0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
2N4403G

2N4403G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TO92-3

  • 描述:

    TRANS PNP 40V 0.6A TO-92

  • 数据手册
  • 价格&库存
2N4403G 数据手册
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. 2N4403 Preferred Device General Purpose Transistors PNP Silicon http://onsemi.com Features • Pb−Free Packages are Available* COLLECTOR 3 2 BASE MAXIMUM RATINGS Rating Symbol Value Unit Collector − Emitter Voltage VCEO 40 Vdc Collector − Base Voltage VCBO 40 Vdc Emitter − Base Voltage VEBO 5.0 Vdc Collector Current − Continuous IC 600 mAdc Total Device Dissipation @ TA = 25°C Derate above 25°C PD 625 5.0 mW mW/°C Total Device Dissipation @ TC = 25°C Derate above 25°C PD 1.5 12 W mW/°C TJ, Tstg −55 to +150 °C Operating and Storage Junction Temperature Range 1 EMITTER TO−92 CASE 29 STYLE 1 1 12 3 STRAIGHT LEAD BULK PACK THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction−to−Ambient RqJA 200 °C/W Thermal Resistance, Junction−to−Case RqJC 83.3 °C/W Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 2 3 BENT LEAD TAPE & REEL AMMO PACK MARKING DIAGRAM 2N 4403 AYWW G G 2N4403 = Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2007 March, 2007 − Rev. 3 1 Preferred devices are recommended choices for future use and best overall value. Publication Order Number: 2N4403/D 2N4403 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max Unit OFF CHARACTERISTICS Collector−Emitter Breakdown Voltage (Note 1) (IC = 1.0 mAdc, IB = 0) V(BR)CEO 40 − Vdc Collector−Base Breakdown Voltage (IC = 0.1 mAdc, IE = 0) V(BR)CBO 40 − Vdc (IE = 0.1 mAdc, IC = 0) Emitter−Base Breakdown Voltage V(BR)EBO 5.0 − Vdc Base Cutoff Current (VCE = 35 Vdc, VEB = 0.4 Vdc) IBEV − 0.1 mAdc Collector Cutoff Current (VCE = 35 Vdc, VEB = 0.4 Vdc) ICEX − 0.1 mAdc (IC = 0.1 mAdc, VCE = 1.0 Vdc) (IC = 1.0 mAdc, VCE = 1.0 Vdc) (IC = 10 mAdc, VCE = 1.0 Vdc) (IC = 150 mAdc, VCE = 2.0 Vdc) (Note 1) (IC = 500 mAdc, VCE = 2.0 Vdc) (Note 1) hFE 30 60 100 100 20 − − − 300 − − ON CHARACTERISTICS DC Current Gain Collector−Emitter Saturation Voltage (Note 1) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc) VCE(sat) − − 0.4 0.75 Vdc Base−Emitter Saturation Voltage (Note 1) (IC = 150 mAdc, IB = 15 mAdc) (IC = 500 mAdc, IB = 50 mAdc) VBE(sat) 0.75 − 0.95 1.3 Vdc SMALL−SIGNAL CHARACTERISTICS fT 200 − MHz Collector−Base Capacitance Current−Gain − Bandwidth Product (IC = 20 mAdc, VCE = 10 Vdc, f = 100 MHz) (VCB = 10 Vdc, IE = 0, f = 1.0 MHz) Ccb − 8.5 pF Emitter−Base Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) Ceb − 30 pF Input Impedance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hie 1.5 k 15 k W Voltage Feedback Ratio (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hre 0.1 8.0 X 10−4 Small−Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hfe 60 500 − Output Admittance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) hoe 1.0 100 mmhos (VCC = 30 Vdc, VBE = + 2.0 Vdc, IC = 150 mAdc, IB1 = 15 mAdc) td − 15 ns tr − 20 ns (VCC = 30 Vdc, IC = 150 mAdc, IB1 = 15 mA, IB2 = 15 mA) ts − 225 ns tf − 30 ns SWITCHING CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time 1. Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2.0%. ORDERING INFORMATION Package Shipping† TO−92 5000 Units / Bulk TO−92 (Pb−Free) 5000 Units / Bulk TO−92 2000 / Tape & Reel TO−92 (Pb−Free) 2000 / Tape & Reel TO−92 2000 / Ammo Pack 2N4403RLRMG TO−92 (Pb−Free) 2000 / Ammo Pack 2N4403RLRPG TO−92 (Pb−Free) 2000 / Ammo Pack Device 2N4403 2N4403G 2N4403RLRA 2N4403RLRAG 2N4403RLRM †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 2 2N4403 SWITCHING TIME EQUIVALENT TEST CIRCUIT −30 V −30 V 200 W < 2 ns +2 V +14 V 0 0 1.0 kW −16 V CS* < 10 pF 10 to 100 ms, DUTY CYCLE = 2% 200 W < 20 ns 1.0 kW −16 V CS* < 10 pF 1.0 to 100 ms, DUTY CYCLE = 2% +4.0 V Scope rise time < 4.0 ns *Total shunt capacitance of test jig connectors, and oscilloscope Figure 1. Turn−On Time Figure 2. Turn−Off Time TRANSIENT CHARACTERISTICS 25°C 100°C 30 Ceb 10 7.0 Ccb 5.0 VCC = 30 V IC/IB = 10 3.0 Q, CHARGE (nC) CAPACITANCE (pF) 20 10 7.0 5.0 2.0 1.0 0.7 0.5 QT 0.3 QA 0.2 2.0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 REVERSE VOLTAGE (VOLTS) 20 0.1 30 10 Figure 3. Capacitances 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) Figure 4. Charge Data http://onsemi.com 3 300 500 2N4403 100 100 IC/IB = 10 70 70 tr @ VCC = 30 V tr @ VCC = 10 V td @ VBE(off) = 2 V td @ VBE(off) = 0 30 20 t r , RISE TIME (ns) t, TIME (ns) 50 30 20 10 10 7.0 7.0 5.0 VCC = 30 V IC/IB = 10 50 10 20 30 50 70 100 200 300 5.0 500 10 20 30 50 70 100 200 300 500 500 1k 2k 5k 10k 20k RS, SOURCE RESISTANCE (OHMS) 50k IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 5. Turn−On Time Figure 6. Rise Time 200 t s′, STORAGE TIME (ns) IC/IB = 10 100 IC/IB = 20 70 50 IB1 = IB2 ts′ = ts − 1/8 tf 30 20 10 20 30 50 70 100 200 300 500 IC, COLLECTOR CURRENT (mA) Figure 7. Storage Time SMALL−SIGNAL CHARACTERISTICS NOISE FIGURE VCE = −10 Vdc, TA = 25°C; Bandwidth = 1.0 Hz 10 10 f = 1 kHz 8 6 4 2 NF, NOISE FIGURE (dB) NF, NOISE FIGURE (dB) 8 IC = 1.0 mA, RS = 430 W IC = 500 mA, RS = 560 W IC = 50 mA, RS = 2.7 kW IC = 100 mA, RS = 1.6 kW 10 20 50 IC = 50 mA 100 mA 500 mA 1.0 mA 4 2 RS = OPTIMUM SOURCE RESISTANCE 0 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 f, FREQUENCY (kHz) 6 0 100 50 Figure 8. Frequency Effects 100 200 Figure 9. Source Resistance Effects http://onsemi.com 4 2N4403 h PARAMETERS VCE = −10 Vdc, f = 1.0 kHz, TA = 25°C This group of graphs illustrates the relationship between hfe and other “h” parameters for this series of transistors. To obtain these curves, a high−gain and a low−gain unit were selected from the 2N4403 lines, and the same units were used to develop the correspondingly−numbered curves on each graph. 100k 700 50k hie , INPUT IMPEDANCE (OHMS) 1000 hfe , CURRENT GAIN 500 300 200 2N4403 UNIT 1 2N4403 UNIT 2 100 70 50 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 10k 5k 2k 1k 500 100 5.0 7.0 10 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mAdc) IC, COLLECTOR CURRENT (mAdc) Figure 10. Current Gain Figure 11. Input Impedance 20 5.0 7.0 10 500 10 2N4403 UNIT 1 2N4403 UNIT 2 5.0 2.0 1.0 0.5 0.2 0.1 20k 200 hoe , OUTPUT ADMITTANCE (m mhos) h re , VOLTAGE FEEDBACK RATIO (X 10−4 ) 30 2N4403 UNIT 1 2N4403 UNIT 2 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 100 50 20 10 2.0 1.0 0.1 5.0 7.0 10 2N4403 UNIT 1 2N4403 UNIT 2 5.0 10 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mAdc) IC, COLLECTOR CURRENT (mAdc) Figure 12. Voltage Feedback Ratio Figure 13. Output Admittance http://onsemi.com 5 5.0 7.0 2N4403 STATIC CHARACTERISTICS h FE , NORMALIZED CURRENT GAIN 3.0 VCE = 1.0 V VCE = 10 V 2.0 TJ = 125°C 25°C 1.0 −55°C 0.7 0.5 0.3 0.2 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 IC, COLLECTOR CURRENT (mA) 30 50 70 100 200 300 500 VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS) Figure 14. DC Current Gain 1.0 0.8 0.6 IC = 1.0 mA 10 mA 100 mA 500 mA 0.4 0.2 0 0.005 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 IB, BASE CURRENT (mA) 2.0 3.0 5.0 7.0 10 20 30 50 Figure 15. Collector Saturation Region 0.5 TJ = 25°C 0.8 VBE(sat) @ IC/IB = 10 0.6 VBE(sat) @ VCE = 10 V 0 COEFFICIENT (mV/ °C) VOLTAGE (VOLTS) 1.0 0.4 0.2 qVC for VCE(sat) 0.5 1.0 1.5 qVS for VBE 2.0 VCE(sat) @ IC/IB = 10 0 0.1 0.2 0.5 50 100 200 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA) 2.5 0.1 0.2 500 0.5 1.0 2.0 5.0 10 20 50 100 200 IC, COLLECTOR CURRENT (mA) Figure 16. “On” Voltages Figure 17. Temperature Coefficients http://onsemi.com 6 500 2N4403 PACKAGE DIMENSIONS TO−92 (TO−226) CASE 29−11 ISSUE AM A B STRAIGHT LEAD BULK PACK R P L SEATING PLANE K D X X G J H V C SECTION X−X 1 N NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. DIM A B C D G H J K L N P R V INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.021 0.045 0.055 0.095 0.105 0.015 0.020 0.500 −−− 0.250 −−− 0.080 0.105 −−− 0.100 0.115 −−− 0.135 −−− MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.407 0.533 1.15 1.39 2.42 2.66 0.39 0.50 12.70 −−− 6.35 −−− 2.04 2.66 −−− 2.54 2.93 −−− 3.43 −−− N A R BENT LEAD TAPE & REEL AMMO PACK B P T SEATING PLANE K D X X G J V 1 C SECTION X−X N NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. DIM A B C D G J K N P R V MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.40 0.54 2.40 2.80 0.39 0.50 12.70 −−− 2.04 2.66 1.50 4.00 2.93 −−− 3.43 −−− STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 7 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative 2N4403/D
2N4403G 价格&库存

很抱歉,暂时无法提供与“2N4403G”相匹配的价格&库存,您可以联系我们找货

免费人工找货