0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BUL642D2G

BUL642D2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT78

  • 描述:

    TRANS NPN 440V 3A TO-220AB

  • 详情介绍
  • 数据手册
  • 价格&库存
BUL642D2G 数据手册
BUL642D2 High Speed, High Gain Bipolar NPN Transistor with Integrated Collector−Emitter and Built−in Efficient Antisaturation Network The BUL642D2 is a state−of−the−art High Speed High Gain Bipolar Transistor (H2BIP). Tight dynamic characteristics and lot to lot minimum spread (150 ns on storage time) make it ideally suitable for Light Ballast Application. A new development process brings avalanche energy capability, making the device extremely rugged. Features http://onsemi.com 3 AMPERES 825 VOLTS 75 WATTS POWER TRANSISTOR • Low Base Drive Requirement • High Peak DC Current Gain (55 Typical) @ IC = 300 mA/5 V • Extremely Low Storage Time Min/Max Guarantees Due to the • • • • • H2BIP Structure which Minimizes the Spread Integrated Collector−Emitter Free Wheeling Diode Fully Characterized Dynamic VCEsat “Six Sigma” Process Providing Tight and Reproducible Parameter Spreads Avalanche Energy 20 mJ Typical Capability Pb−Free Package is Available* MARKING DIAGRAM 4 TO−220AB CASE 221A STYLE 1 1 2 BUL642D2G AYWW 3 BUL642D2 A Y WW G = Device Code = Assembly Location = Year = Work Week = Pb−Free Package ORDERING INFORMATION Device BUL642D2 BUL642D2G Package TO−220 TO−220 (Pb−Free) Shipping 50 Units/Rail 50 Units/Rail *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. 1 © Semiconductor Components Industries, LLC, 2005 August, 2005 − Rev. 1 Publication Order Number: BUL642D2/D BUL642D2 MAXIMUM RATINGS Rating Collector−Emitter Sustaining Voltage Collector−Base Breakdown Voltage Emitter−Base Voltage Collector Current Base Current − Continuous − Peak (Note 1) − Continuous − Peak (Note 1) Symbol VCEO VCES VEBO IC ICM IB IBM PD TJ, Tstg Value 440 825 11 3.0 8.0 2.0 4.0 75 0.6 −65 to +150 Unit Vdc Vdc Vdc Adc Adc W W/°C °C *Total Device Dissipation @ TC = 25°C *Derate above 25°C Operating and Storage Temperature Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. TYPICAL GAIN Rating Typical Gain @ IC = 1 A, VCE = 2 V Typical A, VCE = 1 V Symbol hFE hFE Value 45 50 Unit − − THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction−to−Case Thermal Resistance, Junction−to−Ambient Maximum Lead Temperature for Soldering Purposes: 1/8 in. from Case for 5 seconds 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10% Symbol RqJC RqJA TL Value 1.6 62.5 260 Unit °C/W °C/W °C http://onsemi.com 2 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î Î Î Î ÎÎÎ Î Î Î Î Î ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎ Î ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎ Î Î Î ÎÎÎÎ Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î ÎÎÎÎ Î ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ Î Î Î Î Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î Î Î Î Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î Î Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎÎ Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î Î ÎÎ Î Î ÎÎ Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î DYNAMIC CHARACTERISTICS DYNAMIC SATURATION VOLTAGE ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 70 ms) DIODE CHARACTERISTICS ON CHARACTERISTICS OFF CHARACTERISTICS Input Capacitance @ VEB = 8 V, f = 1 MHz Output Capacitance @ Vcb = 10 V, IE = 0, f = 1 MHz Current Gain Bandwidth IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz Fall Time Storage Time Rise Time Delay Time Forward Diode Voltage Dynamic Saturation Voltage: DC Current Gain Collector−Emitter Saturation Voltage Base−Emitter Saturation Voltage Emitter−Cutoff Current Collector Cutoff Current Collector Cutoff Current Emitter−Base Breakdown Voltage Collector−Base Breakdown Voltage Collector−Emitter Sustaining Voltage IC = 1 Adc IB1 = 100 mAdc VCC = 300 Vdc IC = 0.5 Adc IB1 = 50 mAdc VCC = 125 Vdc (VCE = Rated VCES, VEB = 0) (VCE = Rated VCEO, IB = 0) Characteristic @ 3 ms @ 1 ms @ 3 ms @ 1 ms (IC = 0.5 Adc, IB = 100 mAdc (IC = 1 Adc, IB = 0.2 Adc) (IC = 0.5 Adc, IB = 50 mAdc) (IC = 2 Adc, IB = 0.2 Adc) (IC = 0.5 Adc, VCE = 1 Vdc) (IC = 0.5 Adc, VCE = 3 Vdc) (IC = 200 mA, L = 25 mH) (VEB = 10 Vdc, IC = 0) http://onsemi.com @ TC = 25°C @ TC = 25°C @ TC = 125°C @ TC = 25°C @ TC = 25°C @ TC = 125°C @ TC = 25°C @ TC = 125°C @ TC = 25°C @ TC = 125°C BUL642D2 IB2 = 500 mA (IEC = 0.5 Adc) (IEC = 1.0 Adc) VCC = 125 V IC = 0.5 Adc IB1 = 45 mA (ICBO = 1 mA) (IEBO = 1 mA) 3 VCEO(sus) VCE(dsat) Symbol VCE(sat) VBE(sat) VCBO VEBO ICEO IEBO ICES VEC Cob hFE Cib fT td ts tr tf Min 825 440 16 18 11 − − − − − − − − − − − − − − − − − − − − − − − − − − Typ 160 500 0.4 0.5 0.8 1.0 1.0 3.0 4.5 10 0.2 1.3 2.0 5.0 60 70 13 − − − − − − − − − − − − − − 100 1000 200 1000 1400 1100 Max 400 100 150 1.5 2.0 0.5 1.5 1.1 1.5 − − − − − − − − − − − − − − 1000 600 mAdc mAdc mAdc MHz Unit Vdc Vdc Vdc Vdc Vdc pF pF ns ns ns V − V ms BUL642D2 100 100 hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 10 −20°C 25°C 125°C −20°C 10 25°C 125°C VCE = 5 V 1.0 0.01 0.1 1 10 VCE = 5 V 1.0 0.01 0.1 1 10 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 1. DC Current Gain Figure 2. DC Current Gain 10 IC = 2A VCE(sat), VOLTAGE (V) IC = 4 A VCE(sat), VOLTAGE (V) IC = 5 A IC = 1 A 10 1.0 125°C 1.0 −20°C 0.1 IC = 3 A IC = 500 mA 25°C 0.01 0.01 IC/IB = 5.0 0.1 1 10 0.1 0.01 0.1 1.0 10 IB, BASE CURRENT (mA) IC, COLLECTOR CURRENT (AMP) Figure 3. Collector Saturation Region Figure 4. Collector−Emitter Saturation Voltage 10 10 VCE, VOLTAGE (V) 25°C 125°C −20°C VCE, VOLTAGE (V) 1.0 1.0 125°C IC/IB = 10 0.1 0.01 0.1 1.0 10 0.1 0.01 −20°C 0.1 25°C 1.0 IC/IB = 20 10 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 5. Collector−Emitter Saturation Voltage http://onsemi.com 4 Figure 6. Collector−Emitter Saturation Voltage BUL642D2 10 10 Vbe, VOLTAGE (V) Vbe, VOLTAGE (V) −20°C 1.0 −20°C 1.0 25°C 0.1 125°C 25°C IC/IB = 5.0 0.1 0.01 125°C IC/IB = 10 0.01 0.01 0.1 1.0 10 0.1 1.0 10 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 7. Base−Emitter Saturation Voltage Figure 8. Base−Emitter Saturation Voltage 10 FORWARD DIODES VOLTAGE (V) 10 −20°C Vbe, VOLTAGE (V) 1.0 1.0 25°C 0.1 125°C 25°C 125°C IC/IB = 20 0.01 0.01 0.1 0.1 1.0 10 0.01 0.1 1.0 10 IC, COLLECTOR CURRENT (AMP) REVERSE EMITTER−COLLECTOR (AMP) Figure 9. Base−Emitter Saturation Voltage Figure 10. Forward Diode Voltage 1000 Cib C, CAPACITANCE (pF) 10000 Ib2 = IC/2 @ 125°C 1000 100 Cob T, TIME (mS) Ib2 = IC @ 125°C 100 Ib2 = IC @ 25°C Ib2 = IC/2 @ 25°C VCC = 125 V, Pw = 100 mS, G = 10 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 10 1.0 10 10 100 Vr, REVERSE VOLTAGE (V) Figure 11. Capacitance http://onsemi.com 5 Figure 12. Resistive Switch Time, Storage Time TON BUL642D2 3.0 VCC = 125 V, Pw = 100 mS, G = 10 650 Ib2 = IC/2 @ 125°C T, TIME (mS) T, TIME (mS) 2.0 550 450 350 I = I /2 @ 25°C 250 b2 C 150 0 0.1 Ib2 = IC @ 25°C 0.3 0.5 0.7 0.9 1.1 1.3 1.5 50 Ib2 = IC @ 125°C 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 Ib2 = IC @ 25°C 750 Ib2 = IC/2 @ 125°C VCC = 125 V, Pw = 100 mS, G = 10 Ib2 = IC @ 125°C 1.0 Ib2 = IC/2 @ 25°C IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) Figure 13. Resistive Switch Time, Storage Time Figure 14. Resistive Switch Time, Fall Time 100 IC, COLLECTOR CURRENT (AMPS) 10 ms POWER DERATING FACTOR 1.0 SECOND BREAKDOWN DERATING 10 5 ms 1 ms 1 ms 0.8 1.0 DC 0.6 0.4 0.1 0.2 THERMAL DERATING 0 0.01 10 100 VCE, COLLECTOR−EMITTER VOLTAGE (V) 1000 20 40 60 80 100 120 140 160 TC, CASE TEMPERATURE (°C) Figure 15. Figure 16. Power Derating There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC−VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on TC = 25°C; Tj(pk) is variable depending on power level. Second breakdown pulse limits do not derate like thermal limitations. Allowable current at the voltages shown on Figure 10 may be found at any case temperature by using the appropriate curve on Figure 16. Tj(pk) may be calculated from the data in Figure 18. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. http://onsemi.com 6 BUL642D2 Energy VCE IC NPD CHARACTERIZATION LAB Figure 17. Typical Avalanche Energy Test/Waveforms 1 b r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED) 0.1 P(pk) t2 DUTY CYCLE, D = t1/t2 0.01 0.01 0.1 1 t, TIME (ms) 10 t1 RqJC(t) = r(t) RqJC RqJC = 5 °C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 100 1000 Figure 18. Thermal Response http://onsemi.com 7 BUL642D2 PACKAGE DIMENSIONS TO−220 CASE 221A−09 ISSUE AA −T− B 4 SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. DIM A B C D F G H J K L N Q R S T U V Z INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 −−− −−− 0.080 BASE COLLECTOR EMITTER COLLECTOR MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 −−− −−− 2.04 F T S C Q 123 A U K H Z L V G D N R J STYLE 1: PIN 1. 2. 3. 4. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. http://onsemi.com 8 BUL642D2/D
BUL642D2G
1. 物料型号: - 型号:BUL642D2 - 制造商:ON Semiconductor

2. 器件简介: - BUL642D2是一款高速、高增益双极型晶体管(H2BIP)。 - 特点是紧密的动态特性和最小批量分布(存储时间在150纳秒)。 - 适用于镇流器应用,具有新的开发流程,带来雪崩能量能力,使器件非常坚固。

3. 引脚分配: - 根据提供的标记图,有三个引脚:1为基极,2为发射极,3为集电极。

4. 参数特性: - 最大额定值:包括440Vdc的VCEO、825Vdc的VCES、11Vdc的VEBO、3A的Ic(连续)、8A的ICM(峰值)、2A的IB(连续)、4A的IBM(峰值)等。 - 热特性:包括1.6°C/W的RBJC和62.5°C/W的RBJA。 - 电特性:包括VCEO(sus)、VCBO、VEBO、ICEO、ICES、EBO、VBE(sat)、VCE(sat)、hFE等。

5. 功能详解: - 低基极驱动要求、高峰值直流电流增益(典型值为55,IC = 300 mA/5 V)、极短的存储时间最小/最大保证。 - 集成的集电-发射自由轮二极管、全特性动态VCEsat、“六西格玛”流程提供的紧密和可复现的参数分布。 - 雪崩能量20mJ典型能力、无铅封装可用。

6. 应用信息: - 主要应用于镇流器应用。

7. 封装信息: - 封装类型为TO-220AB案例221A风格1。 - 订购信息:BUL642D2 TO-220 50 Units/Rail、BUL642D2G TO-220 50 Units/Rail(无铅)。
BUL642D2G 价格&库存

很抱歉,暂时无法提供与“BUL642D2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货