0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SVF332R3K1CKU2

SVF332R3K1CKU2

  • 厂商:

    NXP(恩智浦)

  • 封装:

    LQFP176

  • 描述:

    32-BIT DEVICES FOR ADVANCED CONN

  • 数据手册
  • 价格&库存
SVF332R3K1CKU2 数据手册
NXP Semiconductors Data Sheet: Technical Data VF3xxR, VF5xxR Features • Operating characteristics – Voltage range 3 V to 3.6 V – Temperature range(ambient) -40 °C to 85 °C • ARM® Cortex® A5 Core features – Up to 400 MHz ARM® Cortex® A5 core – 32 KB/32 KB I/D L1 Cache – 1.6 DMIPS/MHz based on ARMv7 architecture – NEON™ MPE (Media Processing Engine) Coprocessor – Double Precision Floating Point Unit – 512 KB L2 cache (on selected part numbers only) • ARM Cortex M4 Core features – Up to 133 MHz ARM Cortex M4 – Integrated DSP capability – 64 KB Tightly Coupled Memory (TCM) – 16 KB/16 KB I/D L1 Cache – 1.25 DMIPS/MHz based on ARMv7 architecture • Clocks – 24 MHz crystal oscillator – 32 kHz crystal oscillator – Internal reference clocks (128 KHz and 24 MHz) – Phase Locked Loops (PLLs) – Low Jitter Digital PLLs • System debug, protection, and power management – Various stop, wait, and run modes to provide low power based on application needs – Peripheral clock enable register can disable clocks to unused modules, thereby reducing currents – Low voltage warning and detect with selectable trip points – Illegal opcode and illegal address detection with programmable reset or processor exception response – Hardware CRC module to support fast cyclic redundancy checks (CRC) – 128-bit unique chip identifier – Hardware watchdog – External Watchdog Monitor (EWM) – Dual DMA controller with 32 channels (with DMAMUX) Document Number VYBRIDRSERIESEC Rev. 8, 01/2018 VYBRIDRSERIESEC • Debug – Standard JTAG – 16-bit Trace port • Timers – Motor control/general purpose timer (FTM) – Periodic Interrupt Timers (PITs) – Low-power timer (LPTMR0) – IEEE 1588 Timer per MAC interface (part of Ethernet Subsystem) • Communications – Six Universal asynchronous receivers/transmitters (UART)/Serial communications interface (SCI) with LIN, ISO7816, IrDA, and hardware flow control – Four Deserial Serial peripheral interface (DSPI) – Four Inter-Integrated Circuit (I2C) with SMBUS support – Dual USB OTG Controller + PHY – Dual 4/8 bit Secure Digital Host controller – Local Media Bus (MLB50) – Dual 10/100 Ethernet (IEEE 1588) – Dual FlexCAN3 • Security – ARM TrustZone including the TZ architecture – Secure Non-Volatile Storage (SNVS) – Real Time Clock – Real Time Integrity Checker (RTIC) – TrustZone Watchdog (TZ WDOG) – Trust Zone Address Space Controller – Random Number Generator – Hashing – Secure JTAG • Memory Interfaces – 8/16-bit DRAM Controller with support for LPDDR2/DDR3 - Up to 400 MHz (ECC supported for 8-bit only and not 16-bit) – 8/16-bit NAND Flash controller with ECC (ECC supported for 8-bit only and not 16-bit) – Dual Quad SPI with XIP (Execute-In-Place) – 8/16/32-bit External bus (Flexbus) NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products. • Display and Video – Dual Display Control Unit (DCU) with support for color TFT display up to WVGA – Segmented LCD (3V Glass only) configurable as 40x4, 38x8, and 36x6 – Video Interface Unit (VIU) for camera – Open VG Graphics Processing Unit (GPU) – VideoADC • Analog – Dual 12-bit SAR ADC with 1MS/s – Dual 12-bit DAC • Audio – Four Synchronous Audio Interface (SAI) – Enhanced Serial Audio Interface (ESAI) – Sony Philips Digital Interface (SPDIF), Rx and Tx – Asynchronous Sample Rate Converter (ASRC) • Human-Machine Interface (HMI) – GPIO pins with interrupt support, DMA request capability, digital glitch filter. – Hysteresis and configurable pull up/down device on all input pins – Configurable slew rate and drive strength on all output pins • On-Chip Memory – 512 KB On-chip SRAM with ECC – 1 MB On-chip graphics SRAM (no ECC). This depends on the part selected. Alternate configuration could be 512 KB graphics and 512 KB L2 cache. – 96 KB Boot ROM VF3xxR, VF5xxR, Rev. 8, 01/2018 2 NXP Semiconductors Table of Contents 1 Ordering parts.....................................................................................5 1.1 2 3 4 5 Power Down Mode............................. 20 Determining valid orderable parts ..........................................5 6.2.6 EMC radiated emissions operating behaviors........ 21 Part identification............................................................................... 5 6.2.7 EMC Radiated Emissions Web Search Procedure 2.1 Description.............................................................................. 5 2.2 Part Number Format................................................................5 2.3 Part Numbers ..........................................................................6 boilerplate............................................................... 21 6.2.8 7 Terminology and guidelines...............................................................7 Capacitance attributes............................................. 21 I/O parameters....................................................................................22 7.1 GPIO parameters..................................................................... 22 3.1 Definition: Operating requirement.......................................... 7 3.2 Definition: Operating behavior............................................... 8 3.3 Definition: Attribute................................................................8 3.4 Definition: Rating....................................................................8 8.1 Power sequencing ...................................................................28 3.5 Result of exceeding a rating.................................................... 9 8.2 Power supply........................................................................... 29 3.6 Relationship between ratings and operating requirements......9 8.3 Absolute maximum ratings..................................................... 31 3.7 Guidelines for ratings and operating requirements................. 10 8.4 Recommended operating conditions....................................... 32 3.8 Definition: Typical value........................................................ 10 8.5 Recommended Connections for Unused Analog Interfaces... 33 3.9 Typical Value Conditions........................................................11 Handling ratings................................................................................. 11 7.1.1 7.2 8 9 Output Buffer Impedance measurement................. 24 DDR parameters......................................................................24 Power supplies and sequencing..........................................................28 Peripheral operating requirements and behaviours............................ 34 9.1 Analog..................................................................................... 34 4.1 ESD handling ratings ............................................................. 11 4.2 Thermal handling ratings........................................................ 12 9.1.1.1 12-bit ADC operating conditions........ 34 4.3 Moisture handling ratings........................................................12 9.1.1.2 12-bit ADC characteristics..................35 9.1.1 Operating Requirements.....................................................................12 5.1 6 6.2.5.1 9.1.2 12-bit ADC electrical characteristics...................... 34 12-bit DAC electrical characteristics...................... 39 Thermal operating requirements............................................. 12 9.1.2.1 12-bit DAC operating requirements....39 General............................................................................................... 12 9.1.2.2 12-bit DAC operating behaviors......... 39 6.1 AC electrical characteristics....................................................12 6.2 Nonswitching electrical specifications ...................................13 6.2.1 6.2.2 6.2.3 9.1.3 9.2 VREG electrical specifications .............................. 13 VideoADC Specifications.......................................43 Display and Video interfaces.................................................. 45 9.2.1 DCU Switching Specifications............................... 45 6.2.1.1 HPREG electrical characteristics........ 13 9.2.1.1 Interface to TFT panels (DCU0/1)......45 6.2.1.2 LPREG electrical characteristics.........14 9.2.1.2 Interface to TFT LCD Panels—Pixel 6.2.1.3 ULPREG electrical characteristics......14 6.2.1.4 WBREG electrical characteristics.......15 6.2.1.5 External NPN Ballast.......................... 15 Level Timings..................................... 46 9.2.1.3 Interface to TFT LCD panels—access level..................................................... 47 LVD electrical specifications .................................17 9.2.2 Video Input Unit timing..........................................48 6.2.2.1 Main Supply electrical characteristics 17 9.2.3 LCD driver electrical characteristics...................... 49 6.2.2.2 LVD DIG characteristics.....................18 9.3 Ethernet specifications............................................................ 50 LDO electrical specifications .................................18 9.3.1 Ethernet Switching Specifications.......................... 50 6.2.3.1 LDO_1P1............................................ 18 9.3.2 Receive and Transmit signal timing specifications 50 6.2.3.2 LDO_2P5............................................ 19 9.3.3 Receive and Transmit signal timing specifications 6.2.3.3 LDO_3P0 ........................................... 19 6.2.4 Power consumption operating behaviors................ 20 6.2.5 USB PHY current consumption..............................20 for MII interfaces.................................................... 51 9.4 Audio interfaces...................................................................... 53 VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 3 9.4.1 Enhanced Serial Audio Interface (ESAI) Timing 9.7.4 Parameters...............................................................53 9.5 9.6 9.7 9.4.2 SPDIF Timing Parameters...................................... 55 9.4.3 SAI/I2S Switching Specifications.......................... 56 Slow internal RC oscillator (128 KHz) electrical characteristics..........................................................84 9.7.5 PLL1 and PLL2 (528 MHz System PLL) Electrical Parameters.............................................. 84 Memory interfaces...................................................................58 9.7.6 PLL3 and PLL7 (480 MHz USB PLL) Electrical 9.5.1 QuadSPI timing.......................................................58 Parameters...............................................................84 9.5.2 NAND flash controller specifications.....................61 9.7.7 PLL5 (Ethernet PLL) Electrical Parameters........... 85 9.5.3 FlexBus timing specifications.................................64 9.7.8 PLL4 (Audio PLL) Electrical Parameters...............85 9.5.4 DDR controller specifications................................ 66 9.7.9 PLL6 (Video PLL) Electrical Parameters...............85 9.5.4.1 DDR3 Timing Parameters ..................66 9.8 Debug specifications............................................................... 86 9.5.4.2 DDR3 Read Cycle...............................68 9.8.1 JTAG electricals..................................................... 86 9.5.4.3 DDR3 Write cycle...............................69 9.8.2 Debug trace timing specifications...........................88 9.5.4.4 LPDDR2 Timing Parameter................70 10 Thermal attributes.............................................................................. 89 9.5.4.5 LPDDR2 Read Cycle.......................... 71 10.1 Thermal attributes................................................................... 89 9.5.4.6 LPDDR2 Write Cycle......................... 72 11 Dimensions.........................................................................................90 Communication interfaces.......................................................73 11.1 Obtaining package dimensions ...............................................90 9.6.1 MediaLB (MLB) DC Characteristics..................... 73 12 Pinouts................................................................................................91 9.6.2 MediaLB (MLB) Controller AC Timing Electrical 12.1 Pinouts.....................................................................................91 Specifications..........................................................73 12.2 Pinout diagrams.......................................................................103 9.6.3 DSPI timing specifications..................................... 75 12.2.1 GPIO Mapping........................................................105 9.6.4 I2C timing............................................................... 78 12.2.2 Special Signal ........................................................ 109 9.6.5 SDHC specifications...............................................80 13 Power Supply Pins............................................................................. 111 9.6.6 USB PHY specifications.........................................81 13.1 Power Supply Pins.................................................................. 111 Clocks and PLL Specifications............................................... 81 14 Functional Assignment Pins...............................................................112 9.7.1 24 MHz Oscillator Specifications...........................81 14.1 Functional Assignment Pins....................................................112 9.7.2 32 KHz Oscillator Specifications........................... 82 15 Revision History.................................................................................121 9.7.3 Fast internal RC oscillator (24 MHz) electrical characteristics..........................................................83 VF3xxR, VF5xxR, Rev. 8, 01/2018 4 NXP Semiconductors Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. 1. To determine the orderable part numbers for this device, go to www.nxp.com and search the required part number. The part numbering format is described in the section that follows. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Part Number Format The figure below represents the format of part number of this device. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 5 Part identification S V F 3 1 1 R 3 K1 C MK 2 R Tape & Reel R = Tape & Reel (Optional) Qualification Status P = engineering samples S = automotive qualified Speed (A5 core) 2 = 266MHz 4 = 400MHz Brand: V = Vybrid Series: F = current Package KU = 176LQFP MK = 364BGA Family 3 = Standard 5 = Advanced Core 1 = Cortex A5 2 = Cortex A5 + M4 3 = M4 Primary Graphics 1 = No Open VG 2 = Open VG Temp Spec C = -40 to +85C Ta Option K1 = 2N02G with VADC K2 = 3N02G with VADC N2 = 3N02G with no VADC Version R = Auto Memory Option 3 = Standard (1.5MB SRAM) 2 = Optional (1MB SRAM and 512K L2 Cache) Figure 1. Part Number Format 2.3 Part Numbers This table lists the part numbers on the device. Part Number Mask VADC Package Description SVF311R3K2CKU2 3N02G YES LQFP-EP 176 24*24*1.6 A5-266, 176LQFP-EP SVF312R3K2CKU2 3N02G YES LQFP-EP 176 24*24*1.6 A5-266, OpenVG GPU, 176LQFP-EP SVF321R3K2CKU2 3N02G YES LQFP-EP 176 24*24*1.6 A5-266, M4, 176LQFP-EP SVF322R3K2CKU2 3N02G YES LQFP-EP 176 24*24*1.6 A5-266, M4, OpenVG GPU, 176LQFP SVF331R3K2CKU2 3N02G YES LQFP-EP 176 24*24*1.6 A5-266, M4 Primary, 176LQFP-EP SVF332R3K2CKU2 3N02G YES LQFP-EP 176 24*24*1.6 A5-266, M4 Primary, OpenVG GPU, 176LQFP-EP SVF511R3K2CMK4 3N02G YES MAP 364 17*17*1.5 P0.8 A5-400, 364BGA SVF512R3K2CMK4 3N02G YES MAP 364 17*17*1.5 P0.8 A5-400, OpenVG GPU, 364BGA SVF521R3K2CMK4 3N02G YES MAP 364 17*17*1.5 P0.8 A5-400, M4, 364BGA SVF522R2K2CMK4 3N02G YES MAP 364 17*17*1.5 P0.8 A5-400, M4, L2 Cache, OpenVG GPU, 364BGA SVF522R3K2CMK4 3N02G YES MAP 364 17*17*1.5 P0.8 A5-400, M4, OpenVG GPU, 364BG Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 6 NXP Semiconductors Terminology and guidelines Part Number Mask VADC Package Description SVF531R3K2CMK4 3N02G YES MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, 364BG SVF532R2K2CMK4 3N02G YES MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, L2 Cache OpenVG GPU, 364BGA SVF532R3K2CMK4 3N02G YES MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, OpenVG GPU, 364BGA SVF311R3N2CKU2 3N02G NO LQFP-EP 176 24*24*1.6 A5-266, 176LQFP-EP SVF312R3N2CKU2 3N02G NO LQFP-EP 176 24*24*1.6 A5-266, OpenVG GPU, 176LQFP-EP SVF321R3N2CKU2 3N02G NO LQFP-EP 176 24*24*1.6 A5-266, M4, 176LQFP-EP SVF322R3N2CKU2 3N02G NO LQFP-EP 176 24*24*1.6 A5-266, M4, OpenVG GPU, 176LQFP SVF331R3N2CKU2 3N02G NO LQFP-EP 176 24*24*1.6 A5-266, M4 Primary, 176LQFP-EP SVF332R3N2CKU2 3N02G NO LQFP-EP 176 24*24*1.6 A5-266, M4 Primary, OpenVG GPU, 176LQFP-EP SVF511R3N2CMK4 3N02G NO MAP 364 17*17*1.5 P0.8 A5-400, 364BGA SVF512R3N2CMK4 3N02G NO MAP 364 17*17*1.5 P0.8 A5-400, OpenVG GPU, 364BGA SVF521R3N2CMK4 3N02G NO MAP 364 17*17*1.5 P0.8 A5-400, M4, 364BGA SVF522R2N2CMK4 3N02G NO MAP 364 17*17*1.5 P0.8 A5-400, M4, L2 Cache, OpenVG GPU, 364BGA SVF522R3N2CMK4 3N02G NO MAP 364 17*17*1.5 P0.8 A5-400, M4, OpenVG GPU, 364BG SVF531R3N2CMK4 3N02G NO MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, 364BG SVF532R2N2CMK4 3N02G NO MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, L2 Cache OpenVG GPU, 364BGA SVF532R3N2CMK4 3N02G NO MAP 364 17*17*1.5 P0.8 A5-400, M4 Primary, OpenVG GPU, 364BGA 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 Example This is an example of an operating requirement: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 7 Terminology and guidelines 3.2 Definition: Operating behavior Unless otherwise specified, an operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. VF3xxR, VF5xxR, Rev. 8, 01/2018 8 NXP Semiconductors Terminology and guidelines 3.4.1 Example This is an example of an operating rating: Symbol VDD Description Min. 1.0 V core supply voltage Max. –0.3 Unit 1.2 V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic 3.6 Relationship between ratings and operating requirements O ra pe tin gr ( g tin a n. mi ) ra pe e gr tin e ir qu ) in. t (m n me O gr tin O ra pe e ir qu e t (m n me ax .) O a gr tin ra pe (m g tin .) ax Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) ng dli n Ha n.) mi g( in rat ma g( ng dli n Ha in rat x.) Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ Handling (power off) ∞ VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 9 Terminology and guidelines 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol IWP Description Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: VF3xxR, VF5xxR, Rev. 8, 01/2018 10 NXP Semiconductors Handling ratings 5000 4500 4000 TJ 3500 150 °C IDD_STOP (μA) 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 VDD (V) 3.9 Typical Value Conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 4 Handling ratings 4.1 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 500 V 2 Latch-up Current at ambient temperature of 85 °C -100 100 mA ILAT 1. Determined according to the AEC spec AEC-Q100-002 for HBM 2. Determined according to AEC spec AEC-Q100-011 VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 11 Operating Requirements 4.2 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 Solder temperature, leaded — 245 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 5 Operating Requirements 5.1 Thermal operating requirements Table 1. Thermal operating requirements Symbol Description Min. Max. Unit TA Ambient temperature –40 85 °C TJ Junction temperature — 105 °C 6 General 6.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. VF3xxR, VF5xxR, Rev. 8, 01/2018 12 NXP Semiconductors Nonswitching electrical specifications Input Signal High Low VIH 80% 50% 20% Midpoint1 VIL Fall Time Rise Time The midpoint is VIL + (VIH - VIL) / 2 Figure 2. Input signal measurement reference 6.2 Nonswitching electrical specifications 6.2.1 VREG electrical specifications 6.2.1.1 HPREG electrical characteristics Table 2. HPREG electrical characteristics Parameters Min Typ Max Unit Comments Power supply 3.0 3.3 3.6 V - Current Consumption - 1.2 1.5 mA @ no load - 2.0 2.5 mA @ full load 600 12001 mA DC load current 1.23 1.26 V Output current capacity - Output voltage @ no load Output voltage @ full load 1.20 1.21 V External decoupling cap 4.7 - μF - 0.05 0.1 Ohms ESR of external cap 20 mOhms Total effective PAD+PCB trace resistances @ DC @noload -48 dB @ DC @full load -40 @ worst case any frequency -20 PSRR with 4.7uF output cap 1. This is peak and not continuous maximum value. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 13 VREG electrical specifications 6.2.1.2 LPREG electrical characteristics Table 3. LPREG electrical characteristics Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V Current Consumption 350 400 - 500 Output current capacity Output voltage @ no load Comments μA @ no load 650 μA @ full load 100 200 mA DC load current 1.22 1.240 V Output voltage @ full load 1.180 V External decoupling cap 4.7 μF 0.05 0.1 Ohms ESR of external cap 20 mOhms Total PAD+PCB trace resistance @ DC @noload -40 dB @ DC @full load -35 Worst case @ any frequency -12 PSRR with 4.7uF output cap 6.2.1.3 ULPREG electrical characteristics Table 4. ULPREG electrical characteristics Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V Current Consumption 1.88 2.3 2.86 μA - 610 670 μA @ full load 20 mA DC load current 1.175 V Output current capacity Output voltage @ no load Output voltage @ full load PSRR with 500 pF output cap 1.125 V -20 dB @ DC @noload -50 @200KHz @noload -37 @ DC @full load -42 @200KHz @full load -37 Worst case @ any frequency @ any load -15 Comments @ no load Worst case at any frequency across corners dB VF3xxR, VF5xxR, Rev. 8, 01/2018 14 NXP Semiconductors VREG electrical specifications 6.2.1.4 WBREG electrical characteristics Table 5. WBREG electrical characteristics Parameters Min Typ Max Unit Comments Power supply 3 3.3 3.6 V - Current Consumption - 2 5 µA @ no load - 2 5 µA @ full load - 1 2 mA DC load current 1.4 1.425 V Output current capacity Output voltage @ no load Output voltage @ full load 1.375 1.398 Output voltage programmability 1.4 1.4 6.2.1.5 V 1.7 V 16 steps of 25 mV each External NPN Ballast The internal main regulator requires an external NPN ballast transistor to be connected as shown in the following figure as well as an external capacitance to be connected to the device in order to provide a stable 1.2V digital supply to the device. The HPREG design allows for collector voltage lower than VDDREG value. See AN4807 at www.nxp.com . NOTE To not overload BCTRL output, collector voltage should appear no later than VDDREG / VDD33 (3.3V). VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 15 VREG electrical specifications Figure 3. External NPN Ballast connections Table 6. BCTRL OUTPUT specification Parameter Value Comments BCTRL OUTPUT specification 20mA BCTRL driver can not drive more than 20mA current Maximum pin voltage VDDREG-0.5V For Example, VDDREG =3.0V BCTRL should not exceed 2.5V. Table 7. Assumptions For calculations Parameter Value VDDREG 3.0V to 3.6V with typical value of 3.3V Max DC Collector current 0.85A @85 °C Emitter voltage 1.2V to 1.25V Collector voltage Equal to VDDREG Table 8. General guidelines for selection of NPN ballast Symbol Parameters Value Hfe Minimum DC current gain (Beta) 42.5 PD (Junction to ambient) Minimum power dissipation @ TA=85 °C 2.04 Unit Comments As BCTRL pin can not drive more than 20mA Minimum value of beta for a collector current of 0.85A comes out to be 42.5. W Assuming 0.85A collector current with Collector voltage of Ballast 3.6V(max) we get VCE= 3.6V-1.2V=2.4V So power dissipated is 2.4V*0.85A=2.04W . This should be met for junction to ambient power dissipation spec of ballast Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 16 NXP Semiconductors LVD electrical specifications Table 8. General guidelines for selection of NPN ballast (continued) Symbol Parameters Value Unit Comments IcmaxDC peak Maximum peak DC collector current 0.85 A 1.2A and above capacity device preferable V For a VDDREG of 3.0 V (min.), BCTRL pin can drive voltage up to VDDREG 0.5 V = 2.5 V. Since emitter of ballast is fixed at 1.25 V (max) if chosen ballast can supply 0.85 A collector current @ 85 °C with a base-to-emitter voltage of 1.25 V or lower, it is suitable for application. VBE Maximum voltage 1.25V for 0.85A @ that BCTRL pin can 85 °C drive Ft Unity current gain Frequency of Ballast 50 MHz Reducing the collector-to-emitter voltage drop lowers the ballast transistor heat dissipation. This can be implemented in two ways: 1. By introducing series resistor or diode(s) between the collector and VDDREG (placed far enough from the transistor for proper cooling) 2. By connecting the collector to a separate lower-voltage supply In both of the above cases the transistor has to stay away from the deep saturation region; otherwise, due to significant Hfe degradation, its base current exceeds the BCTRL output maximum value. In general, the transistor must be selected such that its Vce saturation voltage is lower than the expected minimum Collector-Emitter voltage, and at the same time, the base current is less than 20 mA for the maximum expected collector current. More information can be found in collateral documentation at http://www.nxp.com 6.2.2 LVD electrical specifications 6.2.2.1 Main Supply electrical characteristics Table 9. LVD_MAIN supply electrical characteristics Main Supply LVD Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V 2.76 2.915 V Upper voltage threshold (value @27oC) Lower voltage threshold (value @27oC) Time constant of RC filter at LVD input (0.69*RC) 2.656 2.73 3.3 Comments V μs 3.3 V noise rejection at LVD comparator input VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 17 LDO electrical specifications 6.2.2.2 LVD DIG characteristics Table 10. LVD DIG electrical specifications [HPREG(RUN MODE) and LPREG(STOP MODE)] LVD DIG Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V Upper voltage threshold 1.135 1.16 1.185 V Lower voltage threshold 1.105 1.13 1.155 V Time constant of RC filter at LVD input 200 Comments ns 1.2V noise rejection at the input of LVD comparator Table 11. LVD DIG electrical specifications [ULPREG(STANDBY MODE)] LVD DIG Parameters Min Typ Max Unit Power supply 3.0 3.3 3.6 V Upper voltage threshold 1.105 1.13 1.155 V Lower voltage threshold 1.075 1.10 1.125 V Time constant of RC filter at LVD input 200 Comments ns 1.2V noise rejection at the input of LVD comparator 6.2.3 LDO electrical specifications 6.2.3.1 LDO_1P1 Specification Table 12. LDO_1P1 parameters Min Typ Max Unit Comments VDDIO 3 3.3 3.6 V IO supply VDD1P1_OUT 0.9 1.1 1.2 V Regulator output I_out - 150 mA >= 300mV drop out 1.4 V Programmable in 25mV steps Regulator output 0.8 programming range 1.1 Brownout Voltage 0.85 0.94 Brownout offset step 0 - 175 mV Programmable in 25mV steps Minimum external decoupling capacitor 1 - - µF low ESR V VF3xxR, VF5xxR, Rev. 8, 01/2018 18 NXP Semiconductors LDO electrical specifications For additional information, see the device reference manual. 6.2.3.2 LDO_2P5 Specification Table 13. LDO_2P5 parameters Min Typ Max Unit Comments VDDIO 3 3.3 3.6 V IO supply VDD2P5_OUT 2.3 2.5 2.6 V Regulator output I_out - 350 mA @500mV drop out 2.75 V Programmable in 25mV steps Regulator output 2.0 programming range 2.5 [P:][C:] Brownout Voltage 2.25 2.33 Brownout offset step 0 - 175 mV Programmable in 25mV steps Minimum external decoupling capacitor 1 - - µF low ESR V For additional information, see the reference manual. 6.2.3.3 LDO_3P0 Specification Table 14. LDO_3P0 parameters Min Typ Max Unit Comments Input OTG VBUS Supply 4.4 5.25 V Input HOST VBUS Supply 4.4 5.25 V VDD3P0_OUT 2.9 3.1 V Regulator output at default setting I_out - 50 mA 500 mV drop-out voltage 3.4 V Programmable in 25mV steps 3.0 Regulator output 2.625 programming range [P:][C:] Brownout Voltage 2.75 2.85 V Brownout offset step 0 - 175 mV Programmable in 25mV steps Minimum external decoupling capacitor 1 - - µF low ESR VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 19 LDO electrical specifications NOTE These values are with Anadig_REG_3P0[ENABLE_ILIMIT]= 0 and Anadig_REG_3P0[ENABLE_LINREG]= 1. It is required to set these values before using USB. 6.2.4 Power consumption operating behaviors Table 15. Power consumption operating behaviors Description Typ.1 Max.2 Unit IDD_RUN Run mode current — All functionalities of the chip available 400 850 mA IDD_WAIT Wait mode high frequency current at 3.3 V ± 10% 80 500 mA 3 Low-power run mode current at 3.3 V ± 10%, 24MHz operation, PLL Bypass. 13 325 mA 4 Ultra-low-power run mode current at 3.3 V ± 10% 12 395 mA 5 Symbol IDD_LPRUN IDD_ULPRUN IDD_STOP Stop mode current at 3.3 V ± 10% 7 300 mA 6 300 1300 uA 7 Low power stop 2/low power stop 3 with FIRC disabled, current at 3.3 V ± 10% 50 875 uA 7 Battery backup mode 5 45 uA 8 IDD_LPS2FIRC/IDD_LPS3FIRC Low power stop 2/low power stop 3 with FIRC enabled, current at 3.3 V ± 10% IDD_LPS2/IDD_LPS3 IDD_VBAT Notes 1. The Typ numbers represent the average value taken from a matrix lot of parts across normal process variation at ambient temperature. 2. The Max numbers represent the single worst case value taken from a matrix lot of parts across normal process variation at maximum temperature. 3. CA5, CM4 cores halted 4. 24MHz operation, PLL Bypass 5. 32 kHz /128 kHz operation, PLL Off 6. Lowest power mode with all power retained, RAM retention and LVD protection. 7. Standby Mode. 64K and 16K RAM retention. ADCs/DACs optionally power-gated. RTC functional. Wakeup from interrupts. 8. All supplies OFF, SRTC, 32kXOSC ON, tampers and monitors ON. 128k IRC optionally ON. 6.2.5 USB PHY current consumption 6.2.5.1 Power Down Mode Everything powered down, including the VBUS valid detectors, typ condition. Table 16. USB PHY Current Consumption in Normal Mode Current USBx_VBUS VDD33_LDOIN VDD33_LDOIN (3.0V) (2.5V) (1.1V) Avg Avg Avg 5.1 μA 1.7 μA 1, 1->0 pad transitions Unit ns 1.18 ns 3.10 ns Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 23 I/O parameters Table 21. GPIO AC Electrical Characteristics (3.3V power mode) (continued) Symbol Drive strength1 Parameter Low 0 1 1 tpi Input Pad Propagation Delay rise/fall Slew rate Test conditions Min Max fast 4.06 4.09 slow 7.80 8.19 fast 5.72 6.22 1.06 1.31 1.22 1.41 without hysteresis - with hysteresis - 150f Cload on, input edge rate from pad =1.2ns Unit ns 1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX Controller chapter of the device reference manual. 7.1.1 Output Buffer Impedance measurement Table 22. Output Buffer Average Impedance (3.3V power mode) Symbol Rdrv Drive strength1 Parameter Output driver impedance Min Typ Max 001 116 150 220 010 58 75 110 011 39 50 73 100 30 37 58 101 24 30 46 110 20 25 38 17 20 32 Unit Ohm Extra drive strength 111 1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX Controller chapter of the device reference manual. 7.2 DDR parameters Table 23. DDR operating conditions Symbol Parameter Min Typ Max Unit vddi Core internal supply voltage 1.16 1.23 1.26 V ovdd I/O output supply voltage (DDR3 mode) 1.425 1.5 1.575 V ovdd I/O output supply voltage (LPDDR2 mode) 1.14 1.2 1.26 V vdd2p5 I/O PD predriver and level shifters supply voltage 2.25 2.5 2.75 V VF3xxR, VF5xxR, Rev. 8, 01/2018 24 NXP Semiconductors I/O parameters Table 24. LPDDR2 mode DC Electrical characteristics Symbol Parameter Test condition Min Voh High-level output voltage Vol Low-level output voltage Vref Input reference voltage 0.49*ovdd Vih(dc) DC input high voltage Vil(dc) Typ Max 0.9*ovdd Unit V 0.1*ovdd V 0.51*ovdd V Vref+0.13 ovdd V DC input low voltage ovss Vref-0.13 V Vih(diff) DC differential input logic high 0.26 Note1 V Vil(diff) DC differential input logic low Note1 -0.26 V Iin2 Input current (no pull-up/ down) Vin = ovdd or 0 2.5 uA Tri-state I/O supply current2 Icc-ovdd Vin = ovdd or 0 4 Vi = vddi or 0 1.5 Tri-state Icc-vdd2p5 vdd2p5 supply current2 0.5*ovdd Tri-state core supply current2 Icc-vddi 1 Driver unit (240 Ohm) calibration resolution Rres 10 Notes Note that the JEDEC LPDDR2 specification (JESD209_2B ) supersedes any specification in this document. Ohm 1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 2. Typ condition: typ model, 1.2 V, and 25 °C junction. Max condition: bcs model, 1.26V, and -40 °C. Min condition: wcs model, 1.14V, and Tj 125 °C. Table 25. DDR3 mode DC Electrical characteristics Symbol Parameter Test condition Voh High-level output voltage Vol Low-level Iol= 1mA output voltage Min Typ Max 0.8*ovdd Unit V 0.2*ovdd V Notes Note that the JEDEC JESD79_3E specification supersedes any Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 25 I/O parameters Table 25. DDR3 mode DC Electrical characteristics (continued) Symbol Parameter Test condition Min Vref Input reference voltage 0.49*ovdd Vih(dc) DC input high voltage Vil(dc) Typ Unit 0.51*ovdd V Vref+0.1 ovdd V DC input low voltage ovss Vref-0.1 V Vih(diff) DC differential input logic high 0.2 Note1 V Vil(diff) DC differential input logic low Note1 -0.2 V Vtt2 Termination voltage Vin = ovdd or 0 Iin3 Input current (no pullup/ pulldown) Vi = 0 Vi = ovdd 3 Tri-state I/O supply current3 Icc-ovdd Vin = ovdd or 0 5 Vi = vddi or 0 1.5 Tri-state Icc-vdd2p5 vdd2p5 supply current3 0.49*ovdd 0.5*ovdd Max 0.5*ovdd Notes specification in this document 0.51*ovdd Tri-state core supply current3 Icc-vddi 1 Driver unit (240 Ohm) calibration resolution Rres 10 uA Ohm 1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 2. Vtt is expected to track ovdd/2. 3. Typ condition: typ model, 1.5 V, and 25 °C. Max condition: bcs model, 1.575V, and -40 °C. Min condition: wcs model, 1.425V, and max Tj °C 125 °C junction Table 26. LPDDR2 mode AC Electrical characteristics Symbol Parameter Vih(ac) AC input logic high Vil(ac) AC input logic low Vidh(ac)1 AC differential input high voltage Test condition Min Vref+0.22 0.44 Max Unit ovdd V Vref-0.22 V - V Notes Note that the Jedec LPDDR2 specification (JESD209-2B) supersedes any specification in this document. Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 26 NXP Semiconductors I/O parameters Table 26. LPDDR2 mode AC Electrical characteristics (continued) Symbol Parameter Test condition Vidl(ac)1 AC differential input low voltage Vix(ac)2 AC differential Relative to input crosspoint ovdd/2 voltage Vpeak Min Max Unit 0.44 V 0.12 V Over/undershoot peak 0.35 V Varea Over/undershoot at 800MHz data area (above rate ovdd or below ovss) 0.3 V*ns tsr Single output slew rate 2 V/ns tskd Skew between pad rise/fall asymmetry + skew cased by SSN 0.2 ns -0.12 0.4 Notes 1. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac)-Vil(ac). 2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac) indicates the voltage at which differential input signal must cross. Table 27. DDR3 mode AC Electrical characteristics Symbol Parameter Test condition Min Max Unit Vih(ac) AC input logic high Vref+0.175 ovdd V Vil(ac) AC input logic low ovss Vref-0.175 V Vidh(ac)1 AC differential input high voltage 0.35 - V Vidl(ac)1 AC differential input low voltage 0.35 Vix(ac)2 AC differential relative to input crosspoint ovdd/2 voltage Vref-0.15 Vpeak Note that the JEDEC JESD79_3E specification supersedes any specification in this document V Vref+0.15 V Over/undershoot peak 0.4 V Varea Over/undershoot at 800 MHz data area (above rate ovdd or below ovss) 0.5 V*ns tsr Single output slew rate 2 V/ns 0.4 Notes Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 27 Power supplies and sequencing Table 27. DDR3 mode AC Electrical characteristics (continued) Symbol tskd Parameter Test condition Min Skew between pad rise/fall asymmetry + skew cased by SSN Max Unit 0.2 Notes ns 1. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is the “complementary” input signal. The Minimum value is equal to Vih(ac)-Vil(ac). 2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac) indicates the voltage at which differential input signal must cross. 8 Power supplies and sequencing 8.1 Power sequencing Table 28. Power sequencing Power Supply (PKG Board Level Level) Power Nets Parameters Power Order VBAT VBAT Battery supply in case of LDOIN fails VDD33_LDOIN VDD33 LDO input supply (LDO1P1, LDO2P5, LDO1P1_RTC) 1 VDDREG VDD33 Device PMU regulator and External ballast supply 1 VDD33 VDD33 GPIO 3.3V IO supply, LCD Supply 1 SDRAMC_VDD1P5 SDRAMC_VDD1P5 1.2/1.5 DDR Main IO supply VDDA33_ADC VDDA33_ADC 3.3V supply for ADC, DAC and IO segment 1 VREFH_ADC VREFH_ADC High Reference of ADC, DAC 1 VDDA33_AFE VDDA33_AFE 3.3V supply of AFE (Video ADC) 1 VDD12_AFE VDD 1.2V supply for AFE (Video ADC) 2 FA_VDD VDD Shorted with VDD at Board Level in 364BGA (Test pin only) NA VDD VDD 1.2V core supply from External ballast USB0_VBUS 1 USB_VBUS VBUS supply for USB NA USB1_VBUS 2 USB_VBUS VBUS supply for USB NA Comment NA NA VDD33_LDOIN,VDDREG and VDD33 should come from a common supply source (represented as 3.3V SMPS in the Figure 4) In case the Ballast transistor’s collector is connected to the 1.5V DRAM supply (instead of the 3.3V supply), turn this 1.5V supply on before turning on the 3.3V. 2 1. Power sequencing of USB0_VBUS is independent of any other power supply. VF3xxR, VF5xxR, Rev. 8, 01/2018 28 NXP Semiconductors Power supplies and sequencing 2. Power sequencing of USB1_VBUS is independent of any other power supply. NOTE NA stands for no sequencing needs, for example, the supply can come in any order. NOTE All supplies grouped together e.g. 1,2, others. These have no power sequencing restriction in between them. NOTE If none of the SDRAMC pins are connected on the board, the SDRAMC supply could be left floating. NOTE At power up, 1.2V supply will follow 3.3V supply. At power down, it should be checked that 1.2V falls before 3.3V. NOTE The standby current on USBx_VBUS is 300 - 500 uA. This is well below the 2.5 mA limit set by the USB 2.0 specification. This supply will be ON for applications that need to monitor the USB bus during standby. This supply can be turned-off during standby in applications that cannot tolerate the standby current and do not monitor the USB bus. 8.2 Power supply VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 29 Power supplies and sequencing 10uF VDDA33_AFE BCTRL VDD 4.7uF VDD VideoADC HPREG LPREG VDDREG WELL PD1 48K 16K WBREG* 3.3V ULPREG VDD33_LDOIN GPIO's PD0 VDD33 DAC x 2 eFUSE LDO2P5 SNVS_IO COIN cell Battery supply (See note) 12-bit SAR ADC x 2 USB 0/1 PHY PLLs DDR IO SDRAMC_VDD2P5 1.5V/1.2V DDR Supply SDRAMC_VDD1P5 DECAP_V25_LDO_OUT LDO1P1 SNVS LDO VDDA33_ADC VREFH_ADC PLLs SNVS LDO3P0 USB_DCAP DECAP_V11_LDO_OUT USB0_VBUS (5V) USB1_VBUS (5V) Figure 4. Power supply NOTE VBAT is the backup battery supply. If not required, then VBAT should be tied to VDDREG. NOTE WBREG is the Well Bias Regulator. Supplies PD1 WELL during well bias modes. VF3xxR, VF5xxR, Rev. 8, 01/2018 30 NXP Semiconductors Power supplies and sequencing 8.3 Absolute maximum ratings NOTE These are the values above which device can get damaged. Refer to the recommended operating conditions table for intended use case values Table 29. Absolute maximum ratings Symbol Parameters Min Max Unit USB0_VBUS VBUS supply for USB - 5.25 V USB1_VBUS VBUS supply for USB USB_DCAP USB LDO 5V->3.3V Outpu - 5.25 V -0.3 3.6 V USB0_DP USBx data line input voltage -0.3 3.6 V VBAT Battery supply in case of LDOIN fails -0.3 3.6 V VDD33_LDOIN LDO input supply -0.3 3.6 V DECAP_V11_LDO_OUT LDO 3.3V -> 1.1V Output -0.3 1.3 V DECAP_V25_LDO_OUT LDO 3.3V -> 2.5 Output for PLL, DDR, EFUSE -0.3 3.6 V VDD33 GPIO 3.3V IO supply -0.3 3.6 V VDDREG Device PMU regulator and External ballast supply -0.3 3.6 V VDDA33_ADC 3.3V supply for ADC, DAC and IO segment -0.3 3.6 V VREFH_ADC 3.3V supply of AFE (Video ADC) -0.3 3.6 V VDDA33_AFE 3.3V supply of AFE (Video ADC) -0.3 3.6 V VDD12_AFE 1.2V supply for AFE (Video ADC) -0.3 1.3 V FA_VDD Test purpose only -0.3 1.3 V VDD 1.2V core supply -0.3 1.3 V SDRAMC_VDD1P5 1.2/1.5 DDR Main IO supply -0.3 1.975 V SDRAMC_VDD2P5 2.5V DDR pre-drive supply DD2P5_LDO_OUT -0.3 3.6 V USB0_DN USB1_DP USB1_DN VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 31 Power supplies and sequencing 8.4 Recommended operating conditions Table 30. Recommended operating conditions Symbol Parameters USB0_VBUS Conditions Min Typ Max Unit VBUS supply for USB w.r.t USB0_GND 4.4 5 5.25 V USB1_VBUS VBUS supply for USB w.r.t USB1_GND 4.4 5 5.25 V USB_DCAP USB LDO 5V->3 V Output VBAT Battery supply in case of LDOIN fails VDD33_LDOIN LDO input supply External DCAP (10uF termination for USBREG) External CAP 0.1uF 3 V 2.4 3.3 3.6 V 3 3.3 3.6 V DECAP_V11_LDO_OU LDO 3.3V -> 1.1V T Output Recommended External DCAP: 1uF(Min) 10uF (Max) 1.1 V DECAP_V25_LDO_OU LDO 3.3V -> 2.5 Output T for PLL, DDR predriver, EFUSE Recommended External DCAP: 1uF(Min) 10uF (Max) 2.5 V VDD33 GPIO 3.3V IO supply External CAP (10uF) 3 3.3 3.6 V VDDREG Device PMU regulator and External ballast supply External CAP (10uF) 3 3.3 3.6 V VDDA33_ADC 3.3V supply for ADC, DAC and IO segment External CAP (10uF) 3 3.3 3.6 V VREFH_ADC High reference voltage for ADC and DAC Relation with VDDDA33_ADC (1uF) 2.5 3.3 VDDA33_ ADC V VREFL_ADC Low reference voltage for ADC and DAC External CAP (10uF) VDDA33_AFE 3.3V supply of AFE (Video ADC) VDD12_AFE 0 External CAP 10uF V 3 3.3 3.6 V 1.2V supply for AFE (Video ADC) 1.16 1.23 1.26 V FA_VDD For testing purpose only should be shorted to VDD on board. 1.16 1.23 1.26 V VDD1 1.2V core supply 1.16 1.23 1.26 V USB0_GND Ground supply for USB 0 V USB1_GND Ground supply for USB 0 V VSS_KEL0 USB LDO ground output 0 V VSS VSS ground 0 V VSSA33_ADC Ground supply for ADC, DAC and IO segment 0 V 4.7uF with a low ESR value (100 milliohms) Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 32 NXP Semiconductors Power supplies and sequencing Table 30. Recommended operating conditions (continued) Symbol Parameters Conditions Min VSSA33_AFE Ground supply of AFE (Video ADC) 0 V VSS12_AFE Ground supply for AFE (Video ADC) 0 V SDRAMC_VDD1P5 LPDDR2 External CAP 10uF 1.142 1.2 1.26 V SDRAMC_VDD1P5 DDR3 External CAP 10uF 1.425 1.5 1.575 V SDRAMC_VDD2P5 2.5V DDR pre-drive supply DD2P5_LDO_OUT External CAP 10uF 2.25 2.5 2.75 V - Maximum power supply ramp rate (Slew limit for power-up) 0.1 V/us - Typ Max Unit 1. For customer applications, this is governed by ballast output which is controlled by the device and appropriate voltage ranges are maintained. 8.5 Recommended Connections for Unused Analog Interfaces NOTE There are two options to handle unused power pins: 1. Connect all unused supplies to their respective voltage. To save the power, do not enable the module and/or do not enable clock gate to the module. 2. Keep all unused supplies floating. If pin is shared by several peripheral, then all peripherals connected to multiplexer have to be powered. For example: if pin is shared by GPIO and ADC input and GPIO functionality is used, then ADC has to be powered due to internal structure of the multiplexer. Keep unused input signals grounded if power pins are powered. Keep unused input signals floating if power pins are floating. Keep unused output signals floating. Module Name Recommendation if Unused ADC VDDA33_ADC 3.3V or float (Note: Powers both ADC and DAC) VREFH_ADC, VREFL_ADC VREFH_ADC same as VDDA33_ADC VREFL_ADC ground or float ADC0SE8, ADC0SE9, ADC1SE8, ADC1SE9 Ground or float CCM LVDS0P, LVDS0N Float DAC DACO0, DACO1 Float Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 33 Peripheral operating requirements and behaviours Module Name Recommendation if Unused USB USB_DCAP, USB0_VBUS, USB1_VBUS Connect USBx_VBUS and USB_DCAP together and tie to ground through a 10K ohm resistor. Do NOT tie directly to ground, latch-up risk. USB0_GND, USB1_GND Ground USB0_VBUS_DETECT, USB1_VBUS_DETECT Float USB0_DM, USB0_DP, USB1_DM, USB1_DP Float VDDA33_AFE 3.3V or Float VDD12_AFE 1.2V or Float Video ADC VADC_AFE_BANDGAP Float VADCSE0, VADCSE1, VADCSE2, VADCSE3 Ground or Float 9 Peripheral operating requirements and behaviours 9.1 Analog 9.1.1 12-bit ADC electrical characteristics 9.1.1.1 12-bit ADC operating conditions Characteristic Table 31. 12-bit ADC Operating Conditions Conditions Symb Min Typ Max Unit Comment 1 Supply voltage Absolute VDDAD 2.5 - 3.6 V - Delta to VDDAD (VDDVDDAD), 2 ΔVDDAD -100 0 100 mV - Ground voltage Delta to VSSAD (VSSVSSAD)2 ΔVSSAD -100 0 100 mV - Ref Voltage High - VREFH 1.5 VDDAD VDDAD V - Ref Voltage Low - VREFL VSSAD VSSAD VSSAD V - Input Voltage - VADIN VREFL - VREFH V - Input Capacitance 8/10/12 bit modes CADIN - 1.5 2 pF - Input Resistance ADLPC=0, ADHSC=1 RADIN - 5 7 kohms - ADLPC=0, ADHSC=0 - 12.5 15 kohms - ADLPC=1, ADHSC=0 - 25 30 kohms - Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 34 NXP Semiconductors Analog Table 31. 12-bit ADC Operating Conditions (continued) Characteristic Conditions Symb Min Typ Max Unit Comment 1 kohms Tsamp=150 ns 1 Analog Source Resistance 12 bit mode fADCK = 40MHz ADLSMP=0, ADSTS=10, ADHSC=1 RAS - - RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum Sample Time vs RAS ADC Conversion Clock Frequency ADLPC=0, ADHSC=1 12 bit mode fADCK 4 - 40 MHz - ADLPC=0, ADHSC=0 12 bit mode 4 - 30 MHz - ADLPC=1, ADHSC=0 12 bit mode 4 - 20 MHz - 1. Typical values assume VDDAD = 3.3 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference Simplified input pin equivalent circuit Pad leakage due to input protection ZAS RAS VAS + – CAS ZADIN Simplified channel select circuit RADIN ADC SAR engine + VADIN – RADIN Input pin Input pin RADIN RADIN Input pin CADIN Figure 5. 12-bit ADC Input Impedance Equivalency Diagram VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 35 Analog 9.1.1.2 12-bit ADC characteristics Table 32. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) Characteristic Conditions1 Symb Supply Current ADLPC=1, ADHSC=0 IDDAD Min Typ 2 250 ADLPC=0, ADHSC=0 350 ADLPC=0, ADHSC=1 400 Supply Current Stop, Reset, Module Off IDDAD 0.01 ADC Asynchronous Clock Source ADHSC=0 fADACK 10 Sample Cycles ADLSMP=0, ADSTS=00 Conversion Cycles Conversion Time ADHSC=1 Csamp 2 4 ADLSMP=0, ADSTS=10 6 ADLSMP=0, ADSTS=11 8 ADLSMP=1, ADSTS=00 12 ADLSMP=1, ADSTS=01 16 ADLSMP=1, ADSTS=10 20 ADLSMP=1, ADSTS=11 24 Cconv 28 ADLSMP=0 ADSTS=01 30 ADLSMP=0 ADSTS=10 32 ADLSMP=0 ADSTS=11 34 ADLSMP=1 ADSTS=00 38 ADLSMP=1 ADSTS=01 42 ADLSMP=1 ADSTS=10 46 ADLSMP=1, ADSTS=11 50 ADLSMP=0 ADSTS=00 ADLSMP=0 ADSTS=01 0.8 Unit Comment µA ADLSMP=0 ADSTS=10 ADCO=1 µA MHz tADACK = 1/fADACK 20 ADLSMP=0, ADSTS=01 ADLSMP=0 ADSTS=00 Max Tconv 0.7 cycles cycles µs Fadc=40 MHz 0.75 Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 36 NXP Semiconductors Analog Table 32. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued) Characteristic Total Unadjusted Error Conditions1 Symb 0.8 ADLSMP=0 ADSTS=11 0.85 ADLSMP=1 ADSTS=00 0.95 ADLSMP=1 ADSTS=01 1.05 ADLSMP=1 ADSTS=10 1.15 ADLSMP=1, ADSTS=11 1.25 12 bit mode Comment LSB3 With Max Averaging LSB3 Waiting for histogram method confirmation LSB3 Waiting for histogram method confirmation LSB3 VADIN = VREFL With Max Averaging LSB3 VADIN = VREFH With Max Averaging +5 10 bit mode -0.5 - +2 8 bit mode -0.25 - +1.5 - ±0.6 ±1.5 - ±0.5 ±1 - ±0.25 ±0.5 - ±2 ±4 10bit mode - ±1 ±2 8 bit mode - ±0.5 ±1 - +1.0 ±1.6 10bit mode - ±0.4 ±0.8 8 bit mode - ±0.1 ±0.4 - ±2 ±3.5 12 bit mode DNL 10bit mode 8 bit mode Quantization Error Unit - Integral Non-Linearity TUE Max -2 12 bit mode Full-Scale Error Typ 2 ADLSMP=0 ADSTS=10 Differential NonLinearity Zero-Scale Error Min INL 12 bit mode EZS 12 bit mode EFS 10bit mode - ±0.5 ±1 8 bit mode - ±0.25 ±0.75 - ±1 to 0 10bit mode - ±0.5 8 bit mode - ±0.5 10.1 10.7 12 bit mode EQ LSB3 Effective Number of Bits 12 bit mode ENOB Signal to Noise plus Distortion See ENOB SINAD SINAD = 6.02 x ENOB + 1.76 dB Input Leakage Error all modes EIL IIn x RAS mV Temperature Sensor Across the full Slope temperature range of the device Temperature Sensor Voltage 25°C - Bits m -- 1.84 -- mV/°C VTEMP25 - 696 - mV Fin = 100Hz IIn = 400 nA leakage current 1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD 2. Typical values assume VDDAD = 3.3 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 37 Analog 3. 1 LSB = (VREFH - VREFL)/2N NOTE The ADC electrical spec would be met with the calibration enabled configuration. Figure 6. Minimum Sample Time Vs Ras (Cas = 2pF) Figure 7. Minimum Sample Time Vs Ras (Cas = 5pF) VF3xxR, VF5xxR, Rev. 8, 01/2018 38 NXP Semiconductors Analog Figure 8. Minimum Sample Time Vs Ras (Cas = 10pF) 9.1.2 12-bit DAC electrical characteristics 9.1.2.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements Symbol Desciption Min. Typ Max. Unit Notes VDDA33_ADC Supply voltage 3.0 3.3 3.6 V VREFH_ADC Reference voltage 2.5 3.3 VDDA33_ ADC V 1 CL Output load capacitance — 100 pF 2 IL Output load current — 1 mA 1. User will need to set up DACx_STATCTRL [DACRFS]=1 to select the valid VREFH_ADC reference. When DACx_STATCTRL [DACRFS]=0, the DAC reference is connected to an internal ground node and is not a valid voltage reference. Note that the DAC and ADC share the VREFH_ADC reference simultaneously. ) 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC 9.1.2.2 Symbol 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 100 μA — — 500 μA — 10 15 μs Notes P IDDA_DACH Supply current — high-power mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode 1 Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 39 Analog Table 34. 12-bit DAC operating behaviors (continued) Symbol Description tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode Min. Typ. Max. Unit Notes — 3 5 μs 1 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) low-power mode — 5 — high-power mode — 1 — Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 — — 100 mV Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 3 — ±0.4 ±0.8 %FSR 4 — ±0.1 ±0.6 %FSR 4 VOFFSET Offset error EG PSRR Power supply rejection ratio, VDDA =3 V, T = 25 C 70 TCO Temperature coefficient offset voltage — 3.7 TGE Temperature coefficient gain error — AC Offset aging coefficient — Rop Output resistance load = 3 kΩ — SR Slew rate -80h→ F7Fh→ 80h CT 1. 2. 3. 4. 5. Gain error dB — μV/C 0.000421 — %FSR/C — 100 μV/yr — 250 Ω V/μs High power (SPHP) 1.7 3 Low power (SPLP) 0.3 0.6 Channel to channel cross talk 5 — 70 dB Settling within ±1 LSB The INL is measured for 0+100mV to VDACR−100 mV The DNL is measured for 0+100mV to VDACR−100 mV Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV VDDA = 3.3 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, Temp range from -40 °C to 85 °C VF3xxR, VF5xxR, Rev. 8, 01/2018 40 NXP Semiconductors Analog Figure 9. INL error vs. digital code VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 41 Analog Figure 10. DNL error vs. digital code VF3xxR, VF5xxR, Rev. 8, 01/2018 42 NXP Semiconductors Analog Figure 11. Offset at half scale vs. temperature 9.1.3 VideoADC Specifications This section describes the electrical specification and characteristics of the VideoADC Analog Front End. Table 35. VideoADC Specifications Symbol VDDA33_AFE VDDA12_AFE Vin Description Min. Typ. Max. Unit Notes Supply voltage 3.0 3.3 3.6 V — Supply current — — 41 mA — Supply voltage 1.1 1.2 1.26 V — Supply current — — 14 mA — Input signal voltage range 0.5 0 External AC coupling 10 — 1.4 47 V nF The external AC coupling capacitance cannot be too large. Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 43 Analog Table 35. VideoADC Specifications (continued) Symbol Description VBG Bandgap voltage VDDA33_AFE — Typ. 0.6 VSSA33_AFE VDD12_AFE 100nF (See notes) VADC_AFE_BANDGAP Min. Max. — Unit V 47nF 47nF 100nF (See notes) Band Gap 47nF 47nF Mux, Clamp and Filter Bandgap voltage on VADC_AFE_BANDGAP pin. Pin should be decoupled with a 100nF capacitor VSS12_AFE Control Interface 100nF VADCSE0 VADCSE1 VADCSE2 VADCSE3 Notes ADC Correction To Video Decoder Figure 12. VideoADC supply scheme Figure 13. VideoADC supply decoupling VF3xxR, VF5xxR, Rev. 8, 01/2018 44 NXP Semiconductors Display and Video interfaces NOTE VideoADC 3.3V and 1.2V power supply pins should be decoupled to their respective grounds using low-ESR 100nF capacitors NOTE If possible, avoid using switched voltage regulators for the AFE power domains. Use linear voltage regulators instead. NOTE The 3.3V and 1.2V power domains should be separated from other circuitry on the board by inductors/beads to filter out high frequency noise. 9.2 Display and Video interfaces 9.2.1 DCU Switching Specifications 9.2.1.1 Interface to TFT panels (DCU0/1) This section provides the LCD interface timing for a generic active matrix color TFT panel. In the figure below, signals are shown with positive polarity. The sequence of events for active matrix interface timing: • PCLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode, PCLK runs continuously. This signal frequency could be from 5 to 66 MHz depending on the panel type. • HSYNC causes the panel to start a new line. It always encompasses at least one PCLK pulse. • VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. • DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. Figure 14. TFT LCD interface timing overview1 1. In the figure, LD[23:0]” signal is “line data,” an aggregation of the DCU’s RGB signals—R[0:7], G[0:7] and B[0:7]. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 45 DCU Switching Specifications VSYNC HSYNC LINE 1 LINE 2 LINE 3 LINE n-1 LINE 4 LINE n HSYNC DE 1 2 3 m-1 m PCLK LD[23:0] 9.2.1.2 Interface to TFT LCD Panels—Pixel Level Timings This section provides the horizontal timing (timing of one line), including both the horizontal sync pulse and data. All parameters shown in the figure below are programmable. This timing diagram corresponds to positive polarity of the PCLK signal (meaning the data and sync signals change on the rising edge) and active-high polarity of the HSYNC, VSYNC and DE signals. The user can select the polarity of the HSYNC and VSYNC signals via the SYN_POL register, whether active-high or active-low. The default is active-high. The DE signal is always active-high. Pixel clock inversion and a flexible programmable pixel clock delay are also supported. They are programmed via the clock divide . The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register. The PW_H, BP_H and FP_H parameters are programmed via the HSYN PARA register. The PW_V, BP_V and FP_V parameters are programmed via the VSYN_PARA register. Table 36. LCD interface timing parameters—horizontal and vertical Symbol Characteristic Unit tPCP Display pixel clock period 11.2 ns tPWH HSYNC pulse width PW_H * tPCP ns tBPH HSYNC back porch width BP_H * tPCP ns tFPH HSYNC front porch width FP_H * tPCP ns tSW Screen width DELTA_X * tPCP ns tHSP HSYNC (line) period (PW_H + BP_H + FP_H + DELTA_X ) * tPCP ns tPWV VSYNC pulse width PWV * tHSP ns tBPV VSYNC back porch width BP_V * tHSP ns tFPV VSYNC front porch width FP_V * tHSP ns tSH Screen height DELTA_Y * tHSP ns tVSP VSYNC (frame) period (PW_V + BP_V + FP_V + DELTA_Y ) * tHSP ns VF3xxR, VF5xxR, Rev. 8, 01/2018 46 NXP Semiconductors DCU Switching Specifications tHSP Start of line tPWH tBPH tSW tFPH tPCP PCLK Invalid Data LD[23:0] 1 3 2 Invalid Data DELTA_X HSYNC DE Figure 15. Horizontal sync timing tVSP Start of Frame tPWV tBPV tSH tFPV tHCP HSYNC LD[23:0] (Line Data) Invalid Data 1 2 3 Invalid Data DELTA_Y HSYNC DE Figure 16. Vertical sync pulse 9.2.1.3 Interface to TFT LCD panels—access level This section provides the access level timing parameters of the LCD interface. Table 37. LCD Interface Timing Parameters1, 2, 3—Access Level Symbol Description Min Max Unit tCKP Pixel Clock Period 11.2 _ ns tDV TFT interface data valid after pixel clock _ 4.4 ns tDV TFT interface HSYNC valid after pixel clock _ 4.4 ns tDV TFT interface VSYNC valid after pixel clock _ 4.4 ns tDV TFT interface DE valid after pixel clock _ 4.4 ns tHO TFT interface output hold time for data and control bits 0 _ ns Relative skew between the data bits _ 4.4 ns 1. The characteristics in this table are based on the assumption that data is output at +ve edge and displays latch data on -ve edg6 VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 47 DCU Switching Specifications 2. Intra bit skew is less than 2 ns 3. Load CL = 50 pf tHO tDV Figure 17. LCD Interface Timing Parameters—Access Level 9.2.2 Video Input Unit timing This section provides the timing parameters of the Video Input Unit (VIU) interface. These are the clocking requirements of the VIU interface: • The platform bus clock must be 2.5x pixel clock • If the VIU3 does 2x horizontal upscaling, the ratio must be 3x VF3xxR, VF5xxR, Rev. 8, 01/2018 48 NXP Semiconductors DCU Switching Specifications tSU tHO Figure 18. VIU Timing Parameters Table 38. VIU Timing Parameters Symbol Characteristic Min Value Max Value Unit fPIX_CK VIU pixel clock frequency _ 64 MHz tDSU VIU data setup time 4 _ ns tDHD VIU data hold time 1 _ ns 9.2.3 LCD driver electrical characteristics This section provides LCD driver electrical specification at VDD33 = 3.3 V ± 10%. Table 39. LCD driver specifications Symbol Parameter Min VLCD Voltage on VLCD (LCD supply) pin with respect to VSS 0 ZBP/FP LCD output impedance (BP[n-1:0],FP[m-1:0]) for output levels VDDE, VSS _ IBP/FP LCD output current (BP[n-1:0],FP[m-1:0]) for _ outputs charge/discharge voltage levels VDDE2/3, VDDE1/2, VDDE/3)1 Typical Max Unit VDD33 + 0.3 V _ 5.0 KΩ 25 _ µA 1. With PWR=10, BSTEN=0, and BSTAO=0 VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 49 Ethernet specifications 9.3 Ethernet specifications 9.3.1 Ethernet Switching Specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. All Ethernet signals use pad type pad_fsr. The timing specifications described i the section assume a pad slew rate setting of 11 and a load of 50 pF2. 9.3.2 Receive and Transmit signal timing specifications This section provides timing specs that meet the requirements for RMII interfaces for a range of transceiver devices. Table 40. Receive signal timing for RMII interfaces Characteristic RMII Mode Min Unit Max — EXTAL frequency (RMII input clock RMII_CLK) — 50 MHz E3, E7 RMII_CLK pulse width high 35% 65% RMII_CLK period E4, E8 RMII_CLK pulse width low 35% 65% RMII_CLK period E1 RXD[1:0], CVS_DV, RXER to RMII_CLK setup 4 — ns E2 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 — ns E6 RMII_CLK to TXD[1:0], TXEN valid — 14 ns E5 RMII_CLK to TXD[1:0], TXEN invalid 4 — ns Figure 19. RMII receive signal timing diagram 2. These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase edge rise and fall times, thus reducing EMI. VF3xxR, VF5xxR, Rev. 8, 01/2018 50 NXP Semiconductors Ethernet specifications Figure 20. RMII transmit signal timing diagram NOTE See the most current device errata document when using the internally generated RXCLK and TXCLK clocks. tCYC tPWH RX_CLK (Input) tS tH RXDn, RX_DV, RX_ER (Input) (n = 0-3) Figure 21. MII receive signal timing diagram Table 41. Receive signal timing for MII interfaces Characteristic MII Mode Min RX_CLK clock period (100/10 MBPS) tCYC RX_CLK duty cycle, tPWH/tCYC Typ Unit Max 40/400 45 50 ns 55 % Input setup time before RX_CLK tS 5 ns Input setup time after RX_CLK tH 5 ns 9.3.3 Receive and Transmit signal timing specifications for MII interfaces This section provides timing specs that meet the requirements for MII interfaces for a range of transceiver devices. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 51 Ethernet specifications tCYC tPWH RX_CLK (Input) tS tH RXDn, RX_DV, RX_ER (Input) (n = 0-3) Figure 22. MII receive signal timing diagram Table 42. Receive signal timing for MII interfaces Characteristic MII Mode Min RX_CLK clock period (100/10 MBPS) tCYC Unit Typ Max 40/400 RX_CLK duty cycle, tPWH/tCYC 45 50 ns 55 % Input setup time before RX_CLK ts 5 ns Input hold time after RX_CLK th 5 ns tCYC tPWH TX_CLK (Input) tD TXDn, TX_EN, TX_ER (Output) Note: Device pins applicable to MII interface are applicable to TMII interface, and operates at 50 MHz reference clock. Figure 23. MII transmit signal timing diagram Table 43. Transmit signal timing for MII interfaces Characteristic MII Mode Min TX_CLK clock period (100/10 MBPS) tCYC TX_CLK duty cycle, tPWH/tCYC Out delay from TX_CLK Max 40/400 45 tD Typ Unit 2 50 ns 55 % 25 ns VF3xxR, VF5xxR, Rev. 8, 01/2018 52 NXP Semiconductors Audio interfaces 9.4 Audio interfaces 9.4.1 Enhanced Serial Audio Interface (ESAI) Timing Parameters The ESAI consists of independent transmitter and receiver sections, each section with its own clock generator. The following table shows the interface timing values. Table 44. Enhanced Serial Audio Interface (ESAI) Timing No 1 2 Characteristics Clock cycle2 Clock high period: • master • slave Symbol Min Max Condition1 Unit tSSICC 30.0 — master ns (4 × Tc) — — — ns — — — — — — — 6 — (2 × Tc − 9.0) 15 (2 × Tc) 3 Clock low period: • master • slave — FSR Input and Data Input setup time before SCKR (SCK in synchronous mode) falling edge — 6 — Slave — 15 — Master FSR Input and Data Input hold time after SCKR falling edge — 2 — Slave — 0 — Master 6 SCKT rising edge to FST out and Data out valid — — 15 Slave — — 6 Master 7 SCKT rising edge to FST out and Data out hold — — 0 Slave — — 0 Master 8 FST input setup time before SCKT falling edge — 6 — Slave — 15 — Master 9 FST input hold time after SCKT falling edge — 2 — Slave — 0 — Master 10 HCKR/HCKT clock cycle — 15 — — ns 11 HCKT input rising edge to SCKT output — — 18.0 — ns 12 HCKR input rising edge to SCKR output — — 18.0 — ns 4 5 — 6 (2 × Tc − 9.0) ns 15 (2 × Tc) ns ns ns ns ns ns (2 x TC) 1. SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock 2. For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 53 Audio interfaces 1 2 3 SCKT (input/output) FST (bit) out 6 FST (word) out First bit Data out Last Lastbitbit 9 FST (bit) in 9 8 FST (word) in Figure 24. ESAI Transmitter Timing 1 2 SCKR (input/output) 3 FSR (bit) out FSR (word) out 5 4 Data in First bit Last bit FSR (bit) in FSR (word) in Figure 25. ESAI Receiver Timing VF3xxR, VF5xxR, Rev. 8, 01/2018 54 NXP Semiconductors Audio interfaces 9.4.2 SPDIF Timing Parameters The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal. Table and Figure below show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SRCK) for SPDIF in Rx mode and the timing of the modulating Tx clock (STCLK) for SPDIF in Tx mode. Table 45. SPDIF Timing Parameters Characteristic Symbol Timing Parameter Range Min SPDIFIN Skew: asynchronous inputs, no specs apply Max 0.7 SPDIFOUT output (Load = 50pf) • Skew • Transition rising • Transition falling ns • 1.5 • 24.2 • 31.3 SPDIFOUT1 output (Load = 30pf) - Skew 1.5 • Transition rising • Transition falling Unit ns ns Refer Table 21 Modulating Rx clock (SRCK) period srckp 40 ns SRCK high period srckph 16 ns SRCK low period srckpl 16 ns Modulating Tx clock (STCLK) period stclkp 40 ns STCLK high period stclkph 16 ns STCLK low period stclkpl 16 ns Figure 26. SRCK Timing Diagram VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 55 Audio interfaces Figure 27. STCLK Timing Diagram 9.4.3 SAI/I2S Switching Specifications This section provides the AC timings for the SAI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and a non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below. Table 46. Master Mode SAI Timing Num Characteristic Min Max Unit S1 SAI_MCLK cycle time 2 x tSYS — ns S2 SAI_MCLK pulse width high/low 40% 60% MCLK period S3 SAI_BCLK cycle time 4 x tSYS — ns S4 SAI_BCLK pulse width high/low 40% 60% BCLK period S5 SAI_BCLK to SAI_FS output valid — 15 ns S6 SAI_BCLK to SAI_FS output invalid 0 — ns S7 SAI_BCLK to SAI_TXD valid — 15 ns S8 SAI_BCLK to SAI_TXD invalid 0 — ns S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 — ns S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 — ns VF3xxR, VF5xxR, Rev. 8, 01/2018 56 NXP Semiconductors Audio interfaces S1 S2 S2 I2S_MCLK (output) S3 I2S_BCLK (output) S4 S4 S6 S5 I2S_FS (output) S10 S9 I2S_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 28. SAI Timing — Master Modes Table 47. Slave Mode SAI Timing Num Characteristic Min Max Unit S11 SAI_BCLK cycle time (input) 4 x tSYS — ns S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period S13 SAI_FS input setup before SAI_BCLK 10 — ns S14 SAI_FS input hold after SAI_BCLK 2 — ns S15 SAI_BCLK to SAI_TXD/SAI_FS output valid — 20 ns S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 — ns S17 SAI_RXD setup before SAI_BCLK 10 — ns S18 SAI_RXD hold after SAI_BCLK 2 — ns S11 S12 I2S_BCLK (input) S12 S15 S16 I2S_FS (output) S13 S14 I2S_FS (input) S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 29. SAI Timing — Slave Modes VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 57 Memory interfaces 9.5 Memory interfaces 9.5.1 QuadSPI timing • All data is based on a negative edge data launch from the device and a negative edge data capture, as shown in the timing diagrams in this section. This corresponds to the N/1 sample point as shown in the reference manual QSPI section "Internal Sampling of Serial Flash Input Data." • Measurements are with a load of 35 pF on output pins. I/P Slew : 1ns • Timings assume a setting of 0x0000_000x for QSPI_SMPR register (see the reference manual for details). SDR mode Tck SCK Tcss Tcsh CS Tis Tih Data in Figure 30. QuadSPI Input/Read timing (SDR mode) Table 48. QuadSPI Input/Read timing (SDR mode) Symbol Parameter Value Min Unit Max Tis Setup time for incoming data 5.4 — ns Tih Hold time requirement for incoming data 0 — ns VF3xxR, VF5xxR, Rev. 8, 01/2018 58 NXP Semiconductors Memory interfaces Tck SCK Tcss Tcsh CS Toh Tov Data out Figure 31. QuadSPI Output/Write timing (SDR mode) Table 49. QuadSPI Output/Write timing (SDR mode) Symbol Parameter Value Min Unit Max Tov Output Data Valid - 3.2 ns Toh Output Data Hold 0 - ns Tck SCK clock period - 80 MHz Tcss Chip select output setup time 3 - SCK clock cycles Tcsh Chip select output hold time 3 - SCK clock cycles • • • • • NOTE Tcss and Tcsh are set by QuadSPI_FLSCH register, the minimum values of 3 shown are the register default values, refer to Reference Manual for further details. The timing in the datasheet is based on default values for the QuadSPI-SMPR register and is the recommended setting for highest SCK frequency in SDR mode. A negative time indicates the actual capture edge inside the device is earlier than clock appearing at pad. Frequency calculator guideline (Max read frequency): Tck > (Flash access time)max + (Tis)max A negative input hold time has no bearing on the maximum achievable operating frequency. DDR Mode VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 59 Memory interfaces Tck SCK Tcss Tcsh CS Tih Tis Data in Figure 32. QuadSPI Input/Read timing (DDR mode) • • • • NOTE The numbers are for a setting of 0x1 in register QuadSPI_SMPR[DDRSMP] Read frequency calculations should be: Tck/2 > (flash access time) + Setup (Tis) (QuadSPI_SMPR[DDRSMP])x Tck/4 Frequency calculator guideline (Max read frequency): Tck/2 > (Flash access time)max + (Tis)max (QuadSPI_SMPR[DDRSMP]) x Tck/4 Hold timing: flash_access (min) + flash_data_valid (min) > Tck/2 + HOLD(Tih) + (QuadSPI_SMPR[DDRSMP])Tck/4 Table 50. QuadSPI Input/Read timing (DDR mode) Symbol Parameter Value Min Unit Max Tis Setup time for incoming data 6.5 — ns Tih Hold time requirement for incoming data 0 — ns NOTE VF3xxR, VF5xxR, Rev. 8, 01/2018 60 NXP Semiconductors Memory interfaces Tck SCK Tcss Tcsh CS Tov Toh Data out Figure 33. QuadSPI Output/Write timing (DDR mode) Table 51. QuadSPI Output/Write timing (DDR mode) Symbol Parameter Value Min Unit Max Tov Output Data Valid — 3.9 ns Toh Output Data Hold 0 — ns Tck SCK clock period - 45 MHz Tcss Chip select output setup time 3 - Clk(sck) Tcsh Chip select output hold time 3 - Clk(sck) 9.5.2 NAND flash controller specifications The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes the timing parameters of the NFC. In the following table: • TH is the flash clock high time and • TL is flash clock low time, which are defined as: TNFC = TH + TL NOTE See the CCM section of the product reference manual for further details on setting up the NFC clocks (CCM_CSCDR2[NFC_FRAC_DIV_EN + NFC_FRAC_DIV] and CCM_CSCDR3[NFC_PRE_DIV]). VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 61 Memory interfaces Table 52. NFC specifications Num Description Min. Max. Unit tCLS NFC_CLE setup time 2TH + TL – 1 — ns tCLH NFC_CLE hold time TH + TL – 1 — ns tCS NFC_CEn setup time 2TH + TL – 1 — ns tCH NFC_CEn hold time TH + TL — ns tWP NFC_WP pulse width TL – 1 — ns tALS NFC_ALE setup time 2TH + TL — ns tALH NFC_ALE hold time TH + TL — ns tDS Data setup time TL – 1 — ns tDH Data hold time TH – 1 — ns tWC Write cycle time TH + TL – 1 — ns tWH NFC_WE hold time TH – 1 — ns tRR Ready to NFC_RE low 4TH + 3TL + 90 — ns tRP NFC_RE pulse width TL + 1 — ns tRC Read cycle time TL + TH – 1 — ns tREH NFC_RE high hold time TH – 1 — ns tIS Data input setup time 11 — ns NFC_CLE tCLS tCLH NFC_CEn tCS tWP tCH NFC_WE tDS tDH NFC_IOn Figure 34. Command latch cycle timing VF3xxR, VF5xxR, Rev. 8, 01/2018 62 NXP Semiconductors Memory interfaces NFC_ALE tALS tALH NFC_CEn tCS tWP tCH NFC_WE tDS NFC_IOn tDH address Figure 35. Address latch cycle timing tCS tCH tWC NFC_CEn tWP tWH tDS tDH NFC_WE NFC_IOn data data data Figure 36. Write data latch cycle timing tCH tRC NFC_CEn tRP tREH NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 37. Read data latch cycle timing in Slow mode VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 63 Memory interfaces tCH tRC NFC_CEn tRP tREH NFC_RE tIS NFC_IOn data data data tRR NFC_RB Figure 38. Read data latch cycle timing in Fast mode and EDO mode 9.5.3 FlexBus timing specifications This section provides FlexBus timing parameters. All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the FlexBus output clock (FB_CLK). All other timing relationships can be derived from these values. All FlexBus signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50 pF3 Table 53. FlexBus timing specifications Num Characteristic Frequency of operation Min — Max 831 (with Wait state) Unit MHz 572 without Wait state , -1 FB1 Clock Period 12 — ns FB4 Input setup 10.6 — ns FB5 Input hold 0 — ns FB2 Output valid — 6.4 ns FB3 Output hold 0 — ns 1. Freq = 1000/(11+ access time of external memory+ trace delay for clk and data) 2. Freq = 1000/(17+access time of external memory) 3. These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11). VF3xxR, VF5xxR, Rev. 8, 01/2018 64 NXP Semiconductors Memory interfaces Figure 39. FlexBus read timing Figure 40. FlexBus write timing VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 65 DDR controller specifications 9.5.4 DDR controller specifications 9.5.4.1 DDR3 Timing Parameters Figure 41. DDR3 Command and Address Timing Parameters NOTE RESET pin has a external weak pull DOWN requirement if DDR3 memory is NOT required to support content retention in the device low power modes where core voltage is off but DRAM voltage is on. VF3xxR, VF5xxR, Rev. 8, 01/2018 66 NXP Semiconductors DDR controller specifications NOTE RESET pin has a external weak pull UP requirement if DDR3 memory is required to support content retention in the device low power modes where core voltage is off but DRAM voltage is on. NOTE CKE pin has a external weak pull down requirement. Table 54. DDR3 Timing Parameter ID Parameter Symbol CK = 400 MHz Unit Min Max DDR1 CK clock high-level width tCH 0.47 0.53 tCK DDR2 CK clock low-level width tCL 0.47 0.53 tCK DDR4 CS, RAS, CAS, CKE, WE, ODT setup time tIS 440 - ps DDR5 CS, RAS, CAS, CKE, WE, ODT hold time tIH 315 - ps DDR6 Address output setup time tIS 440 - ps DDR7 Address output hold time tIH 315 - ps NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 67 DDR controller specifications 9.5.4.2 DDR3 Read Cycle Figure 42. DDR3 Read Cycle Table 55. DDR3 Read Cycle ID DDR26 Parameter Symbol Minimum required DQ valid window width - CK = 400 MHz Unit Min Max 750 - ps NOTE To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window. NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF VF3xxR, VF5xxR, Rev. 8, 01/2018 68 NXP Semiconductors DDR controller specifications 9.5.4.3 DDR3 Write cycle Figure 43. DDR3 Write cycle Table 56. DDR3 Write cycle ID Parameter Symbol CK = 400 MHz Unit Min Max DDR17 DQ and DQM setup time to DQS (differential strobe) tDS 240 — ps DDR18 DQ and DQM hold time to DQS (differential strobe) tDH 215 — ps DDR21 DQS latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK DDR22 DQS high level width tDQSH 0.45 0.55 tCK DDR22 DQS low level width tDQSL 0.45 0.55 tCK NOTE To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window. NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 69 DDR controller specifications 9.5.4.4 LPDDR2 Timing Parameter Figure 44. LPDDR2 Command and Address timing parameter NOTE RESET pin has a external weak pull DOWN requirement if LPDDR2 memory is NOT required to support content retention in the device low power modes where core voltage is off but DRAM voltage is on. NOTE RESET pin has a external weak pull UP requirement if LPDDR2 memory is required to support content retention in the device low power modes where core voltage is off but DRAM voltage is on. NOTE CKE pin has a external weak pull down requirement. Table 57. LPDDR2 Timing Parameter ID Parameter Symbol CK = 400 MHz Unit Min Max LP1 SDRAM clock high-level width tCH 0.45 0.55 tCK LP2 SDRAM clock LOW-level width tCL 0.45 0.55 tCK LP3 CS, CKE setup time tIS 230 - ps LP4 CS, CKE hold time tIH 230 - ps LP3 CA setup time tIS 230 - ps LP4 CA hold time tIH 230 - ps NOTE All measurements are in reference to Vref level. VF3xxR, VF5xxR, Rev. 8, 01/2018 70 NXP Semiconductors DDR controller specifications NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF. 9.5.4.5 LPDDR2 Read Cycle Figure 45. LPDDR2 Read cycle Table 58. LPDDR2 Read Cycle ID Parameter LP26 Symbol Minimum required DQ valid window width for LPDDR2 - CK = 400 MHz Unit Min Max 270 - ps NOTE To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window. NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 71 DDR controller specifications 9.5.4.6 LPDDR2 Write Cycle Figure 46. LPDDR3 Write Cycle Table 59. LPDDR2 Write Cycle ID Parameter Symbol CK = 400 MHz Unit Min Max LP17 DQ and DQM setup time to DQS (differential strobe) tDS 220 0.55 ps LP18 DQ and DQM hold time to DQS (differential strobe) tDH 220 0.55 ps LP21 DQS latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK LP22 DQS high level width tDQSH 0.4 - tCK LP23 DQS low level width tDQSL 0.4 - tCK NOTE To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle of DQ window. NOTE All measurements are in reference to Vref level. NOTE Measurements were done using balanced load and 25 ohms resistor from outputs to VDD_REF. VF3xxR, VF5xxR, Rev. 8, 01/2018 72 NXP Semiconductors Communication interfaces 9.6 Communication interfaces 9.6.1 MediaLB (MLB) DC Characteristics The section lists the MediaLB 3-pin interface electrical characteristics. Table 60. MediaLB 3-Pin Interface Electrical DC Specifications Parameter Symbol Test Conditions Maximum input voltage — — Low level input threshold VIL — Note1 Min Max Unit — 3.6 V — 0.7 V 1.8 — V High level input threshold VIH See Low level output threshold VOL IOL = –6 mA — 0.4 V High level output threshold VOH IOH = –6 mA 2.0 — V Input leakage current IL 0 < Vin < VDD — ±10 μA 1. Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer. 9.6.2 MediaLB (MLB) Controller AC Timing Electrical Specifications This section describes the timing electrical information of the MediaLB module. VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 73 Communication interfaces Figure 47. MediaLB 3-PinTiming Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted. Table 61. MLB 256/512 Fs Timing Parameters Parameter Symbol Min Max MLBCLK operating frequency fmck 11.264 MLBCLK rise time tmckr Refer Table 21 MLBCLK fall time tmckf MLBCLK low time1 25.6 Unit Comment MHz 256xFs at 44.0 kHz, 512xFs at 50.0 kHz ns VIL to VIH ns VIH to VIL tmckl 30, 14 — ns 256xFs, 512xFs MLBCLK high time tmckh 30, 14 — ns 256xFs, 512xFs MLBSIG/MLBDAT receiver input setup to MLBCLK falling tdsmcf 3 — ns — MLBSIG/MLBDAT receiver input hold from MLBCLK low tdhmcf 2 — ns — MLBSIG/MLBDAT output valid from MLBCLK low tmcfdz 0 16 ns 2 Bus output hold from MLBCLK low tmdzh 2 — ns — 1. MLBCLK low/high time includes the pluse width variation. VF3xxR, VF5xxR, Rev. 8, 01/2018 74 NXP Semiconductors Communication interfaces 2. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed. Table 62. MLB 1024 Fs Timing Parameters Parameter Symbol Min Max MLBCLK Operating Frequency1 fmck 45.056 MLBCLK rise time fmckr Refer Table 21 MLBCLK fall time fmckf MLBCLK low time tmckl 6.1 MLBCLK high time tmckh MLBSIG/MLBDAT receiver input setup to MLBCLK falling 51.2 Unit Comme nt MHz 1024xfs at 44.0 kHz 1024xfs at 50.0 kHz ns VIL to VIH ns VIH to VIL — ns 2 9.3 — ns tdsmcf 3 — ns MLBSIG/MLBDAT receiver input hold from MLBCLK low tdhmcf 2 — ns MLBSIG/MLBDAT output valid from MLBCLK low tmcfdz - 16 ns Bus Hold from MLBCLK low tmdzh 2 — ns 3 1. The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLBCLK. 2. MLBCLK low/high time includes the pluse width variation. 3. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum load capacitance listed. 9.6.3 DSPI timing specifications Table 63. DSPI timing No. Symbol Characteristic Condition Min Max Unit 1 tSCK SCK Cycle Time — tSYS * 2 — ns 4 tSDC SCK Clock Pulse Width — 40% 60% tSCK 2 tCSC CS to SCK Delay Master 16 — ns 3 tASC After SCK Delay Master 16 — ns 5 tA Slave Access Time (SS active Slave to SOUT driven) — 15 ns 6 tDI Slave Disable Time (SS inactive to SOUT High-Z or invalid) Slave — 10 ns 9 tSUI Data Setup Time for Inputs Master 9 — ns Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 75 Communication interfaces Table 63. DSPI timing (continued) No. 10 11 12 Symbol tHI Characteristic Condition tHO Max Slave 4 — Master 0 — Slave 2 — Data Valid (after SCK edge) for Outputs Master — 5 Slave — 10 Data Hold Time for Outputs Master 0 — Slave 0 — Data Hold Time for Inputs tDV Min 2 Unit ns ns ns 3 CSx 1 4 S C K O utput (C P O L = 0) 4 S C K O utput (CP OL = 1 ) 9 S IN 10 F irst D a ta D ata 12 SOUT F irst D ata La st D ata 11 D ata L ast D a ta Figure 48. DSPI classic SPI timing master, CPHA=0 VF3xxR, VF5xxR, Rev. 8, 01/2018 76 NXP Semiconductors Communication interfaces CSx S C K O u tp u t (C P O L = 0 ) 10 S C K O u tp u t (CP OL = 1 ) 9 D a ta F irs t D a ta S IN L a s t D a ta 12 SOUT 11 D a ta F irs t D a ta L a st D a ta Figure 49. DSPI classic SPI timing master, CPHA=1 3 2 SS 1 4 S C K In p u t (C P O L = 0 ) 4 S C K In p u t (C P O L = 1 ) 5 SOUT F irs t D a ta 9 S IN 11 12 D a ta L a s t D a ta D a ta L a s t D a ta 6 10 F irs t D a ta Figure 50. DSPI classic SPI timing slave, CPHA=0 VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 77 Communication interfaces SS S C K In p u t (C P O L = 0 ) S C K In p u t (C P O L = 1 ) 11 5 6 12 SOUT F irst D a ta 9 S IN D a ta L a s t D a ta D a ta L a s t D a ta 10 F irst D a ta Figure 51. DSPI classic SPI timing slave, CPHA=1 9.6.4 I2C timing Table 64. I2C input timing specifications — SCL and SDA 1 No. Parameter Min. Max. Unit 1 Start condition hold time 2 — PER_CLK Cycle2 2 Clock low time 8 — PER_CLK Cycle 3 Bus free time between Start and Stop condition 4.7 — μs 4 Data hold time 0.0 — μs 5 Clock high time 4 — PER_CLK Cycle 6 Data setup time 0.0 — ns 7 Start condition setup time (for repeated start condition only) 2 — PER_CLK Cycle 8 Stop condition setup time 2 — PER_CLKCyc le 1. I2C input timing is valid for Automotive and TTL inputs levels, hysteresis enabled, and an input edge rate no slower than 1 ns (10% – 90%). 2. PER_CLK is the IPG Clock which drives the I2C BIU and module clock inputs. Typically this is 66 MHz. See the Clocking Overview chapter in the device reference manual for more details. Table 65. I2C output timing specifications — SCL and SDA 1, 2, 3, 4 No. 1 Parameter Start condition hold time Min 6 Max — Unit PER_CLK Cycle5 Table continues on the next page... VF3xxR, VF5xxR, Rev. 8, 01/2018 78 NXP Semiconductors Communication interfaces Table 65. I2C output timing specifications — SCL and SDA 1, 2, 3, 4 (continued) No. Parameter Min Max Unit 2 Clock low time 10 — PER_CLK Cycle 3 Bus free time between 4.7 Start and Stop condition — μs 4 Data hold time 7 — PER_CLK Cycle 5 Clock high time 10 — PER_CLK Cycle 6 Data setup time 2 — PER_CLK Cycle 7 Start condition setup time (for repeated start condition only) 20 — PER_CLK Cycle 8 Stop condition setup time 10 — PER_CLK Cycle 1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads. 2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device (lumped). The internal package capacitance is accounted for, and does not need to be subtracted from the 25 pF value. 3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speedsand may cause incorrect operation. 4. Programming the IBFD register (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the pre-scale and division values programmed in the IBC field of the IBFD register. 5. PER_CLK is the IPG Clock which drives the I2C BIU and module clock inputs. Typically this is 66 MHz. See the Clocking Overview chapter in the device reference manual for more details. Figure 52. I2C input/output timing VF3xxR, VF5xxR, Rev. 8, 01/2018 NXP Semiconductors 79 Communication interfaces 9.6.5 SDHC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. A load of 50 pF is assumed. Table 66. SDHC switching specifications Num Symbol Description Min. Max. Unit Operating voltage 1.71 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed\high speed) 0 25\50 MHz fpp Clock frequency (MMC full speed\high speed) 0 20\50 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 4 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tISU SDHC input setup time 5 — ns SD8 tIH SDHC input hold time 0 — ns SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Input SDHC_CMD Input SDHC_DAT[3:0] Figure 53. SDHC timing VF3xxR, VF5xxR, Rev. 8, 01/2018 80 NXP Semiconductors Clocks and PLL Specifications 9.6.6 USB PHY specifications This section describes the USB-OTG PHY and the USB Host port PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port). • USB ENGINEERING CHANGE NOTICE • Title: 5V Short Circuit Withstand Requirement Change • Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE • Title: Pull-up/Pull-down resistors • Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE • Title: Suspend Current Limit Changes • Applies to: Universal Serial Bus Specification, Revision 2.0 • On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification • Revision 2.0 plus errata and ecn June 4, 2010 • Battery Charging Specification (available from USB-IF) • Revision 1.2, December 7, 2010 9.7 Clocks and PLL Specifications 9.7.1 24 MHz Oscillator Specifications The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used. The crystal must be rated for a drive level of 250 μW or higher. An ESR (equivalent series resistance) of 80 Ω or less is recommended to achieve a gain margin of 5. Table 67. 24MHz external oscillator electrical characteristics Symbol Parameter Condition Value Min Typ Unit Max fosc Crystal oscillator range — — 24 — MHz Iosc Startup current — —
SVF332R3K1CKU2 价格&库存

很抱歉,暂时无法提供与“SVF332R3K1CKU2”相匹配的价格&库存,您可以联系我们找货

免费人工找货