MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by BUV48/D
SWITCHMODE II Series NPN Silicon Power Transistors
The BUV48/BUV48A transistors are designed for high–voltage, high–speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line–operated switchmode applications such as: • • • • • Switching Regulators Inverters Solenoid and Relay Drivers Motor Controls Deflection Circuits
BUV48 BUV48A
15 AMPERES NPN SILICON POWER TRANSISTORS 400 AND 450 VOLTS V(BR)CEO 850 – 1000 VOLTS V(BR)CEX 150 WATTS
Fast Turn–Off Times 60 ns Inductive Fall Time — 25_C (Typ) 120 ns Inductive Crossover Time — 25_C (Typ) Operating Temperature Range – 65 to + 175_C 100_C Performance Specified for: Reverse–Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltage Leakage Currents (125_C)
CASE 340D–02 TO–218 TYPE
ÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎ Î ÎÎ Î Î ÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ Î ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ Î ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Rating Symbol BUV48 400 850 BUV48A 450 Unit Vdc Vdc Vdc Adc Collector–Emitter Voltage VCEO(sus) VCEX VEB IC ICM IOI IB IBM PD Collector–Emitter Voltage (VBE = –1.5 V) Emitter Base Voltage 1000 7 Collector Current — Continuous — Peak (1) — Overload Base Current — Continuous — Peak (1) 15 30 60 5 20 Adc Total Power Dissipation — TC = 25_C — TC = 100_C Derate above 25_C 150 75 1 Watts W/_C Operating and Storage Junction Temperature Range TJ, Tstg – 65 to + 175
_C
THERMAL CHARACTERISTICS
Characteristic
Symbol RθJC TL
Max 1
Unit
Thermal Resistance, Junction to Case
_C/W _C
Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds
275
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle
v 10%.
SWITCHMODE is a trademark of Motorola, Inc.
REV 8
© Motorola, Inc. 1996 Motorola Bipolar Power Transistor Device Data
1
Î Î ÎÎ Î Î Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î Î Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î Î Î ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎ ÎÎÎ Î Î Î Î ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎ ÎÎÎ Î Î Î Î ÎÎÎÎÎ ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î Î Î Î Î ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Î ÎÎÎ Î Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î ÎÎ ÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î Î Î ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ Î Î Î Î ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ Î Î Î Î ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ Î ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
BUV48 BUV48A
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle Vcl = 300 V, VBE(off) = 5 V, Lc = 180 µH Inductive Load, Clamped (Table 1) SWITCHING CHARACTERISTICS Resistive Load (Table 1) DYNAMIC CHARACTERISTICS ON CHARACTERISTICS (1) SECOND BREAKDOWN OFF CHARACTERISTICS (1)
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
Fall Time
Crossover Time
Storage Time
Fall Time
Storage Time
Fall Time
Storage Time
Rise Time
Delay Time
Output Capacitance (VCB = 10 Vdc, IE = 0, ftest = 1 MHz)
Base–Emitter Saturation Voltage (IC = 10 Adc, IB = 2 Adc) (IC = 10 Adc, IB = 2 Adc, TC = 100_C) (IC = 8 Adc, IB = 1.6 Adc) (IC = 8 Adc, IB = 1.6 Adc, TC = 100_C)
Collector–Emitter Saturation Voltage (IC = 10 Adc, IB = 2 Adc) (IC = 15 Adc, IB = 3 Adc) (IC = 10 Adc, IB = 2 Adc, TC = 100_C) (IC = 8 Adc, IB = 1.6 Adc) (IC = 12 Adc, IB = 2.4 Adc) (IC = 8 Adc, IB = 1.6 Adc, TC = 100_C)
DC Current Gain (IC = 10 Adc, VCE = 5 Vdc) (IC = 8 Adc, VCE = 5 Vdc)
Clamped Inductive SOA with Base Reverse Biased
Second Breakdown Collector Current with Base Forward Biased
Emitter–Base Breakdown Voltage (IE = 50 mA – IC = 0)
Emitter Cutoff Current (VEB = 5 Vdc, IC = 0)
Collector Cutoff Current (V (VCE = Rated VCEX, RBE = 10 Ω)
Collector Cutoff Current (VCEX = Rated Value, VBE(off) = 1.5 Vdc) (VCEX = Rated Value, VBE(off) = 1.5 Vdc, TC = 125_C)
Collector–Emitter Sustaining Voltage (Table 1) (I (IC = 200 mA, IB = 0) L = 25 mH mA, mH BUV48 BUV48
2
IC = 10 A, IB, = 2 A 10 IC = 8 A, IB, = 1.6 A , Duty Cycle 2%, VBE(off) = 5 V Tp = 30 µs, VCC = 300 V 30 300 IC = 8 A IB1 = 1.6 A IC = 10 A IB1 = 2 A Characteristic
v
BUV48
BUV48A
v 2%.
BUV48A
BUV48A
BUV48
BUV48
BUV48 BUV48A
TC = 25_C TC = 125_C
BUV48A
BUV48 BUV48A
(TC = 100_C)
(TC = 25_C) 25
VCEO(sus)
V(BR)EBO
VCE(sat)
VBE(sat)
Symbol
RBSOA
Motorola Bipolar Power Transistor Device Data
IEBO ICER ICEX Cob hFE IS/b tsv tsv td tfi tfi tr tf tc ts Min 400 400 450 — — — — — — — — — — 8 8 7 — — — — — — — — — — — — — — — See Figure 13 See Figure 12 0.17 0.06 Typ 0.3 1.5 1.3 0.2 1.3 0.4 0.1 — — — — — — — — — — — — — — — — — — — — — 0.35 Max 350 0.6 2.5 0.4 0.7 0.2 1.6 1.6 1.6 1.6 1.5 5 2 1.5 5 2 0.1 0.2 2 — — — — — — — 2 0.5 0.5 3 mAdc mAdc mAdc Unit Vdc Vdc Vdc Vdc pF µs µs
BUV48 BUV48A
DC CHARACTERISTICS
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
50 30 hFE, DC CURRENT GAIN 20 10% 10 7 5 3 2 VCE = 5 V 1 1 2 3 5 8 10 20 IC, COLLECTOR CURRENT (AMPS) 30 50 90%
10 5 3 7.5 A IC = 5 A 1 0.5 0.3 TC = 25°C 0.1 0.1 1 0.3 0.5 IB, BASE CURRENT (AMPS) 2 3 4 10 A 15 A
Figure 1. DC Current Gain
Figure 2. Collector Saturation Region
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
5 3 2 1 0.7 0.5 0.3 0.2 0.1
90% 10%
VBE, BASE–EMITTER VOLTAGE (VOLTS)
βf = 5
βf = 5 2 1 0.7 0.5 0.3 TJ = 25°C TJ = 100°C
1
2
3
5
7
10
20
30
50
0.1
0.3
1
3
10
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 3. Collector–Emitter Saturation Voltage
Figure 4. Base–Emitter Voltage
104 VCE = 250 V IC, COLLECTOR CURRENT ( µA) 103 TJ = 150°C 102 101 125°C 100°C 75°C 100 25°C 10–1 – 0.4 – 0.2 0 0.2 0.4 VBE, BASE–EMITTER VOLTAGE (VOLTS) 0.6 REVERSE FORWARD C, CAPACITANCE (pF)
10 k Cib
1k
100
Cob
TJ = 25°C 10 1 10 100 VR, REVERSE VOLTAGE (VOLTS) 1000
Figure 5. Collector Cutoff Region
Figure 6. Capacitance
Motorola Bipolar Power Transistor Device Data
3
BUV48 BUV48A
Table 1. Test Conditions for Dynamic Performance
VCEO(sus) RBSOA AND INDUCTIVE SWITCHING RESISTIVE SWITCHING
INPUT CONDITIONS
33 2W +10 V 20 0 2 PULSES δ = 3% PW Varied to Attain IC = 200 mA 680 pF 100 33 2W 1 220 100 MM3735
D1 160
22 µF D3
+10 V 2N6438 MR854 2 IB1 Ib1 ADJUST 0.1 µF Ib2 ADJUST dTb ADJUST dT MR854 IB1 adjusted to obtain the forced hFE desired TURN–OFF TIME Use inductive switching driver as the input to the resistive test circuit. TURN–ON TIME 1
680 pF
22
D1 D2 D3 D4 1N4934 680 pF 2N3763 160 D3 0.22 µF 22 D4
2N6339 VCC
CIRCUIT VALUES
Lcoil = 25 mH, VCC = 10 V Rcoil = 0.7 Ω
Lcoil = 180 µH Rcoil = 0.05 Ω VCC = 20 V
Vclamp = 300 V RB ADJUSTED TO ATTAIN DESIRED IB1
VCC = 300 V RL = 83 Ω Pulse Width = 10 µs RESISTIVE TEST CIRCUIT
INDUCTIVE TEST CIRCUIT
OUTPUT WAVEFORMS IC t1 Adjusted to Obtain IC IC(pk) t1 VCE VCE or Vclamp TIME t2 tf tf Clamped t t1 ≈ t2 ≈ Lcoil (IC VCC Lcoil (IC pk VClamp ) pk )
TEST CIRCUITS
TUT 1 INPUT SEE ABOVE FOR DETAILED CONDITIONS 2 1N4937 OR EQUIVALENT Vclamp RS = 0.1 Ω
Rcoil Lcoil VCC
TUT 1 2 RL VCC
t
Test Equipment Scope — Tektronix 475 or Equivalent
IC pk 90% VCE(pk) IC tsv trv tc VCE IB 10% VCE(pk) 90% IB1
10 VCE(pk) IB2(pk) , BASE CURRENT (AMPS) 90% IC(pk) tfi tti 8 βf = 5 IC = 10 A
6
10% IC pk
4
2% IC
2
0 TIME
0
1
2
3
4
5
6
VBE(off), BASE–EMITTER VOLTAGE (VOLTS)
Figure 7. Inductive Switching Measurements
Figure 8. Peak–Reverse Current
4
Motorola Bipolar Power Transistor Device Data
BUV48 BUV48A
SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp trv = Voltage Rise Time, 10 – 90% Vclamp tfi = Current Fall Time, 90 – 10% IC tti = Current Tail, 10 – 2% IC tc = Crossover Time, 10% Vclamp to 10% IC An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN–222: PSWT = 1/2 VCCIC(tc) f In general, trv + tfi tc. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25_C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a “SWITCHMODE” transistor are the inductive switching speeds (tc and tsv) which are guaranteed at 100_C.
]
INDUCTIVE SWITCHING
5 3 2 TC = 100°C t, TIME ( µs) 1 0.7 0.5 0.3 0.2 βf = 5 0.1 1 2 10 20 5 3 7 IC, COLLECTOR CURRENT (AMPS) 30 50 t, TIME ( µs) TC = 25°C 1 0.5 0.3 0.2 0.1 0.05 0.03 0.02 βf = 5 0.01 1 2 3 5 7 10 20 IC, COLLECTOR CURRENT (AMPS) 30 50 tc tfi TC = 25°C
TC = 100°C TC = 100°C TC = 25°C
Figure 9. Storage Time, tsv
Figure 10. Crossover and Fall Times
3 2 1 0.5 t, TIME ( µs) 0.3 0.2 0.1 0.05 0.03 0.02 0.01 0 1
tsv
3 2 1 0.5 t, TIME ( µs) tsv
TC = 25°C IC = 10 A βf = 5 V
tc tfi TC = 25°C IC = 10 A VBE(off) = 5 V 2 3 4 5 6 βf, FORCED GAIN 7 8 9 10
0.3 0.2 0.1 0.05 0.03 0.02 0.01 0 1 2 3 4 5 Ib2/Ib1 6 7 8 9 10 tc tfi
Figure 11a. Turn–Off Times versus Forced Gain
Figure 11b. Turn–Off Times versus Ib2/Ib1
Motorola Bipolar Power Transistor Device Data
5
BUV48 BUV48A
The Safe Operating Area figures shown in Figures 12 and 13 are specified for these devices under the test conditions shown. 30 IC, COLLECTOR CURRENT (AMPS) 10 5 2 1 0.5 0.2 0.1 0.05 0.02 0.01 1 2 TC = 25°C LIMIT ONLY FOR TURN ON tr ≤ 0.7 µs 10 20 100 200 500 1000 5 50 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) DC 1 ms
SAFE OPERATING AREA INFORMATION
FORWARD BIAS There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 12 is based on TC = 25_C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 12 may be found at any case temperature by using the appropriate curve on Figure 14. TJ(pk) may be calculated from the data in Figure 11. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
v
Figure 12. Forward Bias Safe Operating Area
50
REVERSE BIAS
IC, COLLECTOR CURRENT (AMPS) 40
30 BUV48 20 VBE(off) = 5 V 10 TC = 100°C IC/IB ≥ 5 0 800 600 200 400 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) 1000 BUV48A
0
For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage current conditions during reverse biased turn–off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 13 gives RBSOA characteristics.
FIgure 13. Reverse Bias Safe Operating Area
100 POWER DERATING FACTOR (%) SECOND BREAKDOWN DERATING
80
60 THERMAL DERATING 40
20
0
0
40
80 120 TC, CASE TEMPERATURE (°C)
160
200
Figure 14. Power Derating
6
Motorola Bipolar Power Transistor Device Data
BUV48 BUV48A
1 r(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) 0.5 D = 0.5 0.2 0.2 0.1 0.1 0.05 0.05 0.02 0.01 0.02 0.01 0.02 0.05 SINGLE PULSE RθJC(t) = r(t) RθJC θJC = 1°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) – TC = P(pk) RθJC(t) 0.5 1 2 5 10 t, TIME (ms) 20 50 P(pk)
t2 DUTY CYCLE, D = t1/t2 100 200 500 1000 2000
t1
0.1
0.2
Figure 15. Thermal Response
OVERLOAD CHARACTERISTICS
100 IC, COLLECTOR CURRENT (AMPS) TC = 25°C 80 BUV48A
OLSOA
OLSOA applies when maximum collector current is limited and known. A good example is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. If the transistor is then turned off within a specified amount of time, the magnitude of collector current is also known. Maximum allowable collector–emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drive.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, Figure 16 defines the maximum time which can be allowed for fault detection and shutdown of base drive. OLSOA is measured in a common–base circuit (Figure 18) which allows precise definition of collector–emitter voltage and collector current. This is the same circuit that is used to measure forward–bias safe operating area.
60 tp = 10 µs BUV48
40
20
0
100 300 400 450 200 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
500
Figure 16. Rated Overload Safe Operating Area (OLSOA)
5
4
IC (AMP)
3 RBE = 2.2 Ω 2 RBE = 10 Ω
RBE = 100 Ω
500 µF 500 V Notes: • VCE = VCC + VBE • Adjust pulsed current source for desired IC, tp 10
VCC
1
RBE = 0
VEE
0
2
4 6 dV/dt (KV/µs)
8
Figure 17. IC = f(dV/dt)
Figure 18. Overload SOA Test Circuit
Motorola Bipolar Power Transistor Device Data
7
BUV48 BUV48A
PACKAGE DIMENSIONS
C B Q E
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. MILLIMETERS MIN MAX ––– 20.35 14.70 15.20 4.70 4.90 1.10 1.30 1.17 1.37 5.40 5.55 2.00 3.00 0.50 0.78 31.00 REF ––– 16.20 4.00 4.10 17.80 18.20 4.00 REF 1.75 REF INCHES MIN MAX ––– 0.801 0.579 0.598 0.185 0.193 0.043 0.051 0.046 0.054 0.213 0.219 0.079 0.118 0.020 0.031 1.220 REF ––– 0.638 0.158 0.161 0.701 0.717 0.157 REF 0.069
U S K L
1 2
4
A
3
D V G
J H
DIM A B C D E G H J K L Q S U V
STYLE 1: PIN 1. 2. 3. 4.
BASE COLLECTOR EMITTER COLLECTOR
CASE 340D–02 TO–218 TYPE ISSUE B
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
8
◊
Motorola Bipolar Power Transistor Device Data BUV48/D
*BUV48/D*