0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BC848CWT1G

BC848CWT1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT323

  • 描述:

    TRANS NPN 30V 0.1A SOT-323

  • 数据手册
  • 价格&库存
BC848CWT1G 数据手册
BC846, BC847, BC848 General Purpose Transistors NPN Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SC−70/SOT−323 which is designed for low power surface mount applications. www.onsemi.com COLLECTOR 3 Features • S and NSV Prefix for Automotive and Other Applications Requiring • Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant 1 BASE 2 EMITTER MAXIMUM RATINGS Rating Symbol Collector-Emitter Voltage Value Unit VCEO V 65 45 30 BC846 BC847 BC848 3 1 SC−70/SOT−323 CASE 419 STYLE 3 2 Collector-Base Voltage VCBO 80 50 30 BC846 BC847 BC848 Emitter-Base Voltage V MARKING DIAGRAM VEBO 6.0 6.0 5.0 BC846 BC847 BC848 Collector Current − Continuous V IC 100 mAdc Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. THERMAL CHARACTERISTICS Characteristic Total Device Dissipation FR− 5 Board, (Note 1) TA = 25°C Thermal Resistance, Junction−to−Ambient Junction and Storage Temperature Symbol Max Unit PD 200 mW RqJA 620 °C/W TJ, Tstg −55 to +150 °C XX MG G XX = Specific Device Code M = Month Code G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 12 of this data sheet. 1. FR−5 = 1.0 x 0.75 x 0.062 in. © Semiconductor Components Industries, LLC, 2015 April, 2015 − Rev. 12 1 Publication Order Number: BC846AWT1/D BC846, BC847, BC848 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS Collector −Emitter Breakdown Voltage (IC = 10 mA) BC846 Series BC847 Series BC848 Series V(BR)CEO 65 45 30 − − − − − − V Collector −Emitter Breakdown Voltage (IC = 10 mA, VEB = 0) BC846 Series BC847 Series BC848 Series V(BR)CES 80 50 30 − − − − − − V Collector −Base Breakdown Voltage (IC = 10 mA) BC846 Series BC847 Series BC848 Series V(BR)CBO 80 50 30 − − − − − − V Emitter −Base Breakdown Voltage (IE = 1.0 mA) BC846 Series BC847 Series BC848 Series V(BR)EBO 6.0 6.0 5.0 − − − − − − V ICBO − − − − 15 5.0 nA mA hFE − − − 90 150 270 − − − − 110 200 420 180 290 520 220 450 800 Collector Cutoff Current (VCB = 30 V) (VCB = 30 V, TA = 150°C) ON CHARACTERISTICS DC Current Gain (IC = 10 mA, VCE = 5.0 V) BC846A, BC847A, BC848A BC846B, BC847B, BC848B BC847C, BC848C (IC = 2.0 mA, VCE = 5.0 V) BC846A, BC847A, BC848A BC846B, BC847B, BC848B BC847C, BC848C Collector −Emitter Saturation Voltage (IC = 10 mA, IB = 0.5 mA) Base −Emitter Saturation Voltage (IC = 100 mA, IB = 5.0 mA) VCE(sat) − − − − 0.25 0.6 V Base −Emitter Saturation Voltage (IC = 10 mA, IB = 0.5 mA) Base −Emitter Saturation Voltage (IC = 100 mA, IB = 5.0 mA) VBE(sat) − − 0.7 0.9 − − V Base −Emitter Voltage (IC = 2.0 mA, VCE = 5.0 V) Base −Emitter Voltage (IC = 10 mA, VCE = 5.0 V) VBE(on) 580 − 660 − 700 770 mV fT 100 − − MHz Cobo − − 4.5 pF NF − − 10 dB SMALL−SIGNAL CHARACTERISTICS Current −Gain − Bandwidth Product (IC = 10 mA, VCE = 5.0 Vdc, f = 100 MHz) Output Capacitance (VCB = 10 V, f = 1.0 MHz) Noise Figure (IC = 0.2 mA, VCE = 5.0 Vdc, RS = 2.0 kW, f = 1.0 kHz, BW = 200 Hz) www.onsemi.com 2 BC846, BC847, BC848 BC846A, BC847A, BC848A 300 300 VCE = 1 V 200 25°C −55°C 100 VCE = 5 V 150°C hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 150°C 0 200 25°C 100 −55°C 0 0.001 0.01 0.1 1 0.001 0.01 1 0.1 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) Figure 1. DC Current Gain vs. Collector Current Figure 2. DC Current Gain vs. Collector Current VCE(sat), COLLECTOR−EMITTER SATURATION VOLTAGE (V) 0.18 0.16 IC/IB = 20 150°C 0.14 0.12 25°C 0.10 0.08 0.06 −55°C 0.04 0.02 0 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) Figure 3. Collector Emitter Saturation Voltage vs. Collector Current 0.9 VBE(on), BASE−EMITTER VOLTAGE (V) VBE(sat), BASE−EMITTER SATURATION VOLTAGE (V) 1.0 −55°C IC/IB = 20 0.8 25°C 0.7 0.6 150°C 0.5 0.4 0.3 0.2 0.0001 0.001 0.01 0.1 1.2 VCE = 5 V 1.1 1.0 −55°C 0.9 0.8 25°C 0.7 0.6 150°C 0.5 0.4 0.3 0.2 0.0001 IC, COLLECTOR CURRENT (A) 0.001 0.01 IC, COLLECTOR CURRENT (A) Figure 4. Base Emitter Saturation Voltage vs. Collector Current Figure 5. Base Emitter Voltage vs. Collector Current www.onsemi.com 3 0.1 BC846, BC847, BC848 BC846A, BC847A, BC848A 1.0 θVB, TEMPERATURE COEFFICIENT (mV/ °C) VCE , COLLECTOR-EMITTER VOLTAGE (V) 2.0 TA = 25°C 1.6 IC = 200 mA 1.2 IC = IC = 10 mA 20 mA IC = 50 mA IC = 100 mA 0.8 0.4 0 0.02 10 0.1 1.0 IB, BASE CURRENT (mA) -55°C to +125°C 1.2 1.6 2.0 2.4 2.8 20 10 C, CAPACITANCE (pF) 5.0 TA = 25°C Cib 3.0 Cob 2.0 1.0 0.4 0.6 0.8 1.0 2.0 20 4.0 6.0 8.0 10 VR, REVERSE VOLTAGE (VOLTS) 100 Figure 7. Base−Emitter Temperature Coefficient 40 f, T CURRENT-GAIN - BANDWIDTH PRODUCT (MHz) Figure 6. Collector Saturation Region 7.0 10 1.0 IC, COLLECTOR CURRENT (mA) 0.2 Figure 8. Capacitances 400 300 200 VCE = 10 V TA = 25°C 100 80 60 40 30 20 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 IC, COLLECTOR CURRENT (mAdc) 30 Figure 9. Current−Gain − Bandwidth Product www.onsemi.com 4 50 BC846, BC847, BC848 BC846B 600 VCE = 1 V 150°C 500 400 hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 600 25°C 300 −55°C 200 100 0 VCE = 5 V 150°C 500 400 25°C 300 200 −55°C 100 0 0.001 0.01 0.1 1 0.001 0.01 1 0.1 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) Figure 10. DC Current Gain vs. Collector Current Figure 11. DC Current Gain vs. Collector Current VCE(sat), COLLECTOR−EMITTER SATURATION VOLTAGE (V) 0.30 IC/IB = 20 150°C 0.25 0.20 25°C 0.15 0.10 −55°C 0.05 0 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) Figure 12. Collector Emitter Saturation Voltage vs. Collector Current 1.0 IC/IB = 20 VBE(on), BASE−EMITTER VOLTAGE (V) VBE(sat), BASE−EMITTER SATURATION VOLTAGE (V) 1.1 −55°C 0.9 25°C 0.8 0.7 150°C 0.6 0.5 0.4 0.3 0.2 0.0001 0.001 0.01 0.1 1.2 VCE = 5 V 1.1 1.0 −55°C 0.9 0.8 25°C 0.7 0.6 150°C 0.5 0.4 0.3 0.2 0.0001 IC, COLLECTOR CURRENT (A) 0.001 0.01 IC, COLLECTOR CURRENT (A) Figure 13. Base Emitter Saturation Voltage vs. Collector Current Figure 14. Base Emitter Voltage vs. Collector Current www.onsemi.com 5 0.1 BC846, BC847, BC848 2.0 1.0 θVB, TEMPERATURE COEFFICIENT (mV/ °C) VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) BC846B TA = 25°C 1.6 20 mA 50 mA 100 mA 200 mA 1.2 IC = 10 mA 0.8 0.4 0 0.02 0.05 0.1 0.2 0.5 1.0 2.0 IB, BASE CURRENT (mA) 5.0 10 1.4 1.8 qVB for VBE 2.6 3.0 20 0.2 Figure 15. Collector Saturation Region f, T CURRENT-GAIN - BANDWIDTH PRODUCT C, CAPACITANCE (pF) TA = 25°C 20 Cib 10 6.0 2.0 Cob 0.1 0.2 1.0 2.0 10 20 0.5 5.0 VR, REVERSE VOLTAGE (VOLTS) 50 0.5 10 20 50 1.0 2.0 5.0 IC, COLLECTOR CURRENT (mA) 100 200 Figure 16. Base−Emitter Temperature Coefficient 40 4.0 -55°C to 125°C 2.2 VCE = 5 V TA = 25°C 500 200 100 50 20 1.0 5.0 10 50 100 IC, COLLECTOR CURRENT (mA) 100 Figure 17. Capacitance Figure 18. Current−Gain − Bandwidth Product www.onsemi.com 6 BC846, BC847, BC848 BC847B, BC848B 600 VCE = 1 V 150°C 500 hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 600 400 25°C 300 −55°C 200 100 0 VCE = 5 V 150°C 500 400 25°C 300 200 −55°C 100 0 0.001 0.01 0.1 1 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) Figure 19. DC Current Gain vs. Collector Current Figure 20. DC Current Gain vs. Collector Current VCE(sat), COLLECTOR−EMITTER SATURATION VOLTAGE (V) 0.30 IC/IB = 20 0.25 150°C 0.20 25°C 0.15 0.10 −55°C 0.05 0 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) Figure 21. Collector Emitter Saturation Voltage vs. Collector Current VBE(sat), BASE−EMITTER SATURATION VOLTAGE (V) 1.0 IC/IB = 20 VBE(on), BASE−EMITTER VOLTAGE (V) 1.1 −55°C 0.9 25°C 0.8 0.7 150°C 0.6 0.5 0.4 0.3 0.2 0.0001 0.001 0.01 0.1 1.2 VCE = 5 V 1.1 1.0 0.9 −55°C 0.8 25°C 0.7 0.6 150°C 0.5 0.4 0.3 0.2 0.0001 IC, COLLECTOR CURRENT (A) 0.001 0.01 IC, COLLECTOR CURRENT (A) Figure 22. Base Emitter Saturation Voltage vs. Collector Current Figure 23. Base Emitter Voltage vs. Collector Current www.onsemi.com 7 0.1 BC846, BC847, BC848 BC847B, BC848B 1.0 θVB, TEMPERATURE COEFFICIENT (mV/ °C) VCE , COLLECTOR-EMITTER VOLTAGE (V) 2.0 TA = 25°C 1.6 IC = 200 mA 1.2 IC = IC = 10 mA 20 mA IC = 50 mA IC = 100 mA 0.8 0.4 0 0.02 10 0.1 1.0 IB, BASE CURRENT (mA) -55°C to +125°C 1.2 1.6 2.0 2.4 2.8 20 10 C, CAPACITANCE (pF) 5.0 TA = 25°C Cib 3.0 Cob 2.0 1.0 0.4 0.6 0.8 1.0 2.0 20 4.0 6.0 8.0 10 VR, REVERSE VOLTAGE (VOLTS) 100 Figure 25. Base−Emitter Temperature Coefficient 40 f, T CURRENT-GAIN - BANDWIDTH PRODUCT (MHz) Figure 24. Collector Saturation Region 7.0 10 1.0 IC, COLLECTOR CURRENT (mA) 0.2 Figure 26. Capacitances 400 300 200 VCE = 10 V TA = 25°C 100 80 60 40 30 20 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 IC, COLLECTOR CURRENT (mAdc) 30 Figure 27. Current−Gain − Bandwidth Product www.onsemi.com 8 50 BC846, BC847, BC848 BC847C, BC848C 1000 1000 150°C VCE = 1 V 700 25°C 600 VCE = 5 V 900 150°C 800 hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 900 500 400 −55°C 300 200 100 800 700 600 25°C 500 400 −55°C 300 200 100 0 0 0.001 0.01 1 0.1 0.001 0.01 1 0.1 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) Figure 28. DC Current Gain vs. Collector Current Figure 29. DC Current Gain vs. Collector Current VCE(sat), COLLECTOR−EMITTER SATURATION VOLTAGE (V) 0.30 IC/IB = 20 0.25 150°C 0.20 25°C 0.15 0.10 −55°C 0.05 0 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) Figure 30. Collector Emitter Saturation Voltage vs. Collector Current VBE(sat), BASE−EMITTER SATURATION VOLTAGE (V) 1.0 IC/IB = 20 VBE(on), BASE−EMITTER VOLTAGE (V) 1.1 −55°C 0.9 25°C 0.8 0.7 150°C 0.6 0.5 0.4 0.3 0.2 0.0001 0.001 0.01 0.1 1.2 VCE = 5 V 1.1 1.0 −55°C 0.9 0.8 25°C 0.7 0.6 150°C 0.5 0.4 0.3 0.2 0.0001 IC, COLLECTOR CURRENT (A) 0.001 0.01 IC, COLLECTOR CURRENT (A) Figure 31. Base Emitter Saturation Voltage vs. Collector Current Figure 32. Base Emitter Voltage vs. Collector Current www.onsemi.com 9 0.1 BC846, BC847, BC848 BC847C, BC848C 1.0 θVB, TEMPERATURE COEFFICIENT (mV/ °C) VCE , COLLECTOR-EMITTER VOLTAGE (V) 2.0 TA = 25°C 1.6 IC = 200 mA 1.2 IC = IC = 10 mA 20 mA IC = 50 mA IC = 100 mA 0.8 0.4 0 0.02 10 0.1 1.0 IB, BASE CURRENT (mA) -55°C to +125°C 1.2 1.6 2.0 2.4 2.8 20 10 C, CAPACITANCE (pF) 5.0 TA = 25°C Cib 3.0 Cob 2.0 1.0 0.4 0.6 0.8 1.0 2.0 20 4.0 6.0 8.0 10 VR, REVERSE VOLTAGE (VOLTS) 100 Figure 34. Base−Emitter Temperature Coefficient 40 f, T CURRENT-GAIN - BANDWIDTH PRODUCT (MHz) Figure 33. Collector Saturation Region 7.0 10 1.0 IC, COLLECTOR CURRENT (mA) 0.2 Figure 35. Capacitances 400 300 200 VCE = 10 V TA = 25°C 100 80 60 40 30 20 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 IC, COLLECTOR CURRENT (mAdc) 30 Figure 36. Current−Gain − Bandwidth Product www.onsemi.com 10 50 BC846, BC847, BC848 1 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 1 100 mS 10 mS 1 mS 1S 0.1 Thermal Limit 0.01 100 mS 10 mS 1 mS 0.1 1S Thermal Limit 0.01 0.001 0.001 1 10 0.1 100 1 10 VCE, COLLECTOR EMITTER VOLTAGE (V) VCE, COLLECTOR EMITTER VOLTAGE (V) Figure 37. Safe Operating Area for BC846A, BC846B Figure 38. Safe Operating Area for BC847A, BC847B, BC847C IC, COLLECTOR CURRENT (A) 1 100 mS 10 mS 1 mS 1S 0.1 Thermal Limit 0.01 0.001 0.1 1 10 VCE, COLLECTOR EMITTER VOLTAGE (V) Figure 39. Safe Operating Area for BC848A, BC848B, BC848C www.onsemi.com 11 100 100 BC846, BC847, BC848 DEVICE ORDERING AND SPECIFIC MARKING INFORMATION Device Specific Marking Code Package Shipping† BC846BWT1G 1B 3,000 / Tape & Reel 1E 3,000 / Tape & Reel 1F 3,000 / Tape & Reel SBC846BWT1G* BC847AWT1G SBC847AWT1G* BC847BWT1G SBC847BWT1G* SC−70 (SOT−323) (Pb−Free) BC847CWT1G SBC847CWT1G* 1G 3,000 / Tape & Reel BC847CWT3G SBC847CWT3G* 1G 10,000 / Tape & Reel BC848BWT1G NSVBC848BWT1G* BC848CWT1G 1K 3,000 / Tape & Reel 1L †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable. www.onsemi.com 12 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SC−70 (SOT−323) CASE 419 ISSUE R DATE 11 OCT 2022 SCALE 4:1 GENERIC MARKING DIAGRAM XX MG G 1 XX M G = Specific Device Code = Date Code = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. STYLE 1: CANCELLED STYLE 6: PIN 1. EMITTER 2. BASE 3. COLLECTOR DOCUMENT NUMBER: DESCRIPTION: STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE STYLE 7: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 8: PIN 1. GATE 2. SOURCE 3. DRAIN STYLE 9: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE STYLE 10: PIN 1. CATHODE 2. ANODE 3. ANODE-CATHODE 98ASB42819B SC−70 (SOT−323) STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
BC848CWT1G 价格&库存

很抱歉,暂时无法提供与“BC848CWT1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货