFP 2 Weight 5 V — PG[9] 9% — 10% — 9% — 10% — — PG[8] 9% — 11% — 9% — 11% — 1 PC[11] 9% — 11% — 9% — 11% — PC[10] 9% 13% 11% 12% 9% 13% 11% 12% — PG[7] 9% — 11% — 9% — 11% — — PG[6] 10% 14% 11% 12% 10% 14% 11% 12% 1 PB[0] 10% 14% 12% 12% 10% 14% 12% 12% PB[1] 10% — 12% — 10% — 12% — — PF[9] 10% — 12% — 10% — 12% — — PF[8] 10% 14% 12% 13% 10% 14% 12% 13% — PF[12] 10% 15% 12% 13% 10% 15% 12% 13% 1 PC[6] 10% — 12% — 10% — 12% — PC[7] 10% — 12% — 10% — 12% — — PF[10] 10% 14% 11% 12% 10% 14% 11% 12% — PF[11] 9% — 11% — 9% — 11% — 1 PA[15] 8% 12% 10% 10% 8% 12% 10% 10% — PF[13] 8% — 10% — 8% — 10% — 1 PA[14] 8% 11% 9% 10% 8% 11% 9% 10% PA[4] 7% — 9% — 7% — 9% — PA[13] 7% 10% 8% 9% 7% 10% 8% 9% PA[12] 7% — 8% — 7% — 8% — MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 41 Table 20. I/O weight1 (continued) 176 LQFP 144/100 LQFP Supply segment Pad 2 2 Weight 3.3 V Weight 5 V Weight 3.3 V SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 176 LQFP 144 LQFP 100 LQFP 3 Weight 5 V PB[9] 1% — 1% — 1% — 1% — PB[8] 1% — 1% — 1% — 1% — PB[10] 5% — 6% — 6% — 7% — — PF[0] 5% — 6% — 6% — 8% — — PF[1] 5% — 6% — 7% — 8% — — PF[2] 6% — 7% — 7% — 9% — — PF[3] 6% — 7% — 8% — 9% — — PF[4] 6% — 7% — 8% — 10% — — PF[5] 6% — 7% — 9% — 10% — — PF[6] 6% — 7% — 9% — 11% — — PF[7] 6% — 7% — 9% — 11% — — — PJ[3] 6% — 7% — — — — — — — PJ[2] 6% — 7% — — — — — — — PJ[1] 6% — 7% — — — — — — — PJ[0] 6% — 7% — — — — — — — PI[15] 6% — 7% — — — — — — — PI[14] 6% — 7% — — — — — 2 2 PD[0] 1% — 1% — 1% — 1% — PD[1] 1% — 1% — 1% — 1% — PD[2] 1% — 1% — 1% — 1% — PD[3] 1% — 1% — 1% — 1% — PD[4] 1% — 1% — 1% — 1% — PD[5] 1% — 1% — 1% — 1% — PD[6] 1% — 1% — 1% — 2% — PD[7] 1% — 1% — 1% — 2% — MPC5606BK Microcontroller Data Sheet, Rev. 5 42 NXP Semiconductors Table 20. I/O weight1 (continued) 176 LQFP 144/100 LQFP Supply segment Pad 4 2 2 Weight 3.3 V Weight 5 V Weight 3.3 V SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 176 LQFP 144 LQFP 100 LQFP 4 Weight 5 V PD[8] 1% — 1% — 1% — 2% — PB[4] 1% — 1% — 1% — 2% — PB[5] 1% — 1% — 1% — 2% — PB[6] 1% — 1% — 1% — 2% — PB[7] 1% — 1% — 1% — 2% — PD[9] 1% — 1% — 1% — 2% — PD[10] 1% — 1% — 1% — 2% — PD[11] 1% — 1% — 1% — 2% — — — PB[11] 1% — 1% — — — — — — — PD[12] 11% — 13% — — — — — 2 2 PB[12] 11% — 13% — 15% — 17% — PD[13] 11% — 13% — 14% — 17% — PB[13] 11% — 13% — 14% — 17% — PD[14] 11% — 13% — 14% — 17% — PB[14] 11% — 13% — 14% — 16% — PD[15] 11% — 13% — 13% — 16% — PB[15] 11% — 13% — 13% — 15% — — — PI[8] 10% — 12% — — — — — — — PI[9] 10% — 12% — — — — — — — PI[10] 10% — 12% — — — — — — — PI[11] 10% — 12% — — — — — — — PI[12] 10% — 12% — — — — — — — PI[13] 10% — 11% — — — — — 2 2 PA[3] 9% — 11% — 11% — 13% — — PG[13] 9% 13% 11% 11% 10% 14% 12% 13% — PG[12] 9% 13% 10% 11% 10% 14% 12% 12% — PH[0] 6% 8% 7% 7% 6% 9% 7% 8% — PH[1] 6% 8% 7% 7% 6% 8% 7% 7% — PH[2] 5% 7% 6% 6% 5% 7% 6% 7% — PH[3] 5% 7% 5% 6% 5% 7% 6% 6% — PG[1] 4% — 5% — 4% — 5% — — PG[0] 4% 5% 4% 5% 4% 5% 4% 5% MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 43 Table 20. I/O weight1 (continued) 176 LQFP 144/100 LQFP Supply segment Pad 3 Weight 3.3 V Weight 5 V Weight 3.3 V SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 176 LQFP 144 LQFP 100 LQFP 5 Weight 5 V — PF[15] 4% — 4% — 4% — 4% — — PF[14] 4% 6% 5% 5% 4% 6% 5% 5% — PE[13] 4% — 5% — 4% — 5% — 3 PA[7] 5% — 6% — 5% — 6% — PA[8] 5% — 6% — 5% — 6% — PA[9] 6% — 7% — 6% — 7% — PA[10] 6% — 8% — 6% — 8% — PA[11] 8% — 9% — 8% — 9% — PE[12] 8% — 9% — 8% — 9% — — PG[14] 8% — 9% — 8% — 9% — — PG[15] 8% 11% 9% 10% 8% 11% 9% 10% — PE[14] 8% — 9% — 8% — 9% — — PE[15] 8% 11% 9% 10% 8% 11% 9% 10% — PG[10] 8% — 9% — 8% — 9% — — PG[11] 7% 11% 9% 9% 7% 11% 9% 9% — — PH[11] 7% 10% 9% 9% — — — — — — PH[12] 7% 10% 8% 9% — — — — — — PI[5] 7% — 8% — — — — — — — PI[4] 7% — 8% — — — — — 3 3 PC[3] 6% — 8% — 6% — 8% — PC[2] 6% 8% 7% 7% 6% 8% 7% 7% PA[5] 6% 8% 7% 7% 6% 8% 7% 7% PA[6] 5% — 6% — 5% — 6% — PH[10] 5% 7% 6% 6% 5% 7% 6% 6% PC[1] 5% 19% 5% 13% 5% 19% 5% 13% MPC5606BK Microcontroller Data Sheet, Rev. 5 44 NXP Semiconductors Table 20. I/O weight1 (continued) 176 LQFP 144/100 LQFP Supply segment Pad 1 2 4 4 Weight 3.3 V Weight 5 V Weight 3.3 V SRC2 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 176 LQFP 144 LQFP 100 LQFP 6 Weight 5 V PC[0] 6% 9% 7% 8% 7% 10% 8% 8% PH[9] 7% — 8% — 7% — 9% — PE[2] 7% 10% 8% 9% 8% 11% 9% 10% PE[3] 7% 10% 9% 9% 8% 12% 10% 10% PC[5] 7% 11% 9% 9% 8% 12% 10% 11% PC[4] 8% 11% 9% 10% 9% 13% 10% 11% PE[4] 8% 11% 9% 10% 9% 13% 11% 12% PE[5] 8% 11% 10% 10% 9% 14% 11% 12% — PH[4] 8% 12% 10% 10% 10% 14% 12% 12% — PH[5] 8% — 10% — 10% — 12% — — PH[6] 8% 12% 10% 11% 10% 15% 12% 13% — PH[7] 9% 12% 10% 11% 11% 15% 13% 13% — PH[8] 9% 12% 10% 11% 11% 16% 13% 14% 4 PE[6] 9% 12% 10% 11% 11% 16% 13% 14% PE[7] 9% 12% 10% 11% 11% 16% 14% 14% — — PI[3] 9% — 10% — — — — — — — PI[2] 9% — 10% — — — — — — — PI[1] 9% — 10% — — — — — — — PI[0] 9% — 10% — — — — — 4 4 PC[12] 8% 12% 10% 11% 12% 18% 15% 16% PC[13] 8% — 10% — 13% — 15% — PC[8] 8% — 10% — 13% — 15% — PB[2] 8% 11% 9% 10% 13% 18% 15% 16% VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified SRC is the Slew Rate Control bit in SIU_PCRx 3.7 RESET electrical characteristics The device implements a dedicated bidirectional RESET pin. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 45 VDD VDDMIN RESET VIH VIL device reset forced by RESET device start-up phase Figure 6. Start-up reset requirements VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Figure 7. Noise filtering on reset signal Table 21. Reset electrical characteristics Symbol C Parameter Value Conditions1 Unit Min VIH SR P Input High Level CMOS (Schmitt Trigger) — Typ Max 0.65VDD — VDD + 0.4 V MPC5606BK Microcontroller Data Sheet, Rev. 5 46 NXP Semiconductors Table 21. Reset electrical characteristics (continued) Symbol C Parameter Value Conditions1 Unit Min Typ Max VIL SR P Input low Level CMOS (Schmitt Trigger) — −0.4 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V Push Pull, IOL = 2 mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD V Push Pull, IOL = 1 mA, VDD = 5.0 V ± 10%, PAD3V5V = 12 — — 0.1VDD Push Pull, IOL = 1 mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CL = 25 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100 pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100 pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 WFRST SR P RESET input filtered pulse — — — 40 ns WNFRST SR P RESET input not filtered pulse — 1000 — — ns 10 — 150 µA 10 — 150 10 — 250 VOL Ttr |IWPU| CC P Output low level CC D Output transition time output pin3 MEDIUM configuration CC P Weak pull-up current absolute VDD = 3.3 V ± 10%, PAD3V5V = 1 value VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 5.0 V ± 10%, PAD3V5V = 14 ns 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the MC_RGM chapter of the MPC5606BK Microcontroller Reference Manual). 3 C includes device and package capacitance (C L PKG < 5 pF). 4 The configuration PAD3V5 = 1 when V DD = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state. 2 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 47 3.8 Power management electrical characteristics 3.8.1 Voltage regulator electrical characteristics The device implements an internal voltage regulator to generate the low voltage core supply VDD_LV from the high voltage ballast supply VDD_BV. The regulator itself is supplied by the common I/O supply VDD. The following supplies are involved: • • • HV: High voltage external power supply for voltage regulator module. This must be provided externally through VDD power pin. BV: High voltage external power supply for internal ballast module. This must be provided externally through VDD_BV power pin. Voltage values should be aligned with VDD. LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device: — LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding. — LV_CFLA: Low voltage supply for code Flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. — LV_DFLA: Low voltage supply for data Flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding. — LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding. CREG2 (LV_COR/LV_CFLA) GND VDD VSS_LV VDD_BV Voltage Regulator I VSS_LVn VDD_BV CREG1 (LV_COR/LV_DFLA) VDD_LVn CDEC1 (Ballast decoupling) VREF VDD_LV VDD_LV DEVICE VSS_LV GND VSS_LV DEVICE GND VDD_LV VSS VDD GND CREG3 (LV_COR/LV_PLL) CDEC2 (supply/IO decoupling) Figure 8. Voltage regulator capacitance connection The internal voltage regulator requires external capacitance (CREGn) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH. MPC5606BK Microcontroller Data Sheet, Rev. 5 48 NXP Semiconductors Each decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see Section 3.4, Recommended operating conditions). The internal voltage regulator requires controlled slew rate of VDD/VDD_BV as described in Figure 9. VDD_HV VDD_HV(MAX) VDD_HV(MIN) POWER UP FUNCTIONAL RANGE POWER DOWN Figure 9. VDD and VDD_BV maximum slope When STANDBY mode is used, further constraints apply to the VDD/VDD_BV in order to guarantee correct regulator functionality during STANDBY exit. This is described in Figure 10. STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY capacitance on application board (capacitance and ESR typical values), but would actually depend on the exact characteristics of the application’s external regulator. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 49 VDD_HV VDD_HV VDD_HV(MAX) d VDD ( STDBY ) dt ΔVDD(STDBY) ΔVDD(STDBY) VDD_HV(MIN) d VDD ( STDBY ) dt VDD_LV VDD_LV(NOMINAL) 0V Figure 10. VDD and VDD_BV supply constraints during STANDBY mode exit Table 22. Voltage regulator electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max CREGn SR — Internal voltage regulator external capacitance — 200 — 500 nF RREG SR — Stability capacitor equivalent serial resistance — — — 0.2 Ω CDEC1 SR — Decoupling capacitance2 ballast VDD_BV/VSS_LV pair: VDD_BV = 4.5 V to 5.5 V 1003 4704 — nF VDD_BV/VSS_LV pair: VDD_BV = 3 V to 3.6 V 400 — CDEC2 SR — Decoupling capacitance regulator supply VDD/VSS pair 10 100 — nF VMREG CC P Main regulator output voltage Before exiting from reset — 1.32 — V 1.15 1.28 1.32 — — 150 After trimming IMREG SR — Main regulator current provided to VDD_LV domain — mA MPC5606BK Microcontroller Data Sheet, Rev. 5 50 NXP Semiconductors Table 22. Voltage regulator electrical characteristics (continued) Symbol IMREGINT C Parameter — 2 IMREG = 0 mA — — 1 VLPREG CC P Low power regulator output voltage After trimming 1.15 1.23 1.32 V ILPREG SR — Low power regulator current provided to VDD_LV domain — — 15 mA — — 600 µA ILPREG = 0 mA; TA = 55 °C — 5 — After trimming 1.15 1.23 1.32 V — — 5 mA IULPREG = 5 mA; TA = 55 °C — — 100 µA IULPREG = 0 mA; TA = 55 °C — 2 — CC P Ultra low power regulator output voltage IULPREG SR — Ultra low power regulator current provided to VDD_LV domain IULPREGINT CC D Ultra low power regulator module current consumption Δ VDD ( STDBY ) ) d VDD ( STDBY ) dt 5 6 — CC D Low power regulator module current ILPREG = 15 mA; consumption TA = 55 °C VULPREG d VDD dt 4 Max — IDD_BV 3 Typ IMREG = 200 mA — 2 Unit Min CC D Main regulator module current consumption ILPREGINT 1 Value Conditions1 — mA CC D Inrush average current on VDD_BV during power-up5 — — — 3006 mA SR — Maximum slope on VDD — — — 250 mV/µs SR — Maximum instant variation on VDD during STANDBY exit — — — 30 mV SR — Maximum slope on VDD during STANDBY exit — — — 15 mV/µs VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage. A typical value is in the range of 470 nF. This value is acceptable to guarantee operation from 4.5 V to 5.5 V External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV in operating range. Inrush current is seen only for short time during power-up and on standby exit (max 20 µs, depending on external capacitances to be load). The duration of the inrush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc. 3.8.2 Voltage monitor electrical characteristics The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors to monitor the VDD and the VDD_LV voltage while device is supplied: MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 51 • • • • • • POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state LVDHV3 monitors VDD to ensure device reset below minimum functional supply LVDHV3B monitors VDD_BV to ensure device reset below minimum functional supply LVDHV5 monitors VDD when application uses device in the 5.0 V ± 10% range LVDLVCOR monitors power domain No. 1 LVDLVBKP monitors power domain No. 0 NOTE When enabled, power domain No. 2 is monitored through LVDLVBKP. VDD VLVDHVxH VLVDHVxL RESET Figure 11. Low voltage monitor vs. reset Table 23. Low voltage monitor electrical characteristics Symbol Parameter VPORUP SR D Supply for functional POR module VPORH CC P Power-on reset threshold Value Conditions1 TA = 25 °C, after trimming Unit Min Typ Max 1.0 — 5.5 1.5 — 2.6 VLVDHV3H CC T LVDHV3 low voltage detector high threshold — — 2.95 VLVDHV3L CC P LVDHV3 low voltage detector low threshold 2.6 — 2.9 VLVDHV3BH CC T LVDHV3B low voltage detector high threshold — — 2.95 VLVDHV3BL CC P LVDHV3BL low voltage detector low threshold 2.6 — 2.9 VLVDHV5H CC T LVDHV5 low voltage detector high threshold — — 4.5 VLVDHV5L CC P LVDHV5 low voltage detector low threshold 3.8 — 4.4 VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold 1.08 — — CC P LVDLVBKP low voltage detector low threshold 1.08 — 1.14 VLVDLVBKPL 1 C V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified MPC5606BK Microcontroller Data Sheet, Rev. 5 52 NXP Semiconductors 3.9 Power consumption in different application modes Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application. Table 24. Electrical characteristics in different application modes1 Symbol C Parameter Typ Max — 81 1304 mA fCPU = 8 MHz — 12 — fCPU = 16 MHz — 27 — C fCPU = 32 MHz — 40 — P fCPU = 48 MHz — 54 95 fCPU = 64 MHz — 67 120 TA = 25 °C — 10 15 TA = 125 °C — 15 28 TA = 25 °C — 130 500 TA = 55 °C — 180 — D TA = 85 °C — 1 5 D TA = 105 °C — 3 9 TA = 125 °C — 5 14 TA = 25 °C — 17 80 TA = 55 °C — 30 — C TA = 85 °C — 110 — C TA = 105 °C — 280 950 TA = 125 °C — 460 1700 TA = 25 °C — 12 50 TA = 55 °C — 24 — C TA = 85 °C — 48 — C TA = 105 °C — 150 500 C TA = 125 °C — 260 — CC T RUN mode typical average current6 T P IDDHALT CC C HALT mode current7 P IDDSTOP Unit Min IDDMAX3 CC C RUN mode maximum average current IDDRUN5 Value Conditions2 CC P STOP mode current8 D — Slow internal RC oscillator (128 kHz) running Slow internal RC oscillator (128 kHz) running P IDDSTDBY2 CC P STANDBY2 mode current9 C Slow internal RC oscillator (128 kHz) running C IDDSTDBY1 CC C STANDBY1 mode C current10 Slow internal RC oscillator (128 kHz) running mA mA µA mA µA µA 1 Except for IDDMAX, all consumptions in this table apply to VDD_BV only and do not include VDD_HV. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified 3 Running consumption is given on voltage regulator supply (VDDREG). IDDMAX is composed of three components: IDDMAX = IDD(VDD_BV) + IDD(VDD_HV) + IDD(VDD_HV_ADC). It does not include a fourth component linked to I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value (64 MHz at 125 °C) with all peripherals running, and code fetched from code flash while modify operation on-going on data flash. Note that this value can be significantly reduced by the application: switch off unused peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible. 2 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 53 4 Higher current may be sunk by device during power-up and standby exit. Please refer to inrush current in Table 22. RUN current measured with typical application with accesses on both Flash and RAM. 6 Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled. 7 Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1 OFF. ADC0 ON but no conversion except two analog watchdogs. 8 Only for the “P” classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode. 9 Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off. 10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off. 5 3.10 Flash memory electrical characteristics 3.10.1 Program/erase characteristics Table 25 shows the program and erase characteristics. Table 25. Program and erase specifications Value Symbol Tdwprogram C Parameter CC C Double word (64 bits) program time4 Conditions Min Typ1 Code Flash — Data Flash T16Kpperase 16 KB block preprogram and erase time Code Flash 32 KB block preprogram and erase time Code Flash Max3 50 500 µs 500 5000 ms 600 5000 ms 22 — Data Flash T32Kpperase 18 Unit Initial max2 200 300 — Data Flash 300 400 T32Kpperase 32 KB block preprogram and erase time for sector B0F4 Code Flash — 600 1200 10000 ms T128Kpperase 128 KB block preprogram and erase time Code Flash — 600 1300 7500 ms 1200 2600 15000 ms Data Flash T128Kpperase 128 KB block preprogram and erase time for sector B0F5 Teslat D Erase Suspend Latency TESRT C Erase Suspend Request Rate 800 Code Flash — — — — 30 30 µs Code Flash 20 — — — ms Data Flash 10 — — — MPC5606BK Microcontroller Data Sheet, Rev. 5 54 NXP Semiconductors 1 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. 3 The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4 Actual hardware programming times. This does not include software overhead. Table 26. Flash module life Value Symbol C Parameter Conditions Unit Typ Max P/E CC C Number of program/erase cycles per block for 16 KB blocks over the operating temperature range (TJ) — 100000 — — cycles P/E CC C Number of program/erase cycles per block for 32 KB blocks over the operating temperature range (TJ) — 10000 100000 — cycles P/E CC C Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (TJ) — 1000 100000 — cycles 20 — — years 10 — — years 5 — — years Retention CC C Minimum data retention at 85 Blocks with °C average ambient 0–1,000 P/E cycles temperature1 Blocks with 1,001–10,000 P/E cycles Blocks with 10,001–100,000 P/E cycles 1 Min Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability. Table 27. Flash read access timing Symbol fREAD 1 C Parameter Conditions1 Max Unit 2 wait states 64 MHz C 1 wait state 40 C 0 wait states 20 CC P Maximum frequency for Flash reading VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 3.10.2 Flash power supply DC characteristics Table 28 shows the power supply DC characteristics on external supply. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 55 Table 28. Flash power supply DC electrical characteristics Symbol Value Conditions1 Parameter Unit Min Typ Max ICFREAD CC Sum of the current consumption on VDDHV and VDDBV on read access IDFREAD Flash module read fCPU = 64 MHz2 ICFMOD CC Sum of the current consumption on VDDHV and VDDBV on matrix IDFMOD modification (program/erase) 1 2 Code Flash — — 33 Data Flash — — 33 Program Code Flash /Erase on-going while Data Flash reading Flash registers 2 fCPU = 64 MHz — — 52 — — 33 Code Flash — — 1.1 mA Data Flash — — 900 µA Code Flash — — 150 µA Data Flash — — 150 ICFLPW CC Sum of the current consumption on VDDHV and VDDBV during Flash low IDFLPW power mode — ICFPWD CC Sum of the current consumption on VDDHV and VDDBV during Flash power IDFPWD down mode — mA mA VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified. fCPU 64 MHz can be achieved at up to 125 °C. 3.10.3 Start-up/Switch-off timings Table 29. Start-up time/Switch-off time Symbol C Parameter Value Conditions1 Unit Min Typ Max TFLARSTEXIT CC T Delay for Flash module to exit reset mode — — — 125 TFLALPEXIT CC T Delay for Flash module to exit low-power mode — — — 0.5 TFLAPDEXIT CC T Delay for Flash module to exit power-down mode — — — 30 TFLALPENTRY CC T Delay for Flash module to enter low-power mode — — — 0.5 TFLAPDENTRY CC T Delay for Flash module to enter power-down mode — — — 1.5 1 µs VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. 3.11 Electromagnetic compatibility (EMC) characteristics Susceptibility tests are performed on a sample basis during product characterization. 3.11.1 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. MPC5606BK Microcontroller Data Sheet, Rev. 5 56 NXP Semiconductors Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application. Software recommendations − The software flowchart must include the management of runaway conditions such as: — Corrupted program counter — Unexpected reset — Critical data corruption (control registers...) Prequalification trials − Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. • • 3.11.2 Electromagnetic interference (EMI) The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1 standard, which specifies the general conditions for EMI measurements. Table 30. EMI radiated emission measurement1,2 Value Symbol C Parameter Conditions Unit Min — fCPU 1 2 Max SR — Scan range — 0.150 SR — Operating frequency — — 64 — MHz — — 1.28 — V No PLL frequency modulation — — 18 dBµV ± 2% PLL frequency modulation — — 14 dBµV VDD_LV SR — LV operating voltages SEMI Typ CC T Peak level VDD = 5 V, TA = 25 °C, LQFP144 package Test conforming to IEC 61967-2, fOSC = 8 MHz/fCPU = 64 MHz 1000 MHz EMI testing and I/O port waveforms per IEC 61967-1, -2, -4 For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative. 3.11.3 Absolute maximum ratings (electrical sensitivity) Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. 3.11.3.1 Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts×(n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 57 Table 31. ESD absolute maximum ratings1,2 Conditions Class Max value3 Unit VESD(HBM) Electrostatic discharge voltage (Human Body Model) TA = 25 °C conforming to AEC-Q100-002 H1C 2000 V VESD(MM) Electrostatic discharge voltage (Machine Model) TA = 25 °C conforming to AEC-Q100-003 M2 200 VESD(CDM) Electrostatic discharge voltage (Charged Device Model) TA = 25 °C conforming to AEC-Q100-011 C3A 500 Symbol Ratings 750 (corners) 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 3 Data based on characterization results, not tested in production 3.11.3.2 Static latch-up (LU) Two complementary static tests are required on six parts to assess the latch-up performance: • • A supply overvoltage is applied to each power supply pin. A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with the EIA/JESD 78 IC latch-up standard. Table 32. Latch-up results Symbol LU 3.12 Parameter Static latch-up class Conditions TA = 125 °C conforming to JESD 78 Class II level A Fast external crystal oscillator (4 to 16 MHz) electrical characteristics The device provides an oscillator/resonator driver. Figure 12 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator. Table 33 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations. MPC5606BK Microcontroller Data Sheet, Rev. 5 58 NXP Semiconductors EXTAL C1 Crystal EXTAL XTAL C2 DEVICE VDD I R EXTAL XTAL Resonator DEVICE XTAL DEVICE Figure 12. Crystal oscillator and resonator connection scheme NOTE XTAL/EXTAL must not be directly used to drive external circuits. Table 33. Crystal description Crystal motional capacitance (Cm) fF Crystal motional inductance (Lm) mH Load on xtalin/xtalout C1 = C2 (pF)1 Shunt capacitance between xtalout and xtalin C02 (pF) Nominal frequency (MHz) NDK crystal reference Crystal equivalent series resistance ESR Ω 4 NX8045GB 300 2.68 591.0 21 2.93 8 NX5032GA 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 12 120 3.11 56.5 15 2.93 16 120 3.90 25.3 10 3.00 1 The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them. 2 The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.). MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 59 S_MTRANS bit (ME_GS register) 1 0 VXTAL 1/fMXOSC VMXOSC 90% VMXOSCOP 10% TMXOSCSU valid internal clock Figure 13. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max fFXOSC SR — Fast external crystal oscillator frequency — 4.0 — 16.0 MHz gmFXOSC CC C Fast external crystal oscillator transconductance VDD = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 0 2.2 — 8.2 mA/V CC P VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 0 2.0 — 7.4 CC C VDD = 3.3 V ± 10%, PAD3V5V = 1 OSCILLATOR_MARGIN = 1 2.7 — 9.7 CC C VDD = 5.0 V ± 10%, PAD3V5V = 0 OSCILLATOR_MARGIN = 1 2.5 — 9.2 CC T Oscillation amplitude at EXTAL fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 1.3 — — fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 1.3 — — — — 0.95 — — 2 VFXOSC VFXOSCOP CC P Oscillation operating point IFXOSC2 CC T Fast external crystal oscillator consumption V V 3 mA MPC5606BK Microcontroller Data Sheet, Rev. 5 60 NXP Semiconductors Table 34. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued) Symbol TFXOSCSU 1 2 3.13 C CC T Fast external crystal oscillator start-up time Value Conditions1 Parameter Unit Min Typ Max fOSC = 4 MHz, OSCILLATOR_MARGIN = 0 — — 6 fOSC = 16 MHz, OSCILLATOR_MARGIN = 1 — — 1.8 ms VIH SR P Input high level CMOS (Schmitt Trigger) Oscillator bypass mode 0.65VDD — VDD + 0.4 V VIL SR P Input low level CMOS (Schmitt Trigger) Oscillator bypass mode −0.4 — 0.35VDD V VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals). Slow external crystal oscillator (32 kHz) electrical characteristics The device provides a low power oscillator/resonator driver. OSC32K_EXTAL OSC32K_EXTAL Resonator Crystal C1 RP OSC32K_XTAL DEVICE OSC32K_XTAL C2 DEVICE Figure 14. Crystal oscillator and resonator connection scheme NOTE OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 61 l C0 C1 Crystal Cm C2 Rm Lm C1 C2 Figure 15. Equivalent circuit of a quartz crystal Table 35. Crystal motional characteristics1 Value Symbol Parameter Conditions Unit Min Typ Max Lm Motional inductance — — 11.796 — KH Cm Motional capacitance — — 2 — fF — 18 — 28 pF kΩ C1/C2 Load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground2 Rm3 Motional resistance AC coupled at C0 = 2.85 pF4 — — 65 AC coupled at C0 = 4.9 pF4 — — 50 AC coupled at C0 = 7.0 pF4 — — 35 AC coupled at C0 = 9.0 pF4 — — 30 1 The crystal used is Epson Toyocom MC306. This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to ground. It includes all the parasitics due to board traces, crystal and package. 3 Maximum ESR (R ) of the crystal is 50 kΩ m 4 C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins. 2 MPC5606BK Microcontroller Data Sheet, Rev. 5 62 NXP Semiconductors OSCON bit (OSC_CTL register) 1 0 VOSC32K_XTAL 1/fLPXOSC32K VLPXOSC32K 90% 10% TLPXOSC32KSU valid internal clock Figure 16. Slow external crystal oscillator (32 kHz) electrical characteristics Table 36. Slow external crystal oscillator (32 kHz) electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max fSXOSC SR — Slow external crystal oscillator frequency — 32 32.768 40 kHz VSXOSC CC T Oscillation amplitude — — 2.1 — V ISXOSCBIAS CC T Oscillation bias current — 2.5 µA ISXOSC CC T Slow external crystal oscillator consumption — — — 8 µA TSXOSCSU CC T Slow external crystal oscillator start-up time — — — 22 s 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal. 2 3.14 FMPLL electrical characteristics The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the FXOSC or FIRC sources. Table 37. FMPLL electrical characteristics Symbol C Parameter Value Conditions1 Unit Min Typ Max fPLLIN SR — FMPLL reference clock2 — 4 — 64 MHz ΔPLLIN SR — FMPLL reference clock duty cycle2 — 40 — 60 % MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 63 Table 37. FMPLL electrical characteristics (continued) Symbol C fPLLOUT CC P FMPLL output clock frequency fVCO3 Value Conditions1 Parameter CC P VCO frequency without frequency modulation P VCO frequency with frequency modulation Unit Min Typ Max — 16 — 64 MHz — 256 — 512 MHz — 245.76 — 532.48 fCPU SR — System clock frequency — — — 644 MHz fFREE CC P Free-running frequency — 20 — 150 MHz tLOCK CC P FMPLL lock time 40 100 µs ΔtSTJIT CC — FMPLL short term Stable oscillator (fPLLIN = 16 MHz) jitter5 ΔtLTJIT CC — FMPLL long term jitter IPLL CC C FMPLL consumption fsys maximum –4 — 4 % fPLLCLK at 64 MHz, 4000 cycles — — 10 ns TA = 25 °C — — 4 mA 1 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN. 3 Frequency modulation is considered ± 4%. 4 f CPU 64 MHz can be achieved only at up to 105 °C. 5 Short term jitter is measured on the clock rising edge at cycle n and n + 4. 2 3.15 Fast internal RC oscillator (16 MHz) electrical characteristics The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device. Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics Symbol Parameter 2, IFIRCPWD Value Conditions1 CC P Fast internal RC oscillator high TA = 25 °C, trimmed frequency SR — — fFIRC IFIRCRUN C Unit Min Typ Max — 16 — 12 MHz 20 CC T Fast internal RC oscillator high TA = 25 °C, trimmed frequency current in running mode — — 200 µA CC D Fast internal RC oscillator high TA = 25 °C frequency current in power down mode — — 10 µA sysclk = off — 500 — µA sysclk = 2 MHz — 600 — sysclk = 4 MHz — 700 — sysclk = 8 MHz — 900 — sysclk = 16 MHz — 1250 — IFIRCSTOP CC T Fast internal RC oscillator high TA = 25 °C frequency and system clock current in stop mode MPC5606BK Microcontroller Data Sheet, Rev. 5 64 NXP Semiconductors Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics (continued) Symbol C Value Conditions1 Parameter Unit Min Typ Max TFIRCSU CC C Fast internal RC oscillator start-up time VDD = 5.0 V ± 10% — 1.1 2.0 µs ΔFIRCPRE CC C Fast internal RC oscillator precision after software trimming of fFIRC TA = 25 °C −1 — 1 % ΔFIRCTRIM CC C Fast internal RC oscillator trimming step TA = 25 °C — 1.6 −5 — ΔFIRCVAR 1 CC C Fast internal RC oscillator variation over temperature and supply with respect to fFIRC at TA = 25 °C in high-frequency configuration — % 5 % VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. 2 3.16 Slow internal RC oscillator (128 kHz) electrical characteristics The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module. Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics Symbol 1 Parameter Value Conditions1 Unit Min Typ Max — 128 — 100 — 150 — — 5 µA CC P Slow internal RC oscillator low frequency SR — TA = 25 °C, trimmed ISIRC2, CC C Slow internal RC oscillator low frequency current TA = 25 °C, trimmed TSIRCSU CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V ± 10% time — 8 12 µs ΔSIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C after software trimming of fSIRC −2 — 2 % ΔSIRCTRIM CC C Slow internal RC oscillator trimming step — 2.7 — ΔSIRCVAR CC C Slow internal RC oscillator variation High frequency configuration in temperature and supply with respect to fSIRC at TA = 55 °C in high frequency configuration −10 — 10 fSIRC 2 C — — kHz % VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 65 3.17 3.17.1 ADC electrical characteristics Introduction The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit). Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (2) The ideal transfer curve (5) (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE Figure 17. ADC_0 characteristic and error definitions 3.17.2 Input impedance and ADC accuracy In the following analysis, the input circuit corresponding to the precise channels is considered. To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as MPC5606BK Microcontroller Data Sheet, Rev. 5 66 NXP Semiconductors possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 kΩ is obtained (REQ = 1 / (fc × CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 4: Eqn. 4 R S + R F + R L + R SW + R AD 1 V A • -------------------------------------------------------------------------- < --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter RL CF Channel Selection Sampling RSW1 RAD CP1 CP2 CS RS Source Impedance RF Filter Resistance CF Filter Capacitance RL Current Limiter Resistance RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 18. Input equivalent circuit (precise channels) MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 67 EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS Filter RF Current Limiter RL CF VA RS RF CF RL RSW RAD CP CS CP1 Channel Selection Extended Switch Sampling RSW1 RSW2 RAD CP3 CP2 CS Source Impedance Filter Resistance Filter Capacitance Current Limiter Resistance Channel Selection Switch Impedance (two contributions RSW1 and RSW2) Sampling Switch Impedance Pin Capacitance (three contributions, CP1, CP2 and CP3) Sampling Capacitance Figure 19. Input equivalent circuit (extended channels) A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 18): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Voltage Transient on CS VCS VA VA2 ΔV < 0.5 LSB 1 2 τ1 < (RSW + RAD) CS 2048 • C S ADC_1 (12-bit) Eqn. 13 C F > 8192 • C S MPC5606BK Microcontroller Data Sheet, Rev. 5 70 NXP Semiconductors 3.17.3 ADC electrical characteristics Table 40. ADC input leakage current Value Symbol C Parameter Conditions Unit Min Typ Max — 1 — — 1 — 3 100 ILKG CC C Input leakage current TA = −40 °C No current injection on adjacent pin C TA = 25 °C D TA = 85°C C TA = 105 °C — 8 200 P TA = 125 °C — 45 400 nA Table 41. ADC_0 conversion characteristics (10-bit ADC_0) Symbol C Parameter Value Conditions1 Unit Min Typ Max VSS_ADC0 SR — Voltage on VSS_HV_ADC0 (ADC_0 reference) pin with respect to ground (VSS)2 — −0.1 — 0.1 V VDD_ADC0 SR — Voltage on VDD_HV_ADC pin (ADC reference) with respect to ground (VSS) — VDD − 0.1 — VDD + 0.1 V — VSS_ADC0 − 0.1 — VDD_ADC0 + 0.1 V IADC0pwd SR — ADC_0 consumption in power down mode — — — 50 µA IADC0run SR — ADC_0 consumption in running mode — — — 5 mA — 6 — 14 45 — 55 % — — — 1.5 µs fADC = 32 MHz, ADC0_conf_sample_input = 17 0.5 — fADC = 6 MHz, INPSAMP = 255 — — 42 0.625 — — µs VAINx fADC0 SR — Analog input voltage3 SR — ADC_0 analog frequency ΔADC0_SYS SR — ADC_0 digital clock duty cycle ADCLKSEL = (ipg_clk) tADC0_PU SR — ADC_0 power up delay tADC0_S CC T Sample time5 tADC0_C CC P Conversion time6 fADC = 32 MHz, ADC_conf_comp = 2 32 + 4% MHz µs CS CC D ADC_0 input sampling capacitance — — — 3 pF CP1 CC D ADC_0 input pin capacitance 1 — — — 3 pF CP2 CC D ADC_0 input pin capacitance 2 — — — 1 pF CP3 CC D ADC_0 input pin capacitance 3 — — — 1 pF MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 71 Table 41. ADC_0 conversion characteristics (10-bit ADC_0) (continued) Symbol 3 4 5 6 7 Value Conditions1 Unit Min Typ Max CC D Internal resistance of analog source — — — 3 kΩ RSW2 CC D Internal resistance of analog source — — — 2 kΩ RAD CC D Internal resistance of analog source — — — 2 kΩ IINJ SR — Input current Injection VDD = 3.3 V ± 10% −5 — 5 mA VDD = 5.0 V ± 10% −5 — 5 Current injection on one ADC_0 input, different from the converted one | INL | CC T Absolute value for integral nonlinearity No overload — 0.5 1.5 LSB | DNL | CC T Absolute differential nonlinearity No overload — 0.5 1.0 LSB | OFS | CC T Absolute offset error — — 0.5 — LSB | GNE | CC T Absolute gain error — — 0.6 — LSB LSB TUEX 2 Parameter RSW1 TUEP 1 C error7 CC P Total unadjusted for precise channels, input only T pins Without current injection −2 0.6 2 With current injection −3 — 3 CC T Total unadjusted error7 for extended channel T Without current injection −3 1 3 With current injection −4 LSB 4 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified. Analog and digital VSS must be common (to be tied together externally). VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After the end of the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC0_S depend on programming. This parameter does not include the sample time tADC0_S, but only the time for determining the digital result and the time to load the result’s register with the conversion result. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors. MPC5606BK Microcontroller Data Sheet, Rev. 5 72 NXP Semiconductors Offset Error OSE Gain Error GE 4095 4094 4093 4092 4091 1 LSB ideal = AVDD / 4096 4090 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (5) (2) The ideal transfer curve (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 4090 4091 4092 4093 4094 4095 Vin(A) (LSBideal) Offset Error OSE Figure 22. ADC_1 characteristic and error definitions Table 42. ADC_1 conversion characteristics (12-bit ADC_1) Symbol C Parameter Value Conditions1 VSS_ADC1 SR — Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (VSS)2 — VDD_ADC1 SR — Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (VSS) — Unit Min Typ Max –0.1 — 0.1 V VDD + 0.1 V VDD – 0.1 — MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 73 Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued) Symbol C Parameter Value Conditions1 Unit Min VAINx SR — Analog input voltage3 — Typ VSS_ADC1 — – 0.1 Max VDD_ADC1 + 0.1 V IADC1pwd SR — ADC_1 consumption in power down mode — — — 50 µA IADC1run — — — 6 mA VDD = 3.3 V 3.33 — 20 + 4% MHz VDD = 5 V 3.33 — 32 + 4% — — — 1.5 µs ns fADC1 SR — ADC_1 consumption in running mode SR — ADC_1 analog frequency tADC1_PU SR — ADC_1 power up delay tADC1_S tADC1_C time4 fADC1 = 20 MHz, ADC1_conf_sample_input = 12 600 — — Sample time4 VDD = 5.0 V fADC1= 32 MHz, ADC1_conf_sample_input = 17 500 — — Sample time4 VDD = 3.3 V fADC1= 3.33 MHz, ADC1_conf_sample_input = 255 — — 76.2 Sample time4 VDD = 5.0 V fADC1= 3.33 MHz, ADC1_conf_sample_input = 255 — — 76.2 CC P Conversion time5 VDD = 3.3 V fADC1 = 20MHz, ADC1_conf_comp = 0 2.4 — — µs Conversion time5 VDD = 5.0 V fADC 1 = 32 MHz, ADC1_conf_comp = 0 1.5 — — µs Conversion time5 VDD = 3.3 V fADC 1 = 13.33 MHz, ADC1_conf_comp = 0 — — 3.6 µs Conversion time5 VDD = 5.0 V fADC1 = 13.33 MHz, ADC1_conf_comp = 0 — — 3.6 µs 45 — 55 % CC T Sample VDD = 3.3 V ΔADC1_SYS SR — ADC_1 digital clock duty cycle ADCLKSEL = 16 µs CS CC D ADC_1 input sampling capacitance — — — 5 pF CP1 CC D ADC_1 input pin capacitance 1 — — — 3 pF CP2 CC D ADC_1 input pin capacitance 2 — — — 1 pF CP3 CC D ADC_1 input pin capacitance 3 — — — 1.5 pF RSW1 CC D Internal resistance of analog source — — — 1 kΩ RSW2 CC D Internal resistance of analog source — — — 2 kΩ RAD CC D Internal resistance of analog source — — — 0.3 kΩ MPC5606BK Microcontroller Data Sheet, Rev. 5 74 NXP Semiconductors Table 42. ADC_1 conversion characteristics (12-bit ADC_1) (continued) Symbol IINJ 3 4 5 6 7 SR — Input current Injection Value Conditions1 Current VDD = 3.3 V ± 10% injection on VDD = 5.0 V ± 10% one ADC_1 input, different from the converted one Unit Min Typ Max –5 — 5 –5 — 5 mA CC T Absolute Integral No overload non-linearity-Precise channels — 1 3 LSB INLX CC T Absolute Integral non-linearity-Extended channels No overload — 1.5 5 LSB DNL CC T Absolute Differential non-linearity No overload — 0.5 1 LSB OFS CC T Absolute Offset error — — 2 — LSB GNE CC T Absolute Gain error — — 2 — LSB LSB TUEX7 2 Parameter INLP TUEP7 1 C CC P Total Unadjusted Error for precise channels, input only T pins Without current injection –6 — 6 With current injection –8 — 8 CC T Total Unadjusted Error for extended channel T Without current injection –10 — 10 With current injection –12 — 12 LSB VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified Analog and digital VSS must be common (to be tied together externally). VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0xFFF. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the end of the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC1_S depend on programming. This parameter does not include the sample time tADC1_S, but only the time for determining the digital result and the time to load the result’s register with the conversion result. Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2. Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 75 3.18 On-chip peripherals 3.18.1 Current consumption Table 43. On-chip peripherals current consumption1 Value Symbol C Parameter Conditions Unit Typ IDD_BV(CAN) IDD_BV(eMIOS) CC T CAN Bit rate = (FlexCAN) 500 KB/s supply current Bit rate = on VDD_BV 125 KB/s Total (static + dynamic) consumption: • FlexCAN in loop-back mode • XTAL at 8 MHz used as CAN engine clock source • Message sending period is 580 µs CC T eMIOS supply Static consumption: current on • eMIOS channel OFF VDD_BV • Global prescaler enabled Dynamic consumption: • It does not change varying the frequency (0.003 mA) IDD_BV(SCI) CC T SCI (LINFlex) Total (static + dynamic) consumption: supply current • LIN mode on VDD_BV • Baud rate: 20 KB/s IDD_BV(SPI) CC T SPI (DSPI) Ballast static consumption (only supply current clocked) on VDD_BV Ballast dynamic consumption (continuous communication): • Baud rate: 2 Mb/s • Transmission every 8 µs • Frame: 16 bits IDD_BV (ADC_0/ADC_1) IDD_HV_ADC0 8 * fperiph + 85 µA 8 * fperiph + 27 29 * fperiph 3 5 * fperiph + 31 1 16 * fperiph CC T ADC_0/ADC_1 VDD = 5.5 V Ballast static consumption supply current (no conversion) on VDD_BV VDD = 5.5 V Ballast dynamic consumption (continuous conversion) 41 * fperiph CC T ADC_0 supply VDD = 5.5 V Analog static consumption current on (no conversion) VDD_HV_ADC0 VDD = 5.5 V Analog dynamic consumption (continuous conversion) 200 µA 46 * fperiph 3 mA MPC5606BK Microcontroller Data Sheet, Rev. 5 76 NXP Semiconductors Table 43. On-chip peripherals current consumption1 (continued) Value Symbol C Parameter Conditions Unit Typ IDD_HV_ADC1 IDD_HV(FLASH) IDD_BV(PLL) 1 CC T ADC_1 supply VDD = 5.5 V Analog static consumption current on (no conversion) VDD_HV_ADC1 VDD = 5.5 V Analog dynamic consumption (continuous conversion) 300 * fperiph µA 4 mA CC T CFlash + VDD = 5.5 V DFlash supply current on VDD_HV — 12 mA CC T PLL supply current on VDD_BV — 2.5 mA VDD = 5.5 V Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 77 DSPI characteristics Table 44. DSPI characteristics1 DSPI0/DSPI1/DSPI5/DSPI6 No. 1 Symbol C MPC5606BK Microcontroller Data Sheet, Rev. 5 — fDSPI 2 tCSCext3 3 tASCext 4 4 tSDC Unit Min Typ Max Min Typ Max Master mode (MTFE = 0) 125 — — 3332 — — D Slave mode (MTFE = 0) 125 — — 333 — — D Master mode (MTFE = 1) 83 — — 145 — — D Slave mode (MTFE = 1) 83 — — 145 — — SR D DSPI digital controller frequency — — fCPU — — fCPU MHz SR D CS to SCK delay Slave mode 32 — — 32 — — ns SR D After SCK delay Slave mode 1/fDSPI + 5 — — 1/fDSPI + 5 — — ns CC D SCK duty cycle Master mode — tSCK/2 — — tSCK/2 — ns SR D Slave mode tSCK/2 — — tSCK/2 — — SR D SCK cycle time tSCK DSPI2/DSPI4 Parameter ns 5 tA SR D Slave access time Slave mode — — 1/fDSPI + 70 — — 1/fDSPI + 130 ns 6 tDI SR D Slave SOUT disable time Slave mode 7 — — 7 — — ns 7 tPCSC — 135 — — 135 — — — — 135 — — CC D PCSx to PCSS time 8 tPASC CC D PCSS to PCSx time — 135 9 tSUI SR D Data setup time for inputs Master mode 43 — — 145 — — Slave mode 5 — — 5 — — 0 — — 0 — — Slave mode 26 — — 26 — — CC D Data valid after SCK edge Master mode — — 32 — — 50 Slave mode — — 52 — — 160 CC D Data hold time for outputs Master mode 0 — — 0 — — Slave mode 8 — — 13 — — 10 NXP Semiconductors 11 12 SR D Data hold time for inputs Master mode tHI tSUO 7 tHO7 ns ns ns ns Electrical characteristics 78 3.18.2 NXP Semiconductors 1 2 3 4 5 6 7 Operating conditions: Cout = 10 to 50 pF, SlewIN = 3.5 to 15 ns. For DSPI4, if SOUT is mapped to a SLOW pad while SCK is mapped to a MEDIUM pad (or vice versa), the minimum cycle time for SCK should be calculated based on the rise and fall times of the SLOW pad. For MTFE=1, SOUT must not be mapped to a SLOW pad while SCK is mapped to a MEDIUM pad. The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ΔtCSC to ensure positive tCSCext. The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than ΔtASC to ensure positive tASCext. For DSPIx_CTARn[PCSSCK] = 11. This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR register. SCK and SOUT are configured as MEDIUM pad. MPC5606BK Microcontroller Data Sheet, Rev. 5 2 3 PCSx 1 4 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN 10 First Data Data 12 SOUT First Data Last Data 11 Data Last Data Figure 23. DSPI classic SPI timing — master, CPHA = 0 79 Electrical characteristics Note: Numbers shown reference Table 44. PCSx SCK Output (CPOL = 0) 10 SCK Output (CPOL = 1) 9 Data First Data SIN Last Data 12 SOUT 11 Data First Data Last Data Note: Numbers shown reference Table 44. Figure 24. DSPI classic SPI timing — master, CPHA = 1 3 2 SS 1 4 SCK Input (CPOL = 0) 4 SCK Input (CPOL = 1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Note: Numbers shown reference Table 44. Figure 25. DSPI classic SPI timing — slave, CPHA = 0 MPC5606BK Microcontroller Data Sheet, Rev. 5 80 NXP Semiconductors SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 6 12 SOUT First Data 9 SIN Data Last Data Data Last Data 10 First Data Note: Numbers shown reference Table 44. Figure 26. DSPI classic SPI timing — slave, CPHA = 1 3 PCSx 4 1 2 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN First Data 10 Last Data Data 12 SOUT First Data 11 Data Last Data Note: Numbers shown reference Table 44. Figure 27. DSPI modified transfer format timing — master, CPHA = 0 MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 81 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Note: Numbers shown reference Table 44. Figure 28. DSPI modified transfer format timing — master, CPHA = 1 3 2 SS 1 SCK Input (CPOL = 0) 4 4 SCK Input (CPOL = 1) SOUT First Data Data First Data 6 Last Data 10 9 SIN 12 11 5 Data Last Data Note: Numbers shown reference Table 44. Figure 29. DSPI modified transfer format timing — slave, CPHA = 0 MPC5606BK Microcontroller Data Sheet, Rev. 5 82 NXP Semiconductors SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Note: Numbers shown reference Table 44. Figure 30. DSPI modified transfer format timing — slave, CPHA = 1 8 7 PCSS PCSx Note: Numbers shown reference Table 44. Figure 31. DSPI PCS strobe (PCSS) timing 3.18.3 JTAG characteristics Table 45. JTAG characteristics Value No. Symbol C Parameter Unit Min Typ Max 1 tJCYC CC D TCK cycle time 64 — — ns 2 tTDIS CC D TDI setup time 15 — — ns 3 tTDIH CC D TDI hold time 5 — — ns MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 83 Table 45. JTAG characteristics (continued) Value No. Symbol C Parameter Unit Min Typ Max 4 tTMSS CC D TMS setup time 15 — — ns 5 tTMSH CC D TMS hold time 5 — — ns 6 tTDOV CC D TCK low to TDO valid — — 33 ns 7 tTDOI CC D TCK low to TDO invalid 6 — — ns TCK 2/4 DATA INPUTS 3/5 INPUT DATA VALID 6 DATA OUTPUTS OUTPUT DATA VALID 7 DATA OUTPUTS Note: Numbers shown reference Table 45. Figure 32. Timing diagram — JTAG boundary scan MPC5606BK Microcontroller Data Sheet, Rev. 5 84 NXP Semiconductors 4 Package characteristics 4.1 Package mechanical data 4.1.1 176 LQFP Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3) MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 85 Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3) MPC5606BK Microcontroller Data Sheet, Rev. 5 86 NXP Semiconductors Figure 35. 176 LQFP package mechanical drawing (Part 3 of 3) MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 87 4.1.2 144 LQFP Figure 36. 144 LQFP package mechanical drawing (Part 1 of 2) MPC5606BK Microcontroller Data Sheet, Rev. 5 88 NXP Semiconductors Figure 37. 144 LQFP package mechanical drawing (Part 2 of 2) MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 89 4.1.3 100 LQFP Figure 38. 100 LQFP package mechanical drawing (Part 1 of 3) MPC5606BK Microcontroller Data Sheet, Rev. 5 90 NXP Semiconductors Figure 39. 100 LQFP package mechanical drawing (Part 2 of 3) MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 91 Figure 40. 100 LQFP package mechanical drawing (Part 3 of 3) MPC5606BK Microcontroller Data Sheet, Rev. 5 92 NXP Semiconductors 5 Ordering information Example code: M PC 56 0 6 B K0A M LL 6 R Qualification status Power Architecture Core Automotive platform Core version Flash memory size (core dependent) Product Fab and mask Indicator Temperature spec. Package code Frequency R = Tape & Reel (blank if Tray) Qualification status M = General market qualified S = Automotive qualified P = Engineering samples Automotive Platform 56 = Power Architecture in 90nm Flash memory size (for z0 core) 5 = 768 KB 6 = 1024 KB Product B = Body Fab and mask Indicator K = TSMC Fab 0 = Version of the maskset A = Mask set indicator (Blank = 1st production maskset, A = 2nd, B = 3rd, etc) Core version 0 = e200z0 Temperature spec. C = –40 to 85 °C V = –40 to 105 °C M = –40 to 125 °C Package code LL = 100 LQFP LQ = 144 LQFP LU = 176 LQFP Frequency 4 = Up to 48 MHz 6 = Up to 64 MHz Note: Not all options are available on all devices. Figure 41. Commercial product code structure MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 93 6 Revision history Table 46. Revision history Revision Date Description of changes 1 22 Apr 2011 Initial release. 2 15 May 2013 Changed device number to MPC5606BK. In Table 2 (Functional port pins), updated PA[11] AF2, PD[13] AF2, and PH[11] AF3 I/O direction to “I/O”. In Table 3 (Pad types), corrected “Fast” in the “S” row to “Slow.” In Table 5 (PAD3V5V field description), updated footnote 2. In Table 6 (OSCILLATOR_MARGIN field description), updated footnote 2. Inserted Section 3.2.3, NVUSRO[WATCHDOG_EN] field description. In Table 8 (Absolute maximum ratings), Table 9 (Recommended operating conditions (3.3 V)), and Table 10 (Recommended operating conditions (5.0 V)), corrected the parameter description for VDD_ADC to “Voltage on VDD_HV_ADC0, VDD_HV_ADC1 (ADC reference) with respect to ground (VSS)” In Section 3.6.1, I/O pad types bullet item, removed Nexus reference. In Table 12 (I/O input DC electrical characteristics), added specifications for 85 °C. In Table 13 (I/O pull-up/pull-down DC electrical characteristics), Table 14 (SLOW configuration output buffer electrical characteristics), Table 15 (MEDIUM configuration output buffer electrical characteristics), and Table 16 (FAST configuration output buffer electrical characteristics), changed sentence in footnote 2 to “All pads but RESET are configured in input or in high impedance state.” In Table 15 (MEDIUM configuration output buffer electrical characteristics), for VOL, changed IOH to IOL. Updated Table 20 (I/O weight). In Table 21 (Reset electrical characteristics) changed sentence in footnote 4 to “All pads but RESET are configured in input or in high impedance state.” in Table 22 (Voltage regulator electrical characteristics), corrected the maximum value for IDD_BV in Table 22 (Voltage regulator electrical characteristics) to 300 mA. In Table 23 (Low voltage monitor electrical characteristics), changed VPORUP classification tag from “P” (Production testing guaranteed) to “D” (Design simulation). Changed VLVDHV3BH classification tag from “P” (Production testing guaranteed) to “T” (Design characterization). In Table 23 (Low voltage monitor electrical characteristics), changed VLVDHV3L, VLVDHV3BL minimums from 2.7 V to 2.6 V. MPC5606BK Microcontroller Data Sheet, Rev. 5 94 NXP Semiconductors Table 46. Revision history (continued) Revision Date Description of changes 2 (cont.) 15 May 2013 In Table 24 (Electrical characteristics in different application modes), — Changed IDDMAX Typ to 81 mA and IDDMAX Typ to 130 mA. — Changed IDDRUN Typ for fCPU = 32 MHz to 40 mA. — Changed IDDRUN Typ for fCPU = 48 MHz to 54 mA. Added IDDRUN Max of 96 mA. — Changed IDDRUN Typ for fCPU = 64 MHz to 67 mA. Added IDDRUN Max of 120 mA. — Changed IDDHALT at TA = 25 °C Typ to 10 mA and IDDHALT Max to 15 mA. — Changed IDDHALT at TA = 125 °C Typ to 15 mA and IDDHALT Max to 28 mA. — Changed IDDSTOP TA temperature from –40 °C to 25 °C. — Changed IDDSTOP at TA = 25 °C Typ to 130 µA and IDDSTOP Max to 500 µA. — Changed IDDSTOP at TA = 55 °C Typ to 180 µA. — Changed IDDSTOP at TA = 85 °C Typ to 1 mA and IDDSTOP Max to 5 mA. — Changed IDDSTOP at TA = 105 °C Typ to 3 mA and IDDSTOP Max to 9 mA. — Changed IDDSTOP at TA = 125 °C Typ to 5 mA and IDDSTOP Max to 14 mA. — Changed IDDSTDBY2 at TA = 25 °C Typ to 17 µA and Max to 80 µA. — Changed IDDSTDBY2 at TA = 55 °C Typ to 30 µA. — Changed IDDSTDBY2 at TA = 85 °C Typ to 100 µA. — Changed IDDSTDBY2 at TA = 105 °C Typ to 280 µA and Max to 950 µA. — Changed IDDSTDBY2 at TA = 125 °C Typ to 460 µA and Max to 1700 µA. — Changed the parameter classification for IDDSTANDBY2 (TA = 125 °C) — Changed IDDSTDBY1 at TA = 25 °C Typ to 12 µA and Max to 50 µA. — Changed IDDSTDBY1 at TA = 55 °C Typ to 24 µA. — Changed IDDSTDBY1 at TA = 85 °C Typ to 48 µA. — Changed IDDSTDBY1 at TA = 105 °C Typ to 150 µA and Max to 500 µA. — Changed IDDSTDBY1 at TA = 125 °C Typ to 260 µA. — Changed the third sentence of Footnote 3 to begin with “The given value is thought to be a worst case value (64 MHz at 125 °C) with all peripherals running.” — Removed footnotes 8 and 9 regarding IDDHALT and IDDSTOP. — Corrected “C” characteristics to reflect testing status. In Section 3.10, Flash memory electrical characteristics, removed the "FLASH_BIU settings vs. frequency of operation" table. In Table 28 (Flash power supply DC electrical characteristics), corrected Footnote 2 to specify 125 °C. In Section 3.14, FMPLL electrical characteristics, changed the text “the main oscillator driver” to “the FXOSC or FIRC sources.” In Table 40 (ADC input leakage current), added specifications for 85 °C. In Table 44 (DSPI characteristics), added tSCK specifications for MTFE=1. In Table 44 (DSPI characteristics), updated specifications 7 and 8 to 13 ns, all DSPIs. in ADC section, corrected Equation 11. In Figure 41 (Commercial product code structure), added “Note: Not all options are available on all devices.” Removed Section 6, Abbreviations. 3 11 Sep 2013 Updated the temperature in table note 2 in Table 1 (MPC5606BK family comparison) from 105 o C to 125 oC. 4 25 Nov2015 Updated the Max value current for IADC0run from 40 mA to 5 mA in Table 41 (ADC_0 conversion characteristics (10-bit ADC_0)). 5 7 Nov 2017 In Table 9 (Recommended operating conditions (3.3 V)) added Min value for TVDD. In Table 10 (Recommended operating conditions (5.0 V)) added Min value for TVDD. In Table 44 (DSPI characteristics) changed the for DSPI 2 and 4, in MTFE=1 mode from 125 to 145. MPC5606BK Microcontroller Data Sheet, Rev. 5 NXP Semiconductors 95 How to Reach Us: Home Page: nxp.com Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must bevalidated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can befound at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C.5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C.Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and ÏVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. MPC5606B Rev. 5 11/2017
SPC5606BK0VLL6R 价格&库存

很抱歉,暂时无法提供与“SPC5606BK0VLL6R”相匹配的价格&库存,您可以联系我们找货

免费人工找货