AMIS-30421
Micro-Stepping Stepper
Motor Bridge Controller
Introduction
The AMIS−30421 is a micro-stepping stepper motor bridge
controller for large current range bipolar applications. The chip
interfaces via a SPI interface with an external controller in order to
control 2 external power NMOS H−bridges. It has an on-chip voltage
regulator, current sensing, self adapting PWM controller and
pre-driver with smart slope control switching allowing the part to be
EMC compliant with industrial and automotive applications. It uses a
proprietary PWM algorithm for reliable current control.
The AMIS−30421 contains a current translation table and takes the
next micro-step depending on the clock signal on the “NXT” input pin
and the status of the “DIR” (direction) register or input pin. The chip
provides a so-called “Speed and Load Angle” output. This allows the
creation of stall detection algorithms and control loops based on load
angle to adjust torque and speed.
The AMIS−30421 is implemented in a mature technology, enabling
fast high voltage analog circuitry and multiple digital functionalities
on the same chip. The chip is fully compatible with automotive
voltage requirements.
The AMIS−30421 is easy to use and ideally suited for large current
stepper motor applications in the automotive, industrial, medical and
marine environment. With the on−chip voltage regulator it further
reduces the BOM for mechatronic stepper applications.
Key Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Dual H−Bridge Pre−Drivers for 2−Phase Stepper Motors
Programmable Current via SPI
On−chip Current Translator
SPI Interface
Speed and Load Angle Output
8 Step Modes from Full Step up to 64 Micro−Steps
Current−Sense via Two External Sense Resistors
PWM Current Control with Automatic Selection of Fast and Slow
Decay
Low EMC PWM with Selectable Voltage Slopes
Full Output Protection and Diagnosis
Thermal Warning and Shutdown
Compatible with 3.3 V Microcontrollers
Integrated 3.3 V Regulator to Supply External Microcontroller
Integrated Reset Function to Reset External Microcontroller
These Devices are Pb−Free and are RoHS Compliant*
http://onsemi.com
1 44
QFN44
CASE 485BY
MARKING DIAGRAM
1
AMIS30421
0C421−001
AWLYYWWG
A
WL
YY
WW
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 40 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2011
October, 2011 − Rev. 0
1
Publication Order Number:
AMIS−30421/D
AMIS−30421
OSC
Voltage
Regulator
CLK
CS
DI
DO
Temp .
Sense
VBB
GXBL
GXBR
+
−
I−sense
RSENSXP
COMP
RSENSXN
GYTL
GYTR
EMC
P
W
M
Band −
gap
GYBL
GYBR
I−sense
+
−
WD
ERR
VCP
P
W
M
T
R
A
N
S
L
A
T
O
R
Load
Angle
CLR
SLA
GXTL
GXTR
EMC
OTP
Logic &
Registers
MOTXP
MOTXN
Chargepump
POR
NXT
DIR
CPP
CPN
VDD
VREGH
BLOCK DIAGRAM
COMP
RSENSYP
RSENSYN
MOTYP
MOTYN
AMIS −30421
TEST
GND
Figure 1. Block Diagram AMIS−30421
NC
NC
GND
VCP
CPP
CPN
VBB
GND
NC
NC
NC
44
43
42
41
40
39
38
37
36
35
34
PIN OUT
NC
1
33
NC
GXBL
2
32
GYBL
MOTXP
3
31
MOTYP
GXTL
4
30
GYTL
GXBR
5
29
GYBR
MOTXN
6
28
MOTYN
GXTR
7
27
GYTR
RSENSXP
8
26
RSENSYP
RSENSXN
AMIS−30421
15
16
17
18
19
20
21
22
WD
CLK
CS
DI
DO
TEST
NC
CLR
NXT
ERR
23
14
11
SLA
DIR
GND
13
RSENSYN
24
12
25
10
VREGH
9
VDD
Figure 2. Pin Out AMIS−30421
http://onsemi.com
2
AMIS−30421
Table 1. PIN LIST AND DESCRIPTION
Name
Pin
Description
Type
GXBL
2
Gate of external NMOS FET of the X bridge bottom left side
MOTXP
3
Positive end of phase X−coil
GXTL
4
Gate of external NMOS FET of the X bridge top left side
Analog Output
Analog Output
Equivalent
Schematic
Analog Output
Analog I/O
GXBR
5
Gate of external NMOS FET of the X bridge bottom right side
MOTXN
6
Negative end of phase X−coil
GXTR
7
Gate of external NMOS FET of the X bridge top right side
RSENSXP
8
Resistor sense of the X bridge positive pin
Analog Input
RSENSXN
9
Resistor sense of the X bridge negative pin
Analog Input
VDD
10
Low voltage supply output (needs external decoupling capacitor)
Analog I/O
Analog Output
Supply
Type 7
GND
11
Ground, heat sink
VREGH
13
High voltage supply output
Analog output
Supply
SLA
14
Speed and Load Angle output
Analog output
Type 6
ERRb
15
Error output
Digital Output
Type 2 or 4
CLR
16
Clear input
Digital Input
Type 1
WDb
17
Watchdog and Power On Reset output
Digital Output
Type 2 or 4
CLK
18
SPI Clock input
Digital Input
Type 1
CSb
19
SPI Chip Select input
Digital Input
Type 3
DI
20
SPI Data input
Digital Input
Type 1
DO
21
SPI Data output
Digital Output
Type 2 or 4
TEST
22
Test input. To be tied to ground.
Digital Input
Type 1
NXT
23
Next Microstep input
Digital Input
Type 1
Type 1
DIR
24
Direction input
Digital Input
RSENSYN
25
Resistor sense of the Y bridge negative pin
Analog Input
RSENSYP
26
Resistor sense of the Y bridge positive pin
Analog Input
GYTR
27
Gate of external NMOS FET of the Y bridge top right side
MOTYN
28
Negative end of phase Y−coil
GYBR
29
Gate of external NMOS FET of the Y bridge bottom right side
Analog Output
Analog Output
Analog Output
Analog I/O
GYTL
30
Gate of external NMOS FET of the Y bridge top left side
MOTYP
31
Positive end of phase Y−coil
GYBL
32
Gate of external NMOS FET of the Y bridge bottom left side
GND
37
Ground, heat sink
Supply
VBB
38
High voltage supply input
Supply
CPN
39
Negative connection of charge pump capacitor
Analog I/O
CPP
40
Positive connection of charge pump capacitor
Analog I/O
VCP
41
Charge Pump filter capacitor
Analog I/O
GND
42
Ground, heat sink
NC
1, 12, 33,
34, 35,
36, 43,
44
NOTE:
Analog I/O
Analog Output
Supply
Not connected or connect with ground
Output type of WDb−, ERRb− and DO−pin is selectable through SPI
http://onsemi.com
3
Type 8
AMIS−30421
EQUIVALENT SCHEMATICS
Following figure gives the equivalent schematics of the user relevant inputs and outputs. The diagrams are simplified
representations of the circuits used.
VDD
VDD
IN
OUT
Rpd
TYPE 1: CLK, DI, NXT, DIR, CLR, TEST Input
TYPE 2: DO, WDb, ERRb Open Drain Output
VDD
VDD
Rpu
IN
OUT
TYPE 3: CSb Input
TYPE 4: DO, WDb, ERRb Push Pull Output
VDD
Rout
SLA
TYPE 6: SLA Analog Output
VBB1
VDD
VDD
VBB
TYPE 7: VDD Power Supply
NOTE:
TYPE 8: VBB Power Supply
Output type of WDb−, ERRb− and DO−pin is selectable through SPI
Figure 3. In− and Output Equivalent Diagrams
http://onsemi.com
4
AMIS−30421
ELECTRICAL SPECIFICATION
Table 2. ABSOLUTE MAXIMUM RATINGS (Notes 1 and 2)
Symbol
Parameter
Min
Max
Unit
VBB
Analog DC supply voltage (Note 3)
−0.3
+40
V
Iload
Logic supply external load current, Normal Mode
0
−10
mA
Logic supply external load current, Sleep Mode
0
−1
mA
Voltage on pins RSENSXP, RSENSXN, RSENSYP and RSENYN
−2.0
+2.0
V
Voltage on digital I/O pins and SLA−pin
−0.3
3.6
V
VRSENS
VLVIO
VDD + 0.3
ISLA
Load current on SLA−pin
0
−40
mA
TST
Storage temperature
−55
+160
°C
Junction Temperature under bias (Note 4)
−50
+175
°C
VHBM
Human Body Model electrostatic discharge immunity (Note 5)
−1.5
+1.5
kV
VHBM
Human Body Model electrostatic discharge immunity, high voltage pins (Note 6)
−4
+4
kV
VMM
Machine Model electrostatic discharge immunity (Note 7)
−150
+150
V
VCDM
Charge Device Model electrostatic discharge immunity (Note 8)
−500
+500
V
TJ
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. If more than one value is mentioned, the most stringent applies.
2. Convention: currents flowing in the circuit are defined as positive.
3. +36 V < VBB < +40 V limited to 1 day over lifetime
4. Circuit functionality not guaranteed.
5. According to JEDEC JESD22−A114C
6. High Voltage Pins MOTxx, VBB, GND; According to JEDEC JESD22−A114C
7. According to JEDEC EIA−JESD22−A115−A
8. According to STM5.3.1−1999
RECOMMEND OPERATION CONDITIONS
Operating ranges define the limits for functional operation and parametric characteristics of the device. Note that the
functionality of the chip outside these operating ranges is not guaranteed. Operating outside the recommended operating ranges
for extended periods of time may affect device reliability.
Table 3. OPERATING RANGES
Symbol
Parameter
Min
Max
Unit
+6
+30
V
VBB
Analog DC supply
VDD
Logic Supply Output Voltage (Normal Mode)
+3.0
+3.6
V
Junction temperature (Note 9)
−40
+125
°C
TJ
9. High junction temperature can result in reduced lifetime.
http://onsemi.com
5
AMIS−30421
Table 4. DC PARAMETERS
The DC parameters are given for VBB and temperature in their operating ranges unless otherwise specified.
Convention: currents flowing in the circuit are defined as positive.
Pin(s)
Symbol
Parameter
Remark/Test Conditions
Min
Typ
Max
Unit
30
V
SUPPLY & VOLTAGE REGULATOR
VBB
VBB
Nominal operating supply range
6
IBB
Total internal current consumption
Unloaded outputs, IINT included,
H−bridge disabled
20
mA
ISLEEP
Sleep mode current consumption
Unloaded outputs, CSb = VDD
150
mA
VDD
VDD
VDD_SLEEP
Regulated Output Voltage
Regulated Output Voltage in Sleep
IINT
Internal load current
ILOAD
External load current
IDDLIM
Current limitation
ILOAD_PD
−10 mA ≤ Iload ≤ 0 mA
3.0
3.3
3.6
V
−1 mA ≤ Iload ≤ 0 mA
2.1
2.95
3.63
V
8
mA
−10
mA
−80
mA
−1
mA
11.5
V
VBB
V
Unloaded outputs
Pin shorted to ground
−20
Output current in sleep
VREGH
VREGH
High voltage regulator
VBBLV v VBB v 30 V
Based on Figure 9
H−bridge disabled
13.25 V v VBBLV v 15.75 V
8.0
9.5
6 V v VBB < VBBLV
Based on Figure 9
H−bridge disabled
13.25 V v VBBLV v 15.75 V
POWER ON RESET (POR)
VDDH
VDDL
VDD
Internal POR comparator threshold
VDD rising, see Figure 4
1.44
1.8
2.53
Internal POR comparator threshold
VDD falling, see Figure 4
1.16
1.5
1.93
Internal POR comparator
hysteresis
VDDhys
V
0.3
UNDERVOLTAGE
VBBUH
VBBUL
VBB
VBBUhys
VBB undervoltage release level
VBB rising, see Figure 5
5.5
6.5
VBB undervoltage trigger level
VBB falling, see Figure 5
5.3
6.3
VBB undervoltage hysteresis
V
0.25
OVERVOLTAGE
VBBOH
VBBOL
VBB
VBBOhys
VBB overvoltage trigger level
VBB rising, see Figure 5
30.0
VBB overvoltage release level
VBB falling, see Figure 5
29.0
32.0
31
V
−1.25
−33.00
mA
−45
+45
%
−10.5
−115.5
mA
−45
+45
%
25
W
VBB overvoltage hysteresis
1
PRE−DRIVER
Gate charge current
ION_tol
IOFF
IOFF_tol
RSW
GXTR, GXTL,
GXBR, GXBL,
GYTR, GYTL,
GYBR, GYBL
ION
Selectable through SPI
Gate charge current tolerance
Gate discharge current
Selectable through SPI
Gate discharge current tolerance
Switch On−resistance
See also Figure 10
http://onsemi.com
6
5
10
AMIS−30421
Table 4. DC PARAMETERS
The DC parameters are given for VBB and temperature in their operating ranges unless otherwise specified.
Convention: currents flowing in the circuit are defined as positive.
Symbol
Pin(s)
Parameter
Remark/Test Conditions
Min
Typ
Max
Unit
PRE−DRIVER
VSENS0
PWM comparator toggle level 0
78
100
122
mV
VSENS1
PWM comparator toggle level 1
105.3
135
164.7
mV
VSENS2
PWM comparator toggle level 2
156
200
244
mV
PWM comparator toggle level 3
210.6
270
391.4
mV
PWM comparator toggle level 4
261.3
335
408.7
mV
VSENS5
PWM comparator toggle level 5
312
400
488
mV
VSENS6
PWM comparator toggle level 6
390
500
610
mV
VSENS7
PWM comparator toggle level 7
468
600
732
mV
0
0.3 x VDD
V
0.7 x VDD
VDD
V
VSENS3
VSENS4
RSENSxx
DIGITAL INPUTS
VIL
VIH
Rpd
Rpu
Logic Low Threshold
CLK, DI,
Logic High Threshold
CSb,
NXT, DIR,
CLR
Internal Pull Down Resistor
CSb
Internal Pull Up Resistor
CSb excluded,
See also Figure 3
25
50
75
kW
See also Figure 3
25
50
75
kW
DIGITAL OUTPUTS
Logic low output level
VOL
VOH
VOL_OPEN
DO,
ERRb,
WDb
Output set to type 4 (see
Figure 3)
Logic high output level
0.5
VDD − 0.5
V
IOL = 8 mA, Output set to type 2
(see Figure 3)
Logic Low level open drain
0.5
SPEED AND LOAD ANGLE OUTPUT
Vout
Output Voltage Range
Voff
Output Offset SLA−pin
Voff_tol
GSLA
0.5
Selectable through SPI
Tolerance on SLA output offset
SLA
GSLA_tol
Gain of SLA−pin = VBEMF / VSLA
Selectable through SPI
Tolerance on SLA gain
Rout
Output Resistance SLA−pin
ISLA_load
VDD − 0.5
0.6
1.2
V
−17
+17
%
0.0625
1
−10
+10
%
1
kW
−40
mA
See also Figure 3
Load current SLA−pin
V
0
THERMAL WARNING & SHUTDOWN
T1
Trigger level thermal range 1
See Figure 22
−5
15
35
°C
T2
Trigger level thermal range 2
See Figure 22
55
70
85
°C
T3
Trigger level thermal range 3
See Figure 22
138
150
162
°C
TTW
Thermal Warning
See Figure 22
138
150
162
°C
TTSD
Thermal shutdown
See Figure 22
TTW + 20
°C
CHARGE PUMP
VCP − VBB
VCPP –
VCPN
Chargepump overdrive voltage
VCP
Based on Figure 9
Chargepump pumping voltage
3.5
VBB – 2.5
15.75
V
3.5
VBB – 2.5
15.75
V
Cpump
External pump capacitor
See also C2 Figure 9
220
nF
Cbuffer
CPP CPN External buffer capacitor
See also C3 Figure 9
220
nF
http://onsemi.com
7
AMIS−30421
Table 4. DC PARAMETERS
The DC parameters are given for VBB and temperature in their operating ranges unless otherwise specified.
Convention: currents flowing in the circuit are defined as positive.
Symbol
Pin(s)
Parameter
Remark/Test Conditions
Min
Typ
Max
Unit
PACKAGE THERMAL RESISTANCE VALUE
Thermal Resistance
Junction−to−Ambient
Rthja
Simulated Conform
JEDEC JESD−51, (2S2P)
30
K/W
Simulated Conform
JEDEC JESD−51, (1S0P)
60
K/W
0.95
K/W
Thermal Resistance
Junction−to−Exposed Pad
Rthjp
Table 5. AC PARAMETER The AC parameters are given for VBB and temperature in their operating ranges unless otherwise
specified.
Symbol
Pin(s)
Parameter
Remark/Test Conditions
Min
Typ
Max
Unit
6.4
8
9.6
MHz
60
ms
120
ms
INTERNAL OSCILLATOR
Frequency of internal oscillator
fosc
POWER−UP
tPU
tPOR
tRF
tDSPI
POR
Power−up time
CVDD = 200 nF, See Figure 4
Reset duration
See Figure 4
80
Reset filter time
See Figure 4
1
SPI Delay
See Figure 4
100
15
ms
500
ms
30
kHz
PREDRIVER
fPWM
PWM frequency
Frequency depends only on
internal oscillator
20
25
t1
Bridge MOSFET switch on time t1
Selectable through SPI.
See Figure 11.
375
1250
ns
t2
Bridge MOSFET switch on time t2
Selectable through SPI.
See Figure 11.
1250
4750
ns
toff
Bridge MOSFET switch off time
Selectable through SPI.
See Figure 11.
1250
4750
ns
−20
+20
%
0.32
163.84
ms
−20
+20
%
0
1
ms
−20
+20
%
tswitch_tol
topen
topen_acc
tnocross
tnocross_acc
Bridge MOSFET switch on/off tolerance
Open circuit time out
Selectable through SPI
Open circuit time out accuracy
Non overlap time
Selectable through SPI
Non overlap accuracy
http://onsemi.com
8
AMIS−30421
Table 5. AC PARAMETER The AC parameters are given for VBB and temperature in their operating ranges unless otherwise
specified.
Symbol
Pin(s)
Parameter
Remark/Test Conditions
Min
Typ
Max
Unit
DIGITAL INPUTS
tNXT_HI
NXT Minimum, high pulse width
625
ns
tNXT_LO
NXT Minimum, low pulse width
625
ns
tDIR_SET
NXT set up time, following change of
DIR or
1
ms
tDIR_HOLD
NXT hold time, before change of DIR
or
1
ms
tSLP_SET
set up time
300
ms
hold time
1
ms
tMOTEN_SET
set up time
1
ms
tMOTEN_HO
hold time
1
ms
tSLP_HOLD
LD
tMSP
See Figure 6
update delay
1
ms
CLEAR FUNCTION
tCLR_SET
tCLR
CLR
Clear set up time
See Figure 7
40
Clear duration time
See Figure 7
20
ms
90
ms
50
ns
2.5
ms
ms
DIGITAL OUTPUTS
tH2L
DO, WDb, Output fall−time from VOH to VOL
ERRb
Output type 2, capacitive load
400 pF and pull−up resistor of
1.5 kW
WATCHDOG
tWDPR
Prohibited watchdog acknowledge
time
tWDTO
Watchdog time out interval
32
512
Watchdog time out accuracy
−20
+20
%
500
ns
tWDTO_acc
tWDRD
Watchdog Reset Delay
SERIAL PERIPHERAL INTERFACE (SPI)
SPI Clock period
tCLK
tCLK_HIGH
CLK
tCLK_LOW
tDI_SET
DI
tDI_HOLD
tCS_HIGH
tCS_SET
CSb
tCS_HOLD
1
ms
SPI Clock high time
100
ns
SPI Clock low time
100
ns
50
ns
50
ns
SPI Chip Select high time
2.5
ms
SPI Chip Select set up time
100
ns
SPI Chip Select hold time
100
ns
SPI Data Input set up time
See Figure 8
SPI Data Input hold time
SPEED AND LOAD ANGLE OUTPUT
tSLA_DELAY
SLA
tMinSLA
tMinSLA_Acc
SLA output update delay
Not−transparent Mode
See Figure 20
Minimum zero crossing time
Selectable through SPI
Minimum zero crossing accuracy
60
ms
40
360
ms
−20
+20
%
250
kHz
CHARGE PUMP
fCP
tCPU
CPN CPP Charge pump frequency
MOTxx
Start−up time of charge pump
160
Spec external components in
Table 4
http://onsemi.com
9
200
250
ms
AMIS−30421
VBB
t
tPU
VDD
VDDH
VDDL
≤tRF
t
POR
Internal signal
t
tPOR
VWDb
tDSPI
Enable Watchdog
WD Timer
> tWDPR
and tWDTO
t WDTO
Internal signal
t WDPR
Remarks:
−WDb−pin pulled up to VDD
−tWDTO =
− and are SPI bits
É
Ï
Ï
É
Ï
É
Ï
É
Ï
É
tPOR
t
Write ‘1’ to
≤ tWDPR or ≥ tWDTO
t
tWDRD
t
Figure 4. Power−On−Reset Timing Diagram
VBB
V BBOH
VBBOL
V BBUH
V BBUL
Figure 5. Under− and Overvoltage
http://onsemi.com
10
t
AMIS−30421
NXT
( = 1)
NXT
( = 0)
DIR or
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
tMOTEN_SET
tMOTEN_HOLD
t DIR_HOLD
tDIR_SET
t SLP_SET
tSLP_HOLD
t MSP
tNXT_HI
tNXT_LOW
Remarks:
−, , , , and are SPI bits
−Timing for SPI bits starts after CS is high
−TSLP_SET only relates to the digital inputs pins DIR and NXT
Figure 6. Digital Input Timing Diagram
CLR
tCLR_SET
tCLR
Remarks:
is any SPI data
Figure 7. CLR−pin Timing Diagram
CS
CLK
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
DI
t DI_SET
tCS_SET
tDI_HOLD
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
t CS_HIGH
tCLK_HIGH
t CLK_LOW
t CLK
tCS_HOLD
Figure 8. SPI Bus Timing Diagram
http://onsemi.com
11
AMIS−30421
TYPICAL APPLICATION SCHEMATIC
VBAT
C3
C2
C1
D1
VDD
38
VDD
41
CPP
CPN
VCP
VBB
C4
39
40
10
7
C5
4
6
VREGH
C8
3
13
C7
2
5
CS
Microcontroller
SPI Interface
DI
DO
NXT
Motor Positioner
DIR
CLR
Diagnostics
SLA
C6
AMIS−30421
18
27
19
30
20
28
21
31
23
32
24
29
16
26
15
14
R6
25
11
GND
Position
Feedback
ERR
9
37
GXTL
T1
T2
T3
T4
MOTXN
MOTXP
GXBL
GXBR
RSENSXP
M
R1
RSENSXN
GYTR
GYTL
T5
T6
T7
T8
MOTYN
MOTYP
GYBL
GYBR
RSENSYP
R2
RSENSYN
42
GND
CLK
8
17
GND
WD
Reset
GXTR
Figure 9. Typical Application Schematic AMIS−30421
Table 6. EXTERNAL COMPONENTS LIST AND DESCRIPTION
Component
Function
Typ Value
Tolerance
Unit
C1
VBB buffer capacitor (Note 1)
100
±20%
mF
C2
Charge−pump pumping capacitor
220
± 20%
nF
C3
Charge−pump buffer capacitor
220
±20%
nF
C4
VBB decoupling capacitor (Note 2)
100
±20%
nF
C5, C8
VDD buffer capacitor
100
±20 %
nF
C6
Low pass filter SLA
1
±20%
nF
C7
VREGH buffer capacitor
4.7
±20%
uF
R1, R2
Sense Resistors
>25
±1%
mW
R6
Low pass filter SLA
5.6
±1%
kW
D1
Optional reverse protection diode
T1 … T8
MBRD1045
H−Bridge N−MOSFET
NTD4815N or
NTD4813N or
NTD40N03R or
NTD5807N
10. ESR < 1 W.
11. ESR < 50 mW.
http://onsemi.com
12
AMIS−30421
FUNCTIONAL DESCRIPTION
H−Bridge Pre−Drivers
The H−bridge pre−drivers for external N−type MOSFETs
are controlled by means of current sources for slope
regulation (Figure 10). The current source value can be set
through SPI (see p35 and further). During the MOSFET
switch−on and switch−off phase this current source will be
applied for a certain time (respectively ton and toff where ton
is divided in t1 and t2). After this time (ton or toff) the gate of
the MOSFET is pulled high or low by means of a switch
(SWon or SWoff). The timings can also be set through SPI
(see p37 and further).
To prevent short circuits, an additional time tnocross can be
added between switching off one MOSFET and switching
on the other MOSFET of a half H−bridge (SPI bits
).
More information on the current sources and timings can
be found in Table 5. A detailed description of the SPI
settings for the H−bridge pre−drivers can be found at p31
and further.
Figure 11 gives a detailed view on the different stages
during switching of the MOSFET.
Ion
SWon
External
MOSFET
Ioff
SWoff
AMIS−30421
Figure 10. Pre−driver Topology
Vgate
5
1
2
ION1
ION2
t1
3
4
5
IOFF
t2
ton
toff
Figure 11. Detailed View on MOSFET Switching
http://onsemi.com
13
tnocross
t
AMIS−30421
PWM Current Control
pins DIR and NXT. It is translating consecutive steps in
corresponding currents in both motor coils for a given step
mode. One out of 8 possible stepping modes can be selected
through SPI bits .
After power−up or clear (CLR−pin) the coil current
translator is set to position 0. For all stepping modes except
full step this means that the coil current is maximum in the
Y−coil and zero in the X−coil (see Table 7). If NXT pulses
are applied when the DIR−pin is pulled low, SPI bit
is zero and SPI bit is one, the coil
current translator will step through Table 7 from top till
bottom. If DIR−pin is pulled high or SPI bit is
set to ‘1’, the coil current translator will step in opposite
direction through the table.
Figures 12 up to 15 gives another view on the different
stepping modes. The Y−coil current is plotted on the
Y−axes, the X−coil current on the X−axes. Notice that all
stepping modes from Table 7 can be plotted on a circle with
the exception of half step uncompensated and full step.
These are plotted on a square.
A PWM comparator compares continuously the actual
winding current (measured over the external sense resistor)
with the requested current and feeds back the information to
a digital regulation loop. This loop then generates a PWM
signal, which turns on/off the current sources (Ion, Ioff) and
switches (SWon, SWoff). The switching points of the PWM
duty−cycle are synchronized to the on−chip PWM clock.
The frequency of the PWM controller is fixed and will not
vary with changes in the supply voltage. Also variations in
motor−speed or load−conditions of the motor have no effect.
There are no external components required to adjust the
PWM frequency.
For EMC reasons it’s possible to add jitter to the PWM by
means of the bit.
Step Translator and Step Mode
The step translator provides the control of the motor by
means of the stepmode SPI bits , the enable SPI
bit , the direction SPI bit and input
IY
DIR−pin = high
IY
Start = 0
DIR−pin = high
DIR−pin = low
DIR−pin = low
Start = 0
Step 1
Step 15
Step 1
Step 7
Step 2
Step 14
Step13
Step2
Step 6
Step 3
Step 4
Step12
IX
IX
Step 11
Step 3
Step5
Step5
Step 6
Step 10
Step 9
Step7
Step 4
Step 8
Figure 12. Circular representation Half−step
Compensated
Figure 13. Circular representation 1/4
Microstepping
IY
DIR−pin = high
IY
DIR−pin = low
Step7
Start= 0
DIR−pin = high
Step 1
DIR−pin = low
Start= 0
Step 1
Step2
Step 6
Step5
IX
Step4
IX
Step 3
Step3
Figure 14. Square Representation Half−step
Uncompensated
Figure 15. Square Representation
Full−step
Remark:
♦
♦
Step2
Positive coil current flows from MOTXP to MOTXN and MOTYP to MOTYN.
In above figures SPI bit is set to ‘0’. When set to ‘1’, rotation will be reversed.
http://onsemi.com
14
AMIS−30421
Table 7. CIRCULAR TRANSLATOR TABLE
Stepmode ( )
% of Imax
000
001
010
011
100
101
110
111
1/64
1/32
1/16
1/8
1/4
1/2 comp
1/2 uncomp
Full
Coil x
Coil y
0
0
0
0
0
0
0
−
0
100
1
−
−
−
−
−
−
−
3
100
2
1
−
−
−
−
−
−
5
100
3
−
−
−
−
−
−
−
8
100
4
2
1
−
−
−
−
−
10
100
5
−
−
−
−
−
−
−
13
100
6
3
−
−
−
−
−
−
14
100
7
−
−
−
−
−
−
−
17
98
8
4
2
1
−
−
−
−
19
98
9
−
−
−
−
−
−
−
22
98
10
5
−
−
−
−
−
−
25
97
11
−
−
−
−
−
−
−
27
97
12
6
3
−
−
−
−
−
30
97
13
−
−
−
−
−
−
−
32
95
14
7
−
−
−
−
−
−
35
95
15
−
−
−
−
−
−
−
37
94
16
8
4
2
1
−
−
−
38
94
17
−
−
−
−
−
−
−
41
92
18
9
−
−
−
−
−
−
43
90
19
−
−
−
−
−
−
−
46
90
20
10
5
−
−
−
−
−
48
89
21
−
−
−
−
−
−
−
51
87
22
11
−
−
−
−
−
−
52
87
23
−
−
−
−
−
−
−
54
86
24
12
6
3
−
−
−
−
56
84
25
−
−
−
−
−
−
−
59
83
26
13
−
−
−
−
−
−
60
81
27
−
−
−
−
−
−
−
62
79
28
14
7
−
−
−
−
−
63
78
29
−
−
−
−
−
−
−
67
76
30
15
−
−
−
−
−
−
68
75
31
−
−
−
−
−
−
−
70
73
32
16
8
4
2
1
1
1
71 / 100
71 / 100
33
−
−
−
−
−
−
−
73
70
34
17
−
−
−
−
−
−
75
68
35
−
−
−
−
−
−
−
76
67
36
18
9
−
−
−
−
−
78
63
37
−
−
−
−
−
−
−
79
62
38
19
−
−
−
−
−
−
81
60
39
−
−
−
−
−
−
−
83
59
40
20
10
5
−
−
−
−
84
56
41
−
−
−
−
−
−
−
86
54
42
21
−
−
−
−
−
−
87
52
43
−
−
−
−
−
−
−
87
51
44
22
11
−
−
−
−
−
89
48
45
−
−
−
−
−
−
−
90
46
46
23
−
−
−
−
−
−
90
43
47
−
−
−
−
−
−
−
92
41
48
24
12
6
3
−
−
−
94
38
49
−
−
−
−
−
−
−
94
37
50
25
−
−
−
−
−
−
95
35
51
−
−
−
−
−
−
−
95
32
52
26
13
−
−
−
−
−
97
30
53
−
−
−
−
−
−
−
97
27
54
27
−
−
−
−
−
−
97
25
55
−
−
−
−
−
−
−
98
22
56
28
14
7
−
−
−
−
98
19
57
−
−
−
−
−
−
−
98
17
58
29
−
−
−
−
−
−
100
14
59
−
−
−
−
−
−
−
100
13
60
30
15
−
−
−
−
−
100
10
61
−
−
−
−
−
−
−
100
8
62
31
−
−
−
−
−
−
100
5
63
−
−
−
−
−
−
−
100
3
http://onsemi.com
15
AMIS−30421
Table 7. CIRCULAR TRANSLATOR TABLE
Stepmode ( )
% of Imax
000
001
010
011
100
101
110
111
1/64
1/32
1/16
1/8
1/4
1/2 comp
1/2 uncomp
Full
Coil x
64
32
16
8
4
2
2
−
100
0
65
−
−
−
−
−
−
−
100
−3
66
33
−
−
−
−
−
−
100
−5
67
−
−
−
−
−
−
−
100
−8
68
34
17
−
−
−
−
−
100
−10
69
−
−
−
−
−
−
−
100
−13
70
35
−
−
−
−
−
−
100
−14
71
−
−
−
−
−
−
−
98
−17
72
36
18
9
−
−
−
−
98
−19
73
−
−
−
−
−
−
−
98
−22
74
37
−
−
−
−
−
−
97
−25
75
−
−
−
−
−
−
−
97
−27
76
38
19
−
−
−
−
−
97
−30
77
−
−
−
−
−
−
−
95
−32
78
39
−
−
−
−
−
−
95
−35
79
−
−
−
−
−
−
−
94
−37
80
40
20
10
5
−
−
−
94
−38
81
−
−
−
−
−
−
−
92
−41
82
41
−
−
−
−
−
−
90
−43
83
−
−
−
−
−
−
−
90
−46
84
42
21
−
−
−
−
−
89
−48
85
−
−
−
−
−
−
−
87
−51
86
43
−
−
−
−
−
−
87
−52
87
−
−
−
−
−
−
−
86
−54
88
44
22
11
−
−
−
−
84
−56
89
−
−
−
−
−
−
−
83
−59
90
45
−
−
−
−
−
−
81
−60
91
−
−
−
−
−
−
−
79
−62
92
46
23
−
−
−
−
−
78
−63
93
−
−
−
−
−
−
−
76
−67
94
47
−
−
−
−
−
−
75
−68
95
−
−
−
−
−
−
−
73
−70
96
48
24
12
6
3
3
2
71 / 100
−71 / −100
97
−
−
−
−
−
−
−
70
−73
98
49
−
−
−
−
−
−
68
−75
99
−
−
−
−
−
−
−
67
−76
100
50
25
−
−
−
−
−
63
−78
101
−
−
−
−
−
−
−
62
−79
102
51
−
−
−
−
−
−
60
−81
103
−
−
−
−
−
−
−
59
−83
104
52
26
13
−
−
−
−
56
−84
105
−
−
−
−
−
−
−
54
−86
106
53
−
−
−
−
−
−
52
−87
107
−
−
−
−
−
−
−
51
−87
108
54
27
−
−
−
−
−
48
−89
109
−
−
−
−
−
−
−
46
−90
110
55
−
−
−
−
−
−
43
−90
111
−
−
−
−
−
−
−
41
−92
112
56
28
14
7
−
−
−
38
−94
113
−
−
−
−
−
−
−
37
−94
114
57
−
−
−
−
−
−
35
−95
115
−
−
−
−
−
−
−
32
−95
116
58
29
−
−
−
−
−
30
−97
117
−
−
−
−
−
−
−
27
−97
118
59
−
−
−
−
−
−
25
−97
119
−
−
−
−
−
−
−
22
−98
120
60
30
15
−
−
−
−
19
−98
121
−
−
−
−
−
−
−
17
−98
122
61
−
−
−
−
−
−
14
−100
Coil y
123
−
−
−
−
−
−
−
13
−100
124
62
31
−
−
−
−
−
10
−100
125
−
−
−
−
−
−
−
8
−100
126
63
−
−
−
−
−
−
5
−100
127
−
−
−
−
−
−
−
3
−100
http://onsemi.com
16
AMIS−30421
Table 7. CIRCULAR TRANSLATOR TABLE
Stepmode ( )
% of Imax
000
001
010
011
100
101
110
111
1/64
1/32
1/16
1/8
1/4
1/2 comp
1/2 uncomp
Full
Coil x
Coil y
128
64
32
16
8
4
4
−
0
−100
129
−
−
−
−
−
−
−
−3
−100
130
65
−
−
−
−
−
−
−5
−100
131
−
−
−
−
−
−
−
−8
−100
132
66
33
−
−
−
−
−
−10
−100
133
−
−
−
−
−
−
−
−13
−100
134
67
−
−
−
−
−
−
−14
−100
135
−
−
−
−
−
−
−
−17
−98
136
68
34
17
−
−
−
−
−19
−98
137
−
−
−
−
−
−
−
−22
−98
138
69
−
−
−
−
−
−
−25
−97
139
−
−
−
−
−
−
−
−27
−97
140
70
35
−
−
−
−
−
−30
−97
141
−
−
−
−
−
−
−
−32
−95
142
71
−
−
−
−
−
−
−35
−95
143
−
−
−
−
−
−
−
−37
−94
144
72
36
18
9
−
−
−
−38
−94
145
−
−
−
−
−
−
−
−41
−92
146
73
−
−
−
−
−
−
−43
−90
147
−
−
−
−
−
−
−
−46
−90
148
74
37
−
−
−
−
−
−48
−89
149
−
−
−
−
−
−
−
−51
−87
150
75
−
−
−
−
−
−
−52
−87
151
−
−
−
−
−
−
−
−54
−86
152
76
38
19
−
−
−
−
−56
−84
153
−
−
−
−
−
−
−
−59
−83
154
77
−
−
−
−
−
−
−60
−81
155
−
−
−
−
−
−
−
−62
−79
156
78
39
−
−
−
−
−
−63
−78
157
−
−
−
−
−
−
−
−67
−76
158
79
−
−
−
−
−
−
−68
−75
159
−
−
−
−
−
−
−
−70
−73
160
80
40
20
10
5
5
3
−71 / −100
−71 / −100
161
−
−
−
−
−
−
−
−73
−70
162
81
−
−
−
−
−
−
−75
−68
163
−
−
−
−
−
−
−
−76
−67
164
82
41
−
−
−
−
−
−78
−63
165
−
−
−
−
−
−
−
−79
−62
166
83
−
−
−
−
−
−
−81
−60
167
−
−
−
−
−
−
−
−83
−59
168
84
42
21
−
−
−
−
−84
−56
169
−
−
−
−
−
−
−
−86
−54
170
85
−
−
−
−
−
−
−87
−52
171
−
−
−
−
−
−
−
−87
−51
172
86
43
−
−
−
−
−
−89
−48
173
−
−
−
−
−
−
−
−90
−46
174
87
−
−
−
−
−
−
−90
−43
175
−
−
−
−
−
−
−
−92
−41
176
88
44
22
11
−
−
−
−94
−38
177
−
−
−
−
−
−
−
−94
−37
178
89
−
−
−
−
−
−
−95
−35
179
−
−
−
−
−
−
−
−95
−32
180
90
45
−
−
−
−
−
−97
−30
181
−
−
−
−
−
−
−
−97
−27
182
91
−
−
−
−
−
−
−97
−25
183
−
−
−
−
−
−
−
−98
−22
184
92
46
23
−
−
−
−
−98
−19
185
−
−
−
−
−
−
−
−98
−17
186
93
−
−
−
−
−
−
−100
−14
187
−
−
−
−
−
−
−
−100
−13
188
94
47
−
−
−
−
−
−100
−10
189
−
−
−
−
−
−
−
−100
−8
190
95
−
−
−
−
−
−
−100
−5
191
−
−
−
−
−
−
−
−100
−3
http://onsemi.com
17
AMIS−30421
Table 7. CIRCULAR TRANSLATOR TABLE
Stepmode ( )
% of Imax
000
001
010
011
100
101
110
111
1/64
1/32
1/16
1/8
1/4
1/2 comp
1/2 uncomp
Full
Coil x
Coil y
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
96
−
97
−
98
−
99
−
100
−
101
−
102
−
103
−
104
−
105
−
106
−
107
−
108
−
109
−
110
−
111
−
112
−
113
−
114
−
115
−
116
−
117
−
118
−
119
−
120
−
121
−
122
−
123
−
124
−
125
−
126
−
127
−
48
−
−
−
49
−
−
−
50
−
−
−
51
−
−
−
52
−
−
−
53
−
−
−
54
−
−
−
55
−
−
−
56
−
−
−
57
−
−
−
58
−
−
−
59
−
−
−
60
−
−
−
61
−
−
−
62
−
−
−
63
−
−
−
24
−
−
−
−
−
−
−
25
−
−
−
−
−
−
−
26
−
−
−
−
−
−
−
27
−
−
−
−
−
−
−
28
−
−
−
−
−
−
−
29
−
−
−
−
−
−
−
30
−
−
−
−
−
−
−
31
−
−
−
−
−
−
−
12
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
13
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
14
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
15
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
6
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
7
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
6
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
7
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
0
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−100
−100
−100
−100
−100
−100
−100
−98
−98
−98
−97
−97
−97
−95
−95
−94
−94
−92
−90
−90
−89
−87
−87
−86
−84
−83
−81
−79
−78
−76
−75
−73
−71 / −100
−70
−68
−67
−63
−62
−60
−59
−56
−54
−52
−51
−48
−46
−43
−41
−38
−37
−35
−32
−30
−27
−25
−22
−19
−17
−14
−13
−10
−8
−5
−3
0
3
5
8
10
13
14
17
19
22
25
27
30
32
35
37
38
41
43
46
48
51
52
54
56
59
60
62
63
67
68
70
71 / 100
73
75
76
78
79
81
83
84
86
87
87
89
90
90
92
94
94
95
95
97
97
97
98
98
98
100
100
100
100
100
100
Remarks:
♦
♦
Positive coil current conducts from MOTXP to MOTXN or MOTYP to MOTYN.
For some microstep positions 2 values are given for Coil X and Coil Y. The second value is only valid for
= “11x”
http://onsemi.com
18
AMIS−30421
Direction
The direction of rotation can be changed by means of the
DIR−pin and the SPI bit . See also Figure 12
up to Figure 15. Setup and hold times need to be respected
when changing direction (see Figure 6).
Certain errors (see Error Output p24) will automatically
disable the motor driver ( = 0). The errors first
need to be cleared before one is able to enable the motor
driver again.
Setup and hold times need to be respected (see Figure 6).
NXT Input
Microstep Position
Every rising or falling edge on the NXT−pin (selectable
through SPI bit ) will move the coil current one
step up or down (dependant on the DIR−pin and
bit) in the translator table (see Table 7). The
motor current will be updated at the next PWM cycle.
To be able to track the position in the current translator
table (Table 7), the microstep position SPI byte can be used
(). This byte gives the position within the
current translator table in units of 1/64 microsteps. This
means that when working in 1/4th microstepping the read out
microstep positions will be 0, 16, 32, ...
The microstep position can be used to track/verify the real
position of the stepper motor and as a reference point for
changing the stepping mode (to avoid phase shift (see
further)). See also Application Note AND8399 for more
information on this (this application note is based on
AMIS−305xx but is similar for AMIS−30421).
Keep in mind that will only be update 1 ms
after the NXT pulse was applied.
Enable
The enable SPI bit is used to enable the PWM
regulator and drive coil current through the stepper motor
coils. When ‘1’ the motor driver is enabled and coil current
will be conducted. If ‘0’ (zero), the H−bridge drivers are
disabled.
When the motor driver is enabled, the NXT− and DIR−pin
as also the SPI bit can be used to control the
movement of the stepper motor. It’s not allowed to apply
pulses on the NXT−pin when the motor driver is disabled.
VDIR
t
VNXT
Step up in
translator table
Step up in
translator table
Step down in
translator table
Step down in
translator table
t
Figure 16. Translator table update
Microstep
full step mode at the moment the coil current is 100% in one
of the coils will result in a movement of the rotor. Reversed,
changing from full step to any other stepping mode will also
result in a movement of the rotor (see Figure 18, top left).
If the stepping mode is changed to full step when the coil
current in both coils is 71%, the coil current in both coils will
only be 71% in full step stepping mode instead of 100% (see
Figure 18, top right). Changing to full step stepping mode
when the coil current in one of the coils is not 100% nor 71%
will result in an offset (see Figure 18, bottom). Notice that
stepping is now done on a rectangle instead of a square.
There will always be coil current present in both coils
when working in full step stepping mode (see Table 7).
When zero current is requested in one of the coils, half step
stepping mode can be used to mimic full step (see section
Full Step Stepping Mode in application note AND8399/D
for more info).
is used to set the microstep stepping mode.
Changing to another microstep stepping mode can be done
but the setup and hold timings need to be respected (see
Figure 6). Additionally, one needs to be careful to not
introduce an offset (or phase shift) in the translator table.
Increasing to a higher stepping mode (e.g. from 1/2 to 1/4)
can be done at any moment without introducing an offset or
phase shift. Decreasing to a lower stepping mode (e.g. from
1/4 to 1/2) can introduce an offset or phase shift if the change
to the lower stepping mode is not done at the right moment.
One needs to make sure that the translator table position is
shared both by the old and new stepping mode setting.
Figure 17 gives a good and bad example of reducing the
stepping mode.
To avoid the creation of an offset it’s advised to only
change the stepping mode at a full−step position
( equal to 0, 64, 128 or 192).
Changing the stepping mode to (or from) full step
stepping mode also needs to be done with care. Changing to
http://onsemi.com
19
AMIS−30421
IY
IY
IY
IY
DIR−pin = low
DIR pin = low
Step 1
Step 2
Step 1
Step 2
IX
IX
IX
IX
Step 3
1/4th Stepping Mode
1/4th Stepping Mode
Half Step
Correct change to a lower stepping mode. Step 2 of 1/4th
stepping mode is equal to Step 1 of half step stepping mode
(see Table 7). No offset or phase shift is created.
Half Step
Incorrect change to a lower stepping mode. Step 1 of 1/4th
stepping mode is not shared with a step in half step stepping
mode (see Table 7). An offset or phase shift will be created!
Figure 17. NXT−Step Mode Synchronization
IY
IY
IY
IY
Step
Step
Step
IX
Half Step
IX
Step
IX
Full Step
Half Step
IY
IX
Full Step
IY
Step
Step
IX
IX
Half Step
Full Step
Figure 18. Changing to/from Full step Stepping Mode
Programmable Peak−Current
active. The voltage regulator remains functional during and
after the clear action and the WDb−pin is not activated.
After a clear, NXT pulses can be applied after tCLR_SET
(see Figure 7).
The amplitude of the current waveform in the motor coils
(Imax) can be programmed through SPI bits .
The coil current can be calculated as next:
I max + ń R SENSE
Speed and Load Angle Output
The SLA−pin provides an output voltage that indicates the
level of the BEMF (Back Electro Magnetic Force) voltage
of the motor. This BEMF voltage is sampled during every
so−called ”coil current zero crossing”. Per coil, two
zero−current positions exist per electrical period, yielding in
a total of four zero−current observation points per electrical
period.
Because of the relatively high recirculation currents in the
coil during current decay, the coil voltage VCOIL shows a
RSENSE is resistor R1 and R2 as given in Figure 9.
A change in the coil current () will be
updated at the next PWM cycle.
Clear
Logic 0 on the CLR−pin allows normal operation of the
chip. To clear the complete digital inside AMIS−30421, the
CLR−pin needs to be pulled to logic 1 for a minimum time
of tCLR (Table 5). Clearing the motor driver can not be done
during Sleep Mode. During a clear the charge pump remains
http://onsemi.com
20
AMIS−30421
When working in not−transparent mode ( = ‘0’)
keep in mind that there is a delay between applying the NXT
pulse (to leave the “coil current zero crossing”) and the
updated voltage on the SLA−pin (see tSLA_DELAY in
Figure 20 and Table 5).
transient behavior. This transient behavior (which is not the
BEMF) can be made visible or invisible on the SLA−pin by
means of SPI bit . When set to transparent
( = ‘1’), the coil voltage is sampled every PWM
cycle and updated on the SLA−pin (see Figure 19). When set
to not−transparent ( = ‘0’), only the last sample
(taken right before leaving the “coil current zero crossing”)
will be copied to the SLA−pin (see Figure 20).
I coil
I coil
t
Coil Current
Zero Crossing
V NXT
Next
Microstep
Next step
Previous
Microstep
Next step
V NXT
Next
Microstep
Next step
Coil Current
Zero Crossing
Next step
Previous
Microstep
t
t
t
I coil
I coil
Current Decay
Current Decay
t
V coil
t
V coil
VBB + 0.6V
V BB + 0.6V
VBEMF
V BEMF
t
t
V SLA
Transparent
V SLA
Not−transparent
Bemf of previous
zero crossing
Last sample before leaving
zero crossing is retained.
Bemf of previous
zero crossing
t
tSLA _DELAY
Remark: Vcoil is only drawn during the coil current zero crossing
t
Remark: Vcoil is only drawn during the coil current zero crossing
Figure 19. Principle of BEMF Measurement in
Transparent Mode
Figure 20. Principle of BEMF Measurement in
Not−Transparent Mode
Figure 21). By using SPI bits one
can stretch the “coil current zero crossing” without changing
the speed of the motor (see Figure 21). AMIS−30421 will
ignore but keep track of the NXT pulses applied during the
“stretched coil current zero crossing” and compensate the
ignored pulses when leaving the “coil current zero
crossing”.
More information on using the SLA−pin can be found in
application note AND8399. Although this application note
refers to AMIS−305xx, it is also valid for AMIS−30421.
The relationship between the voltage measured on the
SLA−pin and the coil voltage is:
VSLA = 0.6 + (0.6 x ) + (Vcoil x )
SPI bit can be used to add an additional
offset of 0.6 V. Five different SLA gain values can be set by
means of SPI bits .
AMIS−30421 has the ability to stretch the “coil current
zero crossing”. If NXT pulses are applied too fast it’s
possible that the “coil current zero crossing” is too short
making it impossible to measure the real BEMF (see
http://onsemi.com
21
AMIS−30421
Figure 21. BEMF sampling without (left) and with (right) zero crossing stretching
Sleep Mode
The voltage regulator remains active but with reduced
current−output capability (ILOAD_PD).
When Sleep Mode is left a start−up time is needed for the
charge pump to stabilize. After this time (tSLP_SET) NXT
commands can be issued (see also Figure 6).
Enabling the motor when the charge pump is not stable can
result in overcurrent errors (see section Over−Current
Detection). Because of this it’s advised to keep the motor
disabled during the stabilization time (tSLP_SET).
The IO−pins of AMIS−30421 have internal pull−down or
pull−up resistors (see Figure 3). Keep this in mind when
entering Sleep Mode.
In Sleep Mode VDD can drop to 2.1 V minimum (see
VDD_SLEEP in Table 4). Keep in mind that in this case it’s not
allowed to pull the input pins above 2.1 V!
AMIS−30421 can be placed in Sleep Mode by means of
SPI bit . This mode allows reduction of
current−consumption when the motor is not in operation.
The effect of sleep mode is as follows:
• The drivers are put in HiZ
• All analog circuits are disabled and in low−power mode
• All SPI registers maintain their logic content
• SPI communication is still possible (slightly current
increase during SPI communication).
• Status Registers can not be cleared by reading out
• NXT and DIR inputs are forbidden
• Oscillator and digital clocks are silent
• Motor driver can not be cleared by means of the
CLR−pin
http://onsemi.com
22
AMIS−30421
WARNING, ERROR DETECTION AND DIAGNOSTICS FEEDBACK
Thermal Warning and Shutdown
Note: Successive resetting the motor driver in case of a short
circuit condition may damage the drivers.
AMIS−30421 has 4 thermal ranges which can be read out
through SPI bits and . Thermal Range 1
goes from −40°C up to T1. Thermal Range 2 goes from T1
to T2 and Thermal Range 3 goes from T2 up to T3 (T1, T2 and
T3 can be found in Table 4). Once above T3 the 4th thermal
level is reached which is the thermal warning range.
When junction temperature rises above TTW (= T3), the
ERRb−pin will be activated. If junction temperature
increases above thermal shutdown level (TTSD), then the
circuit goes in Thermal Shutdown Mode and all driver
transistors are disabled (high impedance). The condition to
get out of the Thermal Shutdown Mode is to be at a
temperature lower than TTW and by clearing the SPI
bit.
ÂÂ
ÏÏ
ÏÏ
ÂÂ
ÈÈ
ÈÈ
ÈÈ
ÇÇ
ÇÇ
ÇÇ
ÀÀ
ÀÀ
ÀÀ
TTSD
T 3= TTW
Open Coil/Current Not Reached Detection
Open coil detection is based on the observation of 100%
duty cycle of the PWM regulator. If in a coil 100% duty cycle
is detected for a certain time, an open coil will be latched (see
Status Register 1 and 2) and the ERRb−pin will be activated
(drivers are disabled). The time this 100% duty cycle needs
to be present is adjustable with SPI bits
. A short time will result in fast
detection of an open−coil but could also trigger unwanted
open−coil errors. Increase the timing if this is the case.
When the resistance of a motor coil is very large and the
supply voltage is low, it can happen that the motor driver is
not able to deliver the requested current to the motor. Under
these conditions the PWM controller duty cycle will be
100% and the ERRb−pin will flag this situation. This feature
can be used to test if the operating conditions (supply
voltage, motor coil resistance) still allow reaching the
requested coil−current or else the coil current should be
reduced.
Note: A short circuit could trigger an open coil.
Thermal Range 4 = Thermal Warning (ERRb−pin active)
Thermal Range 3
T2
Thermal Range 2
T1
Thermal Range 1
Charge Pump Failure
−40°C
The charge pump is an important circuit that guarantees
low RDS(on) for all external MOSFET’s, especially for low
supply voltages. If supply voltage is too low or external
components are not properly connected to guarantee a low
RDS(on) of the drivers, a charge pump failure is latched
(), the ERRb−pin is activated and the driver is
disabled ( = ‘0’). One needs to read Status
Register 1 to clear the charge pump failure.
After power on reset (POR) the charge pump voltage will
need some time to exceed the required threshold. During that
time the ERRb−pin will be active but not latched for 250us.
If the slope of the power supply VBB is slow during power
up (charge pump not started after 250 ms), a charge pump
failure will be latched and the ERRb−pin is activated (see
also Figure 23).
Figure 22. Thermal Ranges
Over−Current Detection
The over−current detection circuit monitors the load
current in each activated output stage. If the load current
exceeds the over−current detection threshold, the ERRb−pin
will be activated and the drivers are switched off (motor
driver disabled) to reduce the power dissipation and to
protect the H−bridge. Each driver has an individual
detection bit (see Status Register 1 and 2). The error
condition is latched and the microcontroller needs to read
out the error to reset the error and to be able to re−enable the
motor driver again.
http://onsemi.com
23
AMIS−30421
VBB
t
VERRb
t
Charge Pump Failure
during start up
Charge Pump Failure longer than 250 us
due to slow voltage slope Error is latched.
Figure 23. Charge Pump Failure
Watchdog
During and after power up the WDb−pin is an open drain
output. One can change this to a push−pull output by using
SPI bit .
When VBB is applied, the WDb−pin is kept low for tpor
(Table 5). This can for instance be used to reset an external
microcontroller at power up.
The WDb−pin also has a second function, a Watchdog
function. When the watchdog is enabled ( = ‘1’),
a timer will start counting up. When the counter reaches a
certain value (), the SPI bit will be set
and the WDb−pin will be pulled low for a time equal to tPOR
to reset the external microcontroller. To avoid that the
microcontroller gets reset, the microcontroller needs to
re−enable the watchdog before the count value is reached (=
write ‘1’ to before is reached). This
functionality can be used to reset a “stuck” microcontroller.
The SPI bit can be used to detect a cold or warm
boot. When powering the application (cold boot),
will be zero. If the microcontroller has been reset by the
WDb−pin (warm boot), bit will be ‘1’. The
microcontroller can use this information to detect a cold or
warm boot.
It’s forbidden to re−enable the watchdog too fast
(minimum time between re−enabling must be above tWDPR
(see Figure 4)). One may also not enable the watchdog too
fast after power up (see tDSPI, Figure 4).
A small analogue filter avoids resetting due to spikes or
noise on the VDD supply (trf).
Error Output
The error output (ERRb−pin) will be activated if an error
is reported. Next errors will be reported:
• Thermal Warning
• Thermal Shutdown
• Overcurrent
• Open Coil
• Charge Pump Failure
• All errors except a Thermal Warning will disable the
H−bridge drivers to protect the motor driver
( = ‘0’). To reset the error one needs to read
out the error. Only when all errors are reset it will be
possible to re−enable the motor driver ( =
‘1’).
Keep in mind that during power up a charge pump failure
will be reported during the first 250us but will not be latched
(see also Charge Pump Failure).
During and after power up the ERRb−pin is an open drain
output. One can change this to a push−pull output with SPI
bit .
http://onsemi.com
24
AMIS−30421
POWER SUPPLY AND THERMAL CALCULATION
• In Sleep Mode ( = ‘1’) the VBAT consumption is
Logic Supply Regulator
AMIS−30421 has an on−chip 3.3V low−drop regulator to
supply the digital part of the chip itself, some low−voltage
analog blocks and external circuitry. See Table 4 for the
limitations.
maximum 150 mA making Tj = Tamb.
• In Normal Mode when the driver is disabled
( = ‘0’), the VBAT consumption is maximum
20 mA (no external load on VDD−pin). The junction
temperature can be calculated as next:
Over− and Undervoltage
T J + T A ) ǒV BAT
AMIS−30421 has undervoltage detection. If VBB drops
below VBBUL, the drivers are disabled. To be able to enable
the drivers again the VBB voltage needs to rise above
VBBUH.
Overvoltage detection is also present. If the voltage rises
above VBBOH the drivers are disabled. The voltage needs to
drop below VBBOL to be able to enable the driver again. See
also Figure 5.
I BAT
Rth JAǓ
For an 18 V application operating at an ambient
temperature of 125°C this would give:
T J + 125° C ) ǒ18 V 20 mA 30° CńWǓ
T J + 135.8° C
• In Normal Mode with the driver enabled ( =
‘1’) the gate charge current needs to be included in the
calculations.
Start−Up Behavior
Figure 4 gives the start−up of AMIS−30421. After VBB is
applied and after a certain power up time (tPU), the internal
voltage regulator VDD will start−up. When VDD gets above
VDDH, the internal POR will be released and the digital will
start−up. The WDb−pin will be kept low for an additional
100ms (tPOR). After the WDb−pin is deactivated and after a
time tDSPI, SPI communication can be initiated.
I BAT + 20 mA ) ǒ6
V REGH
C ISS
f PWMǓ
For an 18 V application driving external MOSFET’s with
an input capacitance of 1 nF this would result in:
I BAT + 20 mA ) ǒ6 12.8 V 1 nF 30 kHzǓ
I BAT + 22.3 mA
Operating at 125°C ambient temperature this result in a
junction temperature of:
T J + 125° C ) ǒ18 V 22.3 mA 30° CńWǓ
Junction Temperature Calculation
To calculate the junction temperature of AMIS−30421 the
thermal resistance junction−to−ambient must be known.
When only a PCB heat sink is used, a typical value is
30°C/W (see Table 4).
There are three modes the junction temperature can be
calculated for.
T J + 137° C
http://onsemi.com
25
AMIS−30421
SPI INTERFACE
The serial peripheral interface (SPI) allows an external
microcontroller (Master) to communicate with
AMIS−30421. The implemented SPI block is designed to
interface directly with numerous microcontrollers from
several manufacturers. AMIS−30421 acts always as a Slave
and can’t initiate any transmission. The operation of the
device is configured and controlled by means of SPI
registers which are observable for read and/or write from the
Master.
DO signal is the output from the Slave (AMIS−30421), and
DI signal is the output from the Master. A chip select line
(CSb) allows individual selection of a Slave SPI device in a
multiple−slave system. The CSb line is active low. If
AMIS−30421 is not selected, DO is in HiZ and does not
interfere with SPI bus activity. The output type of DO can be
set in SPI (). Since AMIS−30421 operates as a
Slave in MODE 0 (CPOL = 0; CPHA = 0) it always clocks
data out on the falling edge and samples data in on rising
edge of clock. The Master SPI port must be configured in
MODE 0 too, to match this operation.
The diagram below is both a Master and a Slave timing
diagram since CLK, DO and DI pins are directly connected
between the Master and the Slave.
SPI Transfer Format and Pin Signals
During a SPI transfer, data is simultaneously transmitted
(shifted out serially) and received (shifted in serially). A
serial clock line (CLK) synchronizes shifting and sampling
of the information on the two serial data lines (DO and DI).
8
7
6
5
4
3
2
1
MSB
6
5
4
3
2
1
LSB
6
5
4
3
2
1
LSB
CS
ÏÏÏÏ
ÏÏÏÏ
CLK
DI
DO
MSB
Figure 24. Timing Diagram of a SPI Transfer
Transfer Packet
Two command types can be distinguished in the
communication between master and AMIS−30421:
• CMD2 = ‘0’: READ from SPI Register with address
ADDR[4:0]
• CMD2 = ‘1’: WRITE to SPI Register with address
ADDR[4:0]
Serial data transfer is assumed to follow MSB first rule.
The transfer packet contains one or more bytes.
Byte 1 contains the Command and the SPI Register
Address and indicates to AMIS−30421 the chosen type of
operation and addressed register. Byte 2 contains data, or
sent from the Master in a WRITE operation, or received
from AMIS−30421 in a READ operation.
BYTE1
BYTE2
Command and SPI Register Address
Data
MSB
CMD2
LSB
CMD1
Command
CMD0
ADDR4
ÏÏÏ
ÏÏÏ
ÏÏ
ÏÏ
ADDR3
ADDR2
ADDR1
MSB
ADDR0
D7
LSB
D6
D5
D4
D3
D2
D1
D0
SPI Register Address
Figure 25. SPI Transfer Packet
READ Operation
the same time the data shifted in from DI (Master) should be
interpreted as the following successive command or dummy
data.
Status Register 0, 1 and 2 (see SPI Registers) contain 7
data bits and a parity check bit. The most significant bit (D7)
represents a parity of D[6:0]. If the number of logical ones
in D[6:0] is odd, the parity bit D7 equals ‘1’. If the number
of logical ones in D[6:0] is even then the parity bit D7 equals
If the Master wants to read data from a Status or Control
Register, it initiates the communication by sending a READ
command. This READ command contains the address of the
SPI register to be read out. At the falling edge of the eight
clock pulse the data−out shift register is updated with the
content of the corresponding internal SPI register. In the next
8−bit clock pulse train this data is shifted out via DO pin. At
http://onsemi.com
26
AMIS−30421
root cause of the problem can be determined by reading out
the Status Registers. However, if the error occurs at the
moment CSb is low, one first needs to pull CSb high to
update the Status Registers properly. Only then the Status
Registers can be read out to determine the error. For this
reason it is also recommended to keep CSb high when the
SPI bus is idle.
‘0’. This simple mechanism protects against noise and
increases the consistency of the transmitted data. If a parity
check error occurs it is recommended to initiate an
additional READ command to obtain the status again.
The CSb−pin is active low and may remain low between
successive READ commands as illustrated in Figure 28.
There is one exception. In case an error condition occurs the
CS
ÏÏÏ
ÏÏ
ÏÏ
ÏÏ
CLK
DI
DO
0
Old Data or
Not Valid
0
0
Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]
Command or
Dummy
Command or
Dummy
Command or
Dummy
Command or
Dummy
Command or
Dummy
Command or
Dummy
Command or
Dummy
Command or
Dummy
D[4 ] from
Addr
D[3] from
Addr
D[2 ] from
Addr
D[1] from
Addr
D[0 ] from
Addr
Next command or dummy data
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
D[7] from
Addr
D[6 ] from
Addr
D[5] from
Addr
Data from previous command or not valid after POR
.
Figure 26. Single READ Operation Where Data from SPI Register is Read by the Master
WRITE Operation
less bits are transmitted the complete transfer packet is
ignored.
A WRITE command executed for a read−only register
(e.g. Status Registers) will not affect the addressed register
and the device operation.
AMIS−30421 responds on every incoming byte by
shifting out via DO the data stored in the last received
address. Because after a power−on−reset the initial address
is unknown the data shifted out via DO is not valid.
If the Master wants to write data to a Control Register it
initiates the communication by sending a WRITE
command. This contains the address of the SPI register to
write to. The command is followed with a data byte. This
incoming data will be stored in the corresponding Control
Register after CSb goes from low to high. It is important that
the writing action to the Control Register is exactly 16 bits
long and that CSb goes high after these 16 bits. If more or
The new data is written into the corresponding
internal register at the rising edge of CS.
CS
ÏÏÏ
ÏÏÏ
CLK
DI
DO
1
Old Data or
Not Valid
ÏÏ
ÏÏ
ÏÏ
0
0
Addr[4]
Addr[3]
Addr[2]
Addr[1]
Addr[0]
D[7] from
Addr
D[6 ] from
Addr
D[5] from
Addr
D[4 ] from
Addr
D[3] from
Addr
D[2 ] from
Addr
D[1] from
Addr
D[0 ] from
Addr
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data or
Not Valid
Old Data
From Addr
Old Data
From Addr
Old Data
From Addr
Old Data
From Addr
Old Data
From Addr
Old Data
From Addr
Old Data
From Addr
Old Data
From Addr
Data from previous command or not valid after POR
.
Old data from Addr
Figure 27. Single WRITE Operation Where Data from the Master is Written in SPI Register
Examples of READ and WRITE Operations
followed by writing a control byte in Control Register at
Addr3. Note that during the WRITE command the old data
of the pointed register is returned at the moment the new data
is shifted in.
In the following examples successive READ and/or
WRITE operations are combined. In Figure 28 the Master
first reads the status from Register at Addr1 and at Addr2
New data is written into Register
with Addr3 at rising edge of CSb
CS
DI
Read Data
from Addr1
Read Data
from Addr2
Write Data
to Addr3
New Data
to Addr 3
DO
Old Data or
Not Valid
Data from Addr1
Data from Addr2
Old Data
from Addr3
Data from previous command
or not valid after POR
Figure 28. 2 Successive READ Commands Followed by a WRITE Command
After a WRITE operation the Master could initiate a
READ command in order to verify the data correctly written
as illustrated in Figure 29. During reception of the READ
command the old data is returned for a second time. Only
after receiving the READ command the new data is
transmitted. This rule also applies when the master device
http://onsemi.com
27
AMIS−30421
wants to initiate an SPI transfer to read the Status Registers.
Because the internal system clock updates the Status
Registers only when CSb line is high, the first read out byte
might represent old status information (Figure 30).
New data is written into Register
with Addr4 at rising edge of CSb
CS
DI
Write Data
to Addr4
New Data for Addr4
Read Data
from Addr4
Command or
Dummy
DO
Old Data or
Not Valid
Old Data
from Addr4
Old Data
From Addr4
New Data
From Addr4
Data from previous command
or not valid after POR
Figure 29. WRITE Operation Followed by a READ operation to verify
CS
DI
Read from 0x04
Read from 0x05
Read from 0x06
Command or
Dummy
DO
Old Data or
Not Valid
Data from 0x04
Data from 0x05
Data from 0x06
Data from previous command
or not valid after POR
Figure 30. 3 READ Operations in a Row
Bad Examples of READ and WRITE Operations
be determined. A second problem with Figure 33 is that the
data written to Addr9 will not be stored because CSb was not
toggled after the write operation.
Figure 34 gives the correct way of reading out errors.
When the error is detected (toggling of ERRb−pin), CSb is
made high to make sure the Status Registers are updated.
Then the Status Registers are read out. Notice that ERRb
toggles after Status Register 1 is read out (Addr 0x05). This
indicates that the error was an overcurrent in the X−coil, a
charge pump failure or an open X−coil. Also notice that
because CSb is made high after the write operation, the write
operation will now be done correctly.
The following example demonstrates a bad WRITE
operation. After a WRITE operation a read operation is done
before CSb is made high. The data will not be written in the
Register. Figure 32 demonstrates how it should be done (see
also Figure 29).
The second example (Figure 33) demonstrates an
incorrect way of reading errors. After a WRITE operation
the ERRb−pin toggles indication an error. Without toggling
CSb the 3 Status Registers are read out to determine the
error. Because CSb was not high after the error was detected,
the Status Registers will not be updated and the error can not
New data is NOT written into Register because
WRITE operation did not ended with CSb going high!
CS
DI
Write Data
to Addr8
New Data for Addr8
Read Data
from Addr8
Command or
Dummy
Read Data
from Addr8
Command or
Dummy
DO
Old Data or
Not Valid
Old Data
from Addr8
Old Data
From Addr8
Old Data
from Addr8
Old Data
From Addr8
Old Data
from Addr8
Data was not written in Addr8 because WRITE
operation did not ended with CSb going high!
Data from previous command
or not valid after POR
Figure 31. Bad Example of Write Operation
http://onsemi.com
28
AMIS−30421
CS
DI
Write Data
to Addr8
New Data for Addr8
Read Data
from Addr8
Command or
Dummy
DO
Old Data or
Not Valid
Old Data
from Addr8
Old Data
From Addr8
New Data
from Addr8
Data from previous command
or not valid after POR
Figure 32. Good Write Operation
ERR
CS
DI
Write Data
to Addr9
New Data for Addr9
Read Data
from 0x04
Read Data
from 0x05
Read Data
from 0x06
New Command
or Dummy
DO
Old Data or
Not Valid
Old Data
from Addr9
Old Data
From Addr9
Old Data
from 0x04
Old Data
from 0x05
Old Data
from 0x06
Data from previous command
or not valid after POR
Figure 33. Bad Example of Error Read Out
ERR
CS
Making CSb high will update the Status Registers
DI
Write Data
to Addr9
New Data for Addr9
Read Data
from 0x04
Read Data
from 0x05
Read Data
from 0x06
New Command
or Dummy
DO
Old Data or
Not Valid
Old Data
from Addr9
Old Data
From Addr9
New Data
from 0x04
New Data
from 0x05
New Data
from 0x06
Data from previous command
or not valid after POR
Figure 34. Correct Read Out of Error
SPI Register Description
Below table gives an overview of all SPI Registers that can be used.
Table 8. SPI REGISTER OVERVIEW
Address
Access
Abbreviation
Watchdog Register
SPI Register
0x00
R/W
WR
Control Register 0
0x01
R/W
CR0
Control Register 1
0x02
R/W
CR1
Control Register 2
0x03
R/W
CR2
Status Register 0
0x04
R
SR0
Status Register 1
0x05
R
SR1
Status Register 2
0x06
R
SR2
Status Register 3
0x07
R
SR3
Predriver Register 0
0x09
R/W
PDRV0
http://onsemi.com
29
AMIS−30421
Table 8. SPI REGISTER OVERVIEW
Address
Access
Abbreviation
Predriver Register 1
SPI Register
0x0A
R/W
PDRV1
Predriver Register 2
0x0B
R/W
PDRV2
Predriver Register 3
0x0C
R/W
PDRV3
Predriver Register 4
0x0D
R/W
PDRV4
Predriver Register 5
0x0E
R/W
PDRV5
Predriver Register 6
0x0F
R/W
PDRV6
Predriver Register 7
0x10
R/W
PDRV7
Where: R/W = read and write access, R = read access only
Watchdog Register (WR)
The Watchdog Register is located at address 0x00 and can be used to enable the watchdog and set the watchdog time−out.
It can also be used to set the short circuit and open coil detection time−out.
Table 9. WATCHDOG REGISTER
Watchdog Register (WR)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
0
0
0
0
1
0
0
Data
WDEN
Access
0x00
WDT[3:0]
OPEN_COIL[1:0]
−
Table 10. WATCHDOG REGISTER PARAMETERS
Parameter
WDEN
WDT[3:0]
OPEN_COIL[1:0]
Value
Value
0
Disable
1
Enable
0000
32 ms
0001
64 ms
0010
96 ms
0011
128 ms
0100
160 ms
0101
192 ms
0110
224 ms
0111
256 ms
1000
288 ms
1001
320 ms
1010
352 ms
1011
384 ms
1100
416 ms
1101
448 ms
1110
480 ms
1111
512 ms
00
2.56 ms
01
0.32 ms
10
20.48 ms
11
163.84 ms
Description
Info
Enables the watchdog
p24
Defines the watchdog time−out period. The watchdog needs
to be re−enabled (WDEN) within this time or WDb−pin is activated for tPOR.
p24
Defines the open coil detection time−out. If an open coil is
detected for a time longer than OpenTimeOut[1:0], an open
coil (OPEN_X and/or OPEN_Y) will be reported.
Note: Short circuit could trigger open coil detection.
p23
Remark: Bit 0 of Watchdog Register should always be ‘0’ (zero)!
http://onsemi.com
30
AMIS−30421
Control Register 0 (CR0)
Control Register 0 is located at address 0x01 and is used to set the maximum coil current and stepping mode. It’s also used
to set the “coil current zero crossing” duration.
Table 11. CONTROL REGISTER 0
Control Register 0 (CR0)
Address
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
0
0
0
0
0
0
0
0x01
SM[2:0]
Data
MIN_SLA_TIME[1:0]
CUR[2:0]
Table 12. CONTROL REGISTER 0 PARAMETERS
Parameter
SM[2:0]
MIN_SLA_TIME[1:0]
CUR[2:0]
Value
Value
000
64th
Description
001
32nd
010
16th
011
8th
100
4th
101
Half step compensated
110
Half step uncompensated
111
Full Step
00
40 ms
01
120 ms
10
200 ms
11
360 ms
000
100 mV
001
135 mV
010
200 mV
011
270 mV
100
335 mV
101
400 mV
110
500 mV
111
600 mV
Info
Defines the 8 stepping modes for the PWM regulator.
p19
Defines the minimum “coil current zero crossing” duration.
Remark: when NXT frequency gets above PWM frequency
(fPWM), MIN_SLA_TIME could be 40us longer.
p20
Defines the maximum voltage over the coil current sense
resistor which defines the maximum coil current.
The maximum coil current is calculated as next:
Icoil = CUR[2:0] / Rsense
p20
Control Register 1 (CR1)
Control Register 1 is located at address 0x02 and can used to set the direction, NXT−pin polarity, output configuration of
WDb−, ERRb− and DO−pin and to enable PWM jitter. It can also be used to set an additional delay between switching off and
on MOSFET’s of one half H−bridge (to prevent a short circuit).
Table 13. CONTROL REGISTER 1
Control Register 1 (CR1)
Address
0x02
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
0
0
1
0
0
0
1
Data
DIRCTRL
NXTP
−
IO_OT
−
PWMJ
http://onsemi.com
31
NO_CROSS[1:0]
AMIS−30421
Table 14. CONTROL REGISTER 1 PARAMETERS
Parameter
Value
Value
0
CW
1
CCW
0
Positive Edge
1
Negative Edge
Description
DIRCTRL
NXTP
IO_OT
PWMJ
NO_CROSS[1:0]
0
Push Pull
1
Open Drain
0
Disabled
1
Enabled
00
0 ns
01
250 ns
10
500 ns
11
1000 ns
Info
Defines the direction of rotation.
Remark: CW and CCW is relative. Direction of rotation will
be defined by the status of the DIR−pin and connection of
the stepper motor!
p19
Defines the active edge on the NXT−pin.
p19
Defines the output type of WDb−, ERRb− and DO−pin
p24
Enables or disables PWM jitter
p15
Defines the time between switching off one MOSFET and
switching on the other MOSFET of the same half H−bridge
(= tnocross).
p13
Remark: Bit 3 and bit 5 of Control Register 1 should always be ‘0’ (zero)!
Control Register 2 (CR2)
Control Register 2 is located at address 0x03 and can be used to enable the motor driver and to put the motor driver in sleep
mode. It also has some parameters that can be used to set the SLA.
Table 15. CONTROL REGISTER 2
Control Register 2 (CR2)
Address
Access
0x03
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
Reset
0
0
0
0
Data
MOTEN
SLP
−
SLAT
SLAG[2:0]
0
SLA_OFFS
Table 16. CONTROL REGISTER 2 PARAMETERS
Parameter
MOTEN
SLP
SLAT
SLAG[2:0]
Value
Value
Description
Info
0
Disabled
1
Enabled
Enables the PWM regulator.
Remark: the regulator is automatically disabled if one of the
bits in Status Register 1 or 2 is set.
p19
0
Normal Mode
1
Sleep Mode
Enables the sleep mode (power down mode)
p22
0
Not Transparent
1
Transparent
Defines the type of SLA sampling.
p20
000
1
001
0.5
010
0.25
011
0.125
100
0.0625
Defines the motor terminal voltage division factor for the
SLA−pin.
p20
101
0.0625
110
0.0625
111
0.0625
http://onsemi.com
32
AMIS−30421
Table 16. CONTROL REGISTER 2 PARAMETERS
Parameter
Value
Value
0
No additional offset
1
Additional offset of
0.6 V
SLA_OFFS
Description
Info
To enable an additional offset on the SLA−pin of 0.6V.
p20
Remark: Bit 5 of Control Register 2 should always be ‘0’ (zero)!
Status Register 0 (SR0)
Status Register 0 is located at address 0x04 and can only be read. Status Register 0 is a non−latched register meaning that
the value of the register can change without the need of reading out the register. The register can be used to retrieve the
temperature range or to verify a watchdog event.
Notice that bit 7 is the parity bit (see READ operation p26).
Table 17. STATUS REGISTER 0
Status Register 0 (SR0)
Address
0x04
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R
R
R
R
R
R
R
R
Reset
0
0
0
0
0
1
0
0
Data
PAR
WD
−
−
−
−
TR[1:0]
Table 18. STATUS REGISTER 0 PARAMETERS
Parameter
TR[1:0]
Value
Value
Description
00
−40°C to 15°C
01
15°C to 72°C
10
73°C to 150°C
11
TSD = 0: 150°C to 170°C
TSD = 1: >170°C
0
No watchdog event
Motor driver thermal range.
Remark:
TR[1:0] = 11 and TSD = 0 => Thermal Warning
TR[1:0] = 11 and TSD = 1 => Thermal Shutdown
TSD is located in Status Register 2
p23
If WDEN = 1 and watchdog not acknowledged before the
Watchdog Time−out (WDT[3:0]), WDb−pin will be pulled
low for 100ms to reset an external microcontroller and WD
bit will be set to ‘1’ to indicate this event. The external microcontroller can use this bit to verify a cold (WD = 0) or
warm boot (WD = 1).
WD
1
Info
Watchdog event occurred
p24
Status Register 1 (SR1)
Status Register 1 is located at address 0x05 and can only be read. Status Register 1 is a latched register. If an error occurs
the bit will be set and can only be cleared by reading out this bit1. The register is used to report an overcurrent or open coil in
the X−coil, or to report a charge pump failure.
Notice that bit 7 is the parity bit (see READ operation p26).
Table 19. STATUS REGISTER 1
Status Register 1 (SR1)
Address
0x05
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R
R
R
R
R
R
R
R
Reset
0
0
0
0
0
0
0
0
Data
PAR
OVCXPT
OVCXPB
OVCXNT
OVCXNB
CPFAIL
OPEN_X
−
1. In Sleep mode the register can be read out but will not be cleared!
http://onsemi.com
33
AMIS−30421
Table 20. STATUS REGISTER 1 PARAMETERS
Parameter
Value
Value
0
No overcurrent
1
Overcurrent
0
No overcurrent
1
Overcurrent
0
No overcurrent
1
Overcurrent
0
No overcurrent
1
Overcurrent
0
No charge pump failure
1
Charge pump failure
0
No open coil detected
1
Open coil detected
OVCXPT
OVCXPB
OVCXNT
OVCXNB
CPFAIL
OPEN_X
Description
Info
Overcurrent detection in top transistor XP−terminal
p23
Overcurrent detection in bottom transistor XP−terminal
p23
Overcurrent detection in top transistor XN−terminal
p23
Overcurrent detection in bottom transistor XN−terminal
p23
Charge pump failure detection
p23
Open coil detection for X−coil
Note: a short circuit could trigger an open coil
p23
Status Register 2 (SR2)
Status Register 2 is located at address 0x06 and can only be read. Status Register 2 is a latched register. If an error occurs
the bit will be set and can only be cleared by reading out this bit2. The register is used to report an overcurrent or open coil in
the Y−coil, or to report a thermal shutdown.
Notice that bit 7 is the parity bit (see READ operation p26).
Table 21. STATUS REGISTER 2
Status Register 2 (SR2)
Address
0x06
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R
R
R
R
R
R
R
R
Reset
0
0
0
0
0
0
0
0
Data
PAR
OVCYPT
OVCYPB
OVCYNT
OVCYNB
TSD
OPEN_Y
−
Table 22. STATUS REGISTER 2 PARAMETERS
Parameter
OVCYPT
OVCYPB
OVCYNT
OVCYNB
TSD
OPEN_Y
Value
Value
Description
0
No overcurrent
1
Overcurrent
0
No overcurrent
1
Overcurrent
0
No overcurrent
1
Overcurrent
0
No overcurrent
1
Overcurrent
0
No thermal shutdown
1
Thermal shutdown
0
No open coil detected
1
Open coil detected
Info
Overcurrent detection in top transistor YP−terminal
p23
Overcurrent detection in bottom transistor YP−terminal
p23
Overcurrent detection in top transistor YN−terminal
p23
Overcurrent detection in bottom transistor YN−terminal
p23
Thermal Shutdown detection
p23
Open coil detection for X−coil
Note: a short circuit could trigger an open coil
p23
2. In Sleep mode the register can be read out but will not be cleared!
http://onsemi.com
34
AMIS−30421
Status Register 3 (SR3)
Status Register 3 is located at address 0x07 and can only be read. Status Register 3 contains the microstepping position and
can be used to retrieve the position in the translator table (see Table 7). It is a non−latched register meaning that the
microstepping position can be updated by the motor driver at any moment. Status Register 3 does not contain a parity bit.
Table 23. STATUS REGISTER 3
Status Register 3 (SR3)
Address
0x07
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R
R
R
R
R
R
R
R
Reset
0
0
0
0
0
0
0
0
MSP[7:0]
Data
Table 24. STATUS REGISTER 3 PARAMETERS
Parameter
Value
Value
Description
MSP[7:0]
xxxx xxxx
Microstepping position
Info
Indicates the position within the translator table
p19
Predriver Register 0 (PDRV0)
Predriver Register 0 is located at address 0x09 and can be used to set the current source for the gate charge of the external
top MOSFET’s during t1 (see Figure 11).
Table 25. PREDRIVER REGISTER 0
Predriver Register 0 (PDRV0)
Address
0x09
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
1
0
1
0
0
1
1
TOP_ION1[6:3]
Data
−
TOP_ION1[2:0]
Table 26. PREDRIVER REGISTER 0 PARAMETERS
Parameter
Value
TOP_ION1[6:3]
xxxx
TOP_ION1[2:0]
xxx
Value
Description
Info
Current source
value
Defines the current source for the external top MOSFET’s during t1.
Current source can be calculated as next:
1 mA + (PDRV0[7:4] x 2 mA) + 0.25 mA + (PDRV0[2:0] x 0.25 mA)
p13
Predriver Register 1 (PDRV1)
Predriver Register 1 is located at address 0x0A and can be used to set the current source for the gate charge of the external
top MOSFET’s during t2 (see Figure 11).
Table 27. PREDRIVER REGISTER 1
Predriver Register 1 (PDRV1)
Address
0x0A
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
0
0
0
0
0
1
1
Data
TOP_ION2[6:3]
−
http://onsemi.com
35
TOP_ION2[2:0]
AMIS−30421
Table 28. PREDRIVER REGISTER 1 PARAMETERS
Parameter
Value
TOP_ION2[6:3]
xxxx
TOP_ION2[2:0]
xxx
Value
Description
Current source
value
Info
Defines the current source for the external top MOSFET’s during t2.
Current source can be calculated as next:
1 mA + (PDRV1[7:4] x 2 mA) + 0.25 mA + (PDRV1[2:0] x 0.25 mA)
p13
Predriver Register 2 (PDRV2)
Predriver Register 2 is located at address 0x0B and can be used to set the current source for the gate charge of the external
bottom MOSFET’s during t1 (see Figure 11).
Table 29. PREDRIVER REGISTER 2
Predriver Register 2 (PDRV2)
Address
0x0B
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
1
0
1
0
0
1
1
BOT_ION1[6:3]
Data
−
BOT_ION1[2:0]
Table 30. PREDRIVER REGISTER 2 PARAMETERS
Parameter
Value
BOT_ION1[6:3]
xxxx
BOT_ION1[2:0]
xxx
Value
Description
Current source
value
Info
Defines the current source for the external bottom MOSFET’s during
t1. Current source can be calculated as next:
1 mA + (PDRV2[7:4] x 2 mA) + 0.25 mA + (PDRV2[2:0] x 0.25 mA)
p13
Predriver Register 3 (PDRV3)
Predriver Register 3 is located at address 0x0C and can be used to set the current source for the gate charge of the external
bottom MOSFET’s during t2 (see Figure 11).
Table 31. PREDRIVER REGISTER 3
Predriver Register 3 (PDRV3)
Address
0x0C
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
0
0
0
0
0
1
1
BOT_ION2[6:3]
Data
−
BOT_ION2[2:0]
Table 32. PREDRIVER REGISTER 3 PARAMETERS
Parameter
Value
BOT_ION2[6:3]
xxxx
BOT_ION2[2:0]
xxx
Value
Description
Info
Current source
value
Defines the current source for the external bottom MOSFET’s during t2. Current source can be calculated as next:
1 mA + (PDRV3[7:4] x 2 mA) + 0.25 mA + (PDRV3[2:0] x 0.25 mA)
p13
http://onsemi.com
36
AMIS−30421
Predriver Register 4 (PDRV4)
Predriver Register 4 is located at address 0x0D and can be used to set the current source for the gate discharge of the external
MOSFET’s (see Figure 11).
Table 33. PREDRIVER REGISTER 4
Predriver Register 4 (PDRV4)
Address
0x0D
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
1
0
0
0
1
0
0
TOP_IOFF[3:0]
Data
BOT_IOFF[3:0]
Table 34. PREDRIVER REGISTER 4 PARAMETERS
Parameter
Value
Value
Description
Info
TOP_IOFF[3:0]
xxxx
Current source
value
Defines the current source for the external top MOSFET’s during
toff. Current source can be calculated as next:
10.5 mA + (PDRV4[7:4] x 7 mA)
p13
BOT_IOFF[3 :0]
xxxx
Current source
value
Defines the current source for the external bottom MOSFET’s during toff. Current source can be calculated as next:
10.5 mA + (PDRV4[3:0] x 7 mA)
p13
Predriver Register 5 (PDRV5)
Predriver Register 5 is located at address 0x0E and can be used to set t2 (see Figure 11).
Table 35. PREDRIVER REGISTER 5
Predriver Register 5 (PDRV5)
Address
0x0E
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
1
0
0
0
1
0
0
Data
−
TOP_t2[2:0]
−
BOT_t2[2:0]
Table 36. PREDRIVER REGISTER 5 PARAMETERS
Parameter
TOP_t2[2:0]
Value
Value
000
1.25 ms
001
1.75 ms
010
2.25 ms
011
2.75 ms
100
3.25 ms
101
3.75 ms
110
4.25 ms
111
4.75 ms
Description
Defines the switch on duration t2 for the external top MOSFET’s.
http://onsemi.com
37
Info
p13
AMIS−30421
Table 36. PREDRIVER REGISTER 5 PARAMETERS
Parameter
BOT_t2[2 :0]
Value
Value
000
1.25 ms
001
1.75 ms
010
2.25 ms
011
2.75 ms
100
3.25 ms
101
3.75 ms
110
4.25 ms
111
4.75 ms
Description
Info
Defines the switch on duration t2 for the external bottom MOSFET’s.
p13
Predriver Register 6 (PDRV6)
Predriver Register 6 is located at address 0x0F and can be used to set toff (see Figure 11).
Table 37. PREDRIVER REGISTER 6
Predriver Register 6 (PDRV6)
Address
0x0F
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
1
0
0
0
1
0
0
Data
−
TOP_toff[2:0]
−
BOT_toff[2:0]
Table 38. PREDRIVER REGISTER 6 PARAMETERS
Parameter
TOP_toff[2:0]
BOT_toff[2 :0]
Value
Value
000
1.25 ms
001
1.75 ms
010
2.25 ms
011
2.75 ms
100
3.25 ms
101
3.75 ms
110
4.25 ms
111
4.75 ms
000
1.25 ms
001
1.75 ms
010
2.25 ms
011
2.75 ms
100
3.25 ms
101
3.75 ms
110
4.25 ms
111
4.75 ms
Description
Info
Defines the switch off duration (toff) for the external top MOSFET’s.
p13
Defines the switch off duration (toff) for the external bottom MOSFET’s.
p13
http://onsemi.com
38
AMIS−30421
Predriver Register 7 (PDRV7)
Predriver Register 7 is located at address 0x10 and can be used to set t1 (see Figure 11).
Table 39. PREDRIVER REGISTER 7
Predriver Register 7 (PDRV7)
Address
0x10
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Reset
0
0
1
0
0
0
1
0
Data
−
TOP_t1[2:0]
−
BOT_t1[2:0]
Table 40. PREDRIVER REGISTER 7 PARAMETERS
Parameter
TOP_t1[2:0]
BOT_t1[2 :0]
Value
Value
000
375 ns
001
500 ns
010
625 ns
011
750 ns
100
875 ns
101
1000 ns
110
1125 ns
111
1250 ns
000
375 ns
001
500 ns
010
625 ns
011
750 ns
100
875 ns
101
1000 ns
110
1125 ns
111
1250 ns
Description
Info
Defines the switch on duration t1 for the external top MOSFET’s.
p13
Defines the switch on duration t1 for the external bottom
MOSFET’s.
p13
http://onsemi.com
39
AMIS−30421
PACKAGE THERMAL CHARACTERISTICS
34
35
36
37
38
39
40
41
42
43
44
The major thermal resistances of the device are the Rth
from the junction to the ambient (Rthja) and the overall Rth
from the junction to exposed pad (Rthjp). In Table 4 one can
find the values for the Rthja and Rthjp, simulated according
to JESD−51.
The Rthja for 2S2P is simulated conform JEDEC
JESD−51 as follows:
• A 4−layer printed circuit board with inner power planes
and outer (top and bottom) signal layers is used
• Board thickness is 1,46mm (FR4 PCB material)
• The 2 signal layers: 70 um thick copper with an area of
5500 mm2 copper and 20% conductivity
• The 2 power internal planes: 36 mm thick copper with
an area of 5500 mm2 copper and 90% conductivity
The Rthja for 1S0P is simulated conform to JEDEC
JESD−51 as follows:
• A 1−layer printed circuit board with only 1 layer
• Board thickness is 1.46 mm (FR4 PCB material)
• The layer has a thickness of 70 mm copper with an area
of 5500 mm2 copper and 20% conductivity
34
35
36
37
38
39
40
41
42
43
44
The AMIS−30421 is available in a NQFP44 package. For
cooling optimizations, the NQFP has an exposed thermal
pad which has to be soldered to the PCB ground plane. The
ground plane needs thermal vias to conduct the heat to the
bottom layer.
Figure 35 gives an example of good heat transfer. The
exposed thermal pad is soldered directly on the top ground
layer (left picture of Figure 35). It’s advised to make the top
ground layer as large as possible (see arrows Figure 35). To
improve the heat transfer even more, the exposed thermal
pad is connected to a bottom ground layer by using thermal
vias (see right picture of Figure 35). It’s advised to make this
bottom ground layer as large as possible and with as less as
possible interruptions.
For precise thermal cooling calculations the major
thermal resistances of the device are given (Table 4). The
thermal media to which the power of the devices has to be
given are:
• Static environmental air (via the case)
• PCB board copper area (via the exposed pad)
26
9
25
9
25
10
24
10
24
11
23
11
23
22
8
21
26
20
27
8
19
7
18
27
17
28
7
16
6
15
28
14
29
6
13
5
12
29
22
30
5
21
4
20
30
19
31
4
18
3
17
31
16
32
3
15
33
2
14
1
32
13
33
2
12
1
Figure 35. PCB Ground Plane Layout Condition (left picture displays the top ground layer, right picture displays
the bottom ground layer)
ORDERING INFORMATION
Part No.
AMIS30421C4211G
Peak Current
Temperature Range
Package
Shipping†
NA
−40°C to +170°C
NQFP−44 (7 x 7 mm)
(Pb−Free)
Units / Tube
AMIS30421C4211RG
Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
40
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
QFN44 7x7, 0.5P
CASE 485BY
ISSUE O
1 44
SCALE 2:1
PIN 1
REFERENCE
D
L1
DETAIL A
ALTERNATE
CONSTRUCTIONS
E
EXPOSED Cu
0.15 C
0.15 C
TOP VIEW
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
L1
ÉÉ
ÉÉ
MOLD CMPD
DETAIL B
ALTERNATE
CONSTRUCTION
(A3)
DETAIL B
0.05 C
NOTES:
1. DIMENSIONS AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO THE PLATED
TERMINAL AND IS MEASURED ABETWEEN
0.15 AND 0.30 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
L
L
A B
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
DATE 16 SEP 2011
A
0.08 C
A1
NOTE 4
C
SIDE VIEW
MILLIMETERS
MIN
MAX
0.80
0.90
−−−
0.05
0.20 REF
0.20
0.30
7.00 BSC
4.60
4.80
7.00 BSC
4.60
4.80
0.50 BSC
0.20
−−−
0.45
0.65
−−−
0.15
GENERIC
MARKING DIAGRAM*
SEATING
PLANE
1
0.10
M
C A B
XXXXXXXXX
XXXXXXXXX
AWLYYWWG
D2
DETAIL A
K
12
0.10
23
11
M
C A B
E2
1
33
44
44X
L
34
e
BOTTOM VIEW
44X
b
0.10
M
C A B
0.05
M
C
NOTE 3
A
= Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
G = Pb−Free Package
*This information is generic. Please refer
to device data sheet for actual part
marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
SOLDERING FOOTPRINT*
44X
2X
0.82
4.90
1
2X
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
0.50
PITCH
7.30
44X
0.30
DIMENSIONS: MILLIMETERS
DOCUMENT NUMBER:
DESCRIPTION:
98AON59317E
QFN44 7X7, 0.50P
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative