0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CAT24C64YI-G

CAT24C64YI-G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP-8

  • 描述:

    CAT24C64 - 64-KBIT I2C SERIAL EE

  • 数据手册
  • 价格&库存
CAT24C64YI-G 数据手册
64 Kb I2C CMOS Serial EEPROM CAT24C64 Description The CAT24C64 is a 64 Kb CMOS Serial EEPROM device, internally organized as 8192 words of 8 bits each. It features a 32−byte page write buffer and supports the Standard (100 kHz), Fast (400 kHz) and Fast−Plus (1 MHz) I2C protocol. External address pins make it possible to address up to eight CAT24C64 devices on the same bus. www.onsemi.com • • • • • • • • • • • Supports Standard, Fast and Fast−Plus I2C Protocol 1.7 V to 5.5 V Supply Voltage Range 32−Byte Page Write Buffer Hardware Write Protection for Entire Memory Schmitt Triggers and Noise Suppression Filters on I2C Bus Inputs (SCL and SDA) Low Power CMOS Technology 1,000,000 Program/Erase Cycles 100 Year Data Retention Industrial and Extended Temperature Range SOIC, TSSOP, UDFN 8−pad and Ultra−thin WLCSP 4−bump Packages This Device is Pb−Free, Halogen Free/BFR Free, and RoHS Compliant VCC TSSOP−8 Y SUFFIX CASE 948AL SOIC−8 W SUFFIX CASE 751BD Features UDFN−8 HU4 SUFFIX CASE 517AZ WLCSP−4 C4C SUFFIX CASE 567JY WLCSP−4 C4U SUFFIX CASE 567PB PIN CONFIGURATIONS (Top Views) 1 A0 A1 A2 VSS VCC WP SCL SDA 1 VCC A1 A2 VSS SCL B1 B2 SDA SOIC (W), TSSOP (Y), UDFN (HU4) MARKING DIAGRAMS (WLCSP−4) WLCSP (C4C) (C4U) X YM X YW X = Specific Device Code = (see ordering information) Y = Production Year (Last Digit) M = Production Month (1−9, O, N, D) W = Production Week Code For the location of Pin 1, please consult the corresponding package drawing. SCL CAT24C64 A2, A1, A0 SDA WP PIN FUNCTION Pin Name A0, A1, A2 SDA SCL WP VCC VSS VSS Figure 1. Functional Symbol Function Device Address Serial Data Serial Clock Write Protect Power Supply Ground ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. For serial EEPROM in a US8 package, please consult the N24C64 datasheet. © Semiconductor Components Industries, LLC, 2018 March, 2021 − Rev. 28 1 Publication Order Number: CAT24C64/D CAT24C64 Table 1. ABSOLUTE MAXIMUM RATINGS Parameters Ratings Units Storage Temperature –65 to +150 °C Voltage on Any Pin with Respect to Ground (Note 1) –0.5 to +6.5 V Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. The DC input voltage on any pin should not be lower than −0.5 V or higher than VCC + 0.5 V. During transitions, the voltage on any pin may undershoot to no less than −1.5 V or overshoot to no more than VCC + 1.5 V, for periods of less than 20 ns. Table 2. RELIABILITY CHARACTERISTICS (Note 2) Parameter Symbol NEND (Note 3) TDR Endurance Min Units 1,000,000 Program/Erase Cycles 100 Years Data Retention 2. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC−Q100 and JEDEC test methods. 3. Page Mode, VCC = 5 V, 25°C. Table 3. D.C. OPERATING CHARACTERISTICS (VCC = 1.8 V to 5.5 V, TA = −40°C to +125°C and VCC = 1.7 V to 5.5 V, TA = −40°C to +85°C, unless otherwise specified.) Symbol Parameter Test Conditions Min Max Units ICCR Read Current Read, fSCL = 400 kHz 1 mA ICCW Write Current Write, fSCL = 400 kHz 2 mA Standby Current All I/O Pins at GND or VCC TA = −40°C to +85°C VCC ≤ 3.3 V 1 mA TA = −40°C to +85°C VCC > 3.3 V 3 TA = −40°C to +125°C 5 ISB IL I/O Pin Leakage Pin at GND or VCC 2 mA VIL Input Low Voltage −0.5 VCC x 0.3 V VIH Input High Voltage VCC x 0.7 VCC + 0.5 V VOL1 Output Low Voltage VCC ≥ 2.5 V, IOL = 3.0 mA 0.4 V VOL2 Output Low Voltage VCC < 2.5 V, IOL = 1.0 mA 0.2 V Table 4. PIN IMPEDANCE CHARACTERISTICS (VCC = 1.8 V to 5.5 V, TA = −40°C to +125°C and VCC = 1.7 V to 5.5 V, TA = −40°C to +85°C, unless otherwise specified.) Symbol Parameter Conditions Max Units CIN (Note 4) SDA I/O Pin Capacitance VIN = 0 V 8 pF CIN (Note 4) Input Capacitance (other pins) VIN = 0 V 6 pF IWP (Note 5) WP Input Current VIN < VIH, VCC = 5.5 V 130 mA VIN < VIH, VCC = 3.3 V 120 VIN < VIH, VCC = 1.8 V 80 VIN > VIH 2 VIN < VIH, VCC = 5.5 V 50 VIN < VIH, VCC = 3.3 V 35 VIN < VIH, VCC = 1.8 V 25 VIN > VIH 2 IA (Note 5) Address Input Current (A0, A1, A2) Product Rev F mA 4. These parameters are tested initially and after a design or process change that affects the parameter according to appropriate AEC−Q100 and JEDEC test methods. 5. When not driven, the WP, A0, A1 and A2 pins are pulled down to GND internally. For improved noise immunity, the internal pull−down is relatively strong; therefore the external driver must be able to supply the pull−down current when attempting to drive the input HIGH. To conserve power, as the input level exceeds the trip point of the CMOS input buffer (~ 0.5 x VCC), the strong pull−down reverts to a weak current source. www.onsemi.com 2 CAT24C64 Table 5. A.C. CHARACTERISTICS (VCC = 1.8 V to 5.5 V, TA = −40°C to +125°C and VCC = 1.7 V to 5.5 V, TA = −40°C to +85°C.) (Note 6) Standard VCC = 1.7 V − 5.5 V Parameter Symbol FSCL tHD:STA Min Max Clock Frequency Fast VCC = 1.7 V − 5.5 V Min 100 START Condition Hold Time Max Fast−Plus VCC = 1.7 V − 5.5 V TA = −405C to +855C Min 400 Max Units 1,000 kHz 4 0.6 0.25 ms tLOW Low Period of SCL Clock 4.7 1.3 0.45 ms tHIGH High Period of SCL Clock 4 0.6 0.40 ms 4.7 0.6 0.25 ms tSU:STA START Condition Setup Time tHD:DAT Data In Hold Time 0 0 0 ms tSU:DAT Data In Setup Time 250 100 50 ns tR (Note 7) SDA and SCL Rise Time 1,000 300 100 ns tF (Note 7) SDA and SCL Fall Time 300 300 100 ns tSU:STO STOP Condition Setup Time tBUF Bus Free Time Between STOP and START tAA SCL Low to Data Out Valid tDH Data Out Hold Time Ti (Note 7) 4 0.6 0.25 ms 4.7 1.3 0.5 ms 3.5 100 0.9 100 Noise Pulse Filtered at SCL and SDA Inputs 100 0.40 50 100 ms ns 100 ns tSU:WP WP Setup Time 0 0 0 ms tHD:WP WP Hold Time 2.5 2.5 1 ms tWR tPU (Notes 7, 8) Write Cycle Time 5 5 Power−up to Ready Mode 1 1 0.1 5 ms 1 ms Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. Test conditions according to “A.C. Test Conditions” table. 7. Tested initially and after a design or process change that affects this parameter. 8. tPU is the delay between the time VCC is stable and the device is ready to accept commands. Table 6. A.C. TEST CONDITIONS Input Levels 0.2 x VCC to 0.8 x VCC Input Rise and Fall Times ≤ 50 ns Input Reference Levels 0.3 x VCC, 0.7 x VCC Output Reference Levels 0.5 x VCC Output Load Current Source: IOL = 3 mA (VCC ≥ 2.5 V); IOL = 1 mA (VCC < 2.5 V); CL = 100 pF www.onsemi.com 3 CAT24C64 Power−On Reset (POR) Each CAT24C64 incorporates Power−On Reset (POR) circuitry which protects the internal logic against powering up in the wrong state. The device will power up into Standby mode after VCC exceeds the POR trigger level and will power down into Reset mode when VCC drops below the POR trigger level. This bi−directional POR behavior protects the device against ‘brown−out’ failure following a temporary loss of power. transmit or receive, but only the Master can assign those roles. I2C Bus Protocol The 2−wire I2C bus consists of two lines, SCL and SDA, connected to the VCC supply via pull−up resistors. The Master provides the clock to the SCL line, and either the Master or the Slaves drive the SDA line. A ‘0’ is transmitted by pulling a line LOW and a ‘1’ by letting it stay HIGH. Data transfer may be initiated only when the bus is not busy (see A.C. Characteristics). During data transfer, SDA must remain stable while SCL is HIGH. Pin Description SCL: The Serial Clock input pin accepts the clock signal generated by the Master. SDA: The Serial Data I/O pin accepts input data and delivers output data. In transmit mode, this pin is open drain. Data is acquired on the positive edge, and is delivered on the negative edge of SCL. A0, A1 and A2: The Address inputs set the device address that must be matched by the corresponding Slave address bits. The Address inputs are hard−wired HIGH or LOW allowing for up to eight devices to be used (cascaded) on the same bus. When left floating, these pins are pulled LOW internally. The Address inputs are not available for use with WLCSP 4−bumps. WP: When pulled HIGH, the Write Protect input pin inhibits all write operations. When left floating, this pin is pulled LOW internally. The WP input is not available for the WLCSP 4−bumps, therefore all write operations are allowed for the device in this package. START/STOP Condition An SDA transition while SCL is HIGH creates a START or STOP condition (Figure 2). The START consists of a HIGH to LOW SDA transition, while SCL is HIGH. Absent the START, a Slave will not respond to the Master. The STOP completes all commands, and consists of a LOW to HIGH SDA transition, while SCL is HIGH. Device Addressing The Master addresses a Slave by creating a START condition and then broadcasting an 8−bit Slave address. For the CAT24C64, the first four bits of the Slave address are set to 1010 (Ah); the next three bits, A2, A1 and A0, must match the logic state of the similarly named input pins. The devices in WLCSP 4−bumps respond only to the Slave Address with A2 A1 A0 = 000 (CAT24C64C4xTR). The R/W bit tells the Slave whether the Master intends to read (1) or write (0) data (Figure 3). Functional Description The CAT24C64 supports the Inter−Integrated Circuit (I2C) Bus protocol. The protocol relies on the use of a Master device, which provides the clock and directs bus traffic, and Slave devices which execute requests. The CAT24C64 operates as a Slave device. Both Master and Slave can Acknowledge During the 9th clock cycle following every byte sent to the bus, the transmitter releases the SDA line, allowing the receiver to respond. The receiver then either acknowledges (ACK) by pulling SDA LOW, or does not acknowledge (NoACK) by letting SDA stay HIGH (Figure 4). Bus timing is illustrated in Figure 5. SCL SDA START CONDITION STOP CONDITION Figure 2. Start/Stop Timing 1 0 1 0 A2 A1 A0 R/W DEVICE ADDRESS* * The devices in WLCSP 4−bumps respond only to the Slave Address with: A2 A1 A0 = 000, CAT24C64C4xTR Figure 3. Slave Address Bits www.onsemi.com 4 CAT24C64 BUS RELEASE DELAY (TRANSMITTER) SCL FROM MASTER 1 BUS RELEASE DELAY (RECEIVER) 8 9 DATA OUTPUT FROM TRANSMITTER DATA OUTPUT FROM RECEIVER START ACK SETUP (≥ tSU:DAT) ACK DELAY (≤ tAA) Figure 4. Acknowledge Timing tHIGH tF tLOW tR tLOW SCL tSU:STA tHD:DAT tHD:STA tSU:DAT tSU:STO SDA IN tAA tDH tBUF SDA OUT Figure 5. Bus Timing WRITE OPERATIONS Byte Write Acknowledge Polling To write data to memory, the Master creates a START condition on the bus and then broadcasts a Slave address with the R/W bit set to ‘0’. The Master then sends two address bytes and a data byte and concludes the session by creating a STOP condition on the bus. The Slave responds with ACK after every byte sent by the Master (Figure 6). The STOP starts the internal Write cycle, and while this operation is in progress (tWR), the SDA output is tri−stated and the Slave does not acknowledge the Master (Figure 7). As soon (and as long) as internal Write is in progress, the Slave will not acknowledge the Master. This feature enables the Master to immediately follow−up with a new Read or Write request, rather than wait for the maximum specified Write time (tWR) to elapse. Upon receiving a NoACK response from the Slave, the Master simply repeats the request until the Slave responds with ACK. Hardware Write Protection With the WP pin held HIGH, the entire memory is protected against Write operations. If the WP pin is left floating or is grounded, it has no impact on the Write operation. The state of the WP pin is strobed on the last falling edge of SCL immediately preceding the 1st data byte (Figure 9). If the WP pin is HIGH during the strobe interval, the Slave will not acknowledge the data byte and the Write request will be rejected. Page Write The Byte Write operation can be expanded to Page Write, by sending more than one data byte to the Slave before issuing the STOP condition (Figure 8). Up to 32 distinct data bytes can be loaded into the internal Page Write Buffer starting at the address provided by the Master. The page address is latched, and as long as the Master keeps sending data, the internal byte address is incremented up to the end of page, where it then wraps around (within the page). New data can therefore replace data loaded earlier. Following the STOP, data loaded during the Page Write session will be written to memory in a single internal Write cycle (tWR). Delivery State The CAT24C64 is shipped erased, i.e., all bytes are FFh. www.onsemi.com 5 CAT24C64 BUS ACTIVITY: S T A MASTER R T ADDRESS BYTE SLAVE ADDRESS ADDRESS BYTE DATA BYTE a7 − a0 d7 − d0 a15 − a8 S S T O P P * * * A C K A C K SLAVE *a15 − a13 are don’t care bits. A C K A C K Figure 6. Byte Write Sequence SCL SDA 8th Bit Byte n ACK tWR STOP CONDITION START CONDITION ADDRESS Figure 7. Write Cycle Timing BUS ACTIVITY: S T A MASTER R T ADDRESS BYTE SLAVE ADDRESS DATA BYTE n ADDRESS BYTE DATA BYTE n+1 S T O P DATA BYTE n+P P S A C K A C K A C K SLAVE A C K A C K Figure 8. Page Write Sequence ADDRESS BYTE DATA BYTE 1 8 a7 a0 9 1 8 d7 d0 SCL SDA tSU:WP WP tHD:WP Figure 9. WP Timing www.onsemi.com 6 A C K A C K CAT24C64 READ OPERATIONS Immediate Read Write sequence by sending data, the Master then creates a START condition and broadcasts a Slave address with the R/W bit set to ‘1’. The Slave responds with ACK after every byte sent by the Master and then sends out data residing at the selected address. After receiving the data, the Master responds with NoACK and then terminates the session by creating a STOP condition on the bus (Figure 11). To read data from memory, the Master creates a START condition on the bus and then broadcasts a Slave address with the R/W bit set to ‘1’. The Slave responds with ACK and starts shifting out data residing at the current address. After receiving the data, the Master responds with NoACK and terminates the session by creating a STOP condition on the bus (Figure 10). The Slave then returns to Standby mode. Sequential Read Selective Read If, after receiving data sent by the Slave, the Master responds with ACK, then the Slave will continue transmitting until the Master responds with NoACK followed by STOP (Figure 12). During Sequential Read the internal byte address is automatically incremented up to the end of memory, where it then wraps around to the beginning of memory. To read data residing at a specific address, the selected address must first be loaded into the internal address register. This is done by starting a Byte Write sequence, whereby the Master creates a START condition, then broadcasts a Slave address with the R/W bit set to ‘0’ and then sends two address bytes to the Slave. Rather than completing the Byte N O BUS ACTIVITY: S T A MASTER R T S A T CO K P SLAVE ADDRESS P S A C K SLAVE SCL 8 SDA DATA BYTE 9 8th Bit DATA OUT NO ACK STOP Figure 10. Immediate Read Sequence and Timing BUS ACTIVITY: S T A MASTER R T ADDRESS BYTE SLAVE ADDRESS S T A R T ADDRESS BYTE S N O A C K SLAVE ADDRESS P S A C K SLAVE A C K A C K A C K DATA BYTE Figure 11. Selective Read Sequence N O A C K BUS ACTIVITY: MASTER A C K SLAVE ADDRESS A C K A C K S T O P P SLAVE A C K DATA BYTE n DATA BYTE n+1 DATA BYTE n+2 Figure 12. Sequential Read Sequence www.onsemi.com 7 S T O P DATA BYTE n+x CAT24C64 ORDERING INFORMATION Specific Device Marking Package Type Temperature Range Lead Finish Shipping CAT24C64WI−GT3 24C64F SOIC−8, JEDEC I = Industrial (−40°C to +85°C) NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C64YI−GT3 C64F TSSOP−8 I = Industrial (−40°C to +85°C) NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C64HU4I−GT3 C6U UDFN−8 I = Industrial (−40°C to +85°C) NiPdAu Tape & Reel, 3,000 Units / Reel CAT24C64C4CTR A WLCSP−4 with Die Coat Industrial (−40°C to +85°C) N/A Tape & Reel, 5,000 Units / Reel CAT24C64C4UTR A WLCSP−4 with Die Coat Industrial (−40°C to +85°C) N/A Tape & Reel, 5,000 Units / Reel Device Order Number 9. All packages are RoHS−compliant (Lead−free, Halogen−free). 10. The standard lead finish is NiPdAu. 11. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 12. Caution: The EEPROM devices delivered in WLCSP must never be exposed to ultra violet light. When exposed to ultra violet light the EEPROM cells lose their stored data. www.onsemi.com 8 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS UDFN8, 2x3 EXTENDED PAD CASE 517AZ ISSUE A 1 SCALE 2:1 PIN ONE REFERENCE 0.10 C B A D L1 ÇÇ ÇÇ ÇÇ DETAIL A ALTERNATE CONSTRUCTIONS E EXPOSED Cu DETAIL B A 0.10 C 0.08 C 1 D2 ÉÉ ÉÉ ÇÇ C MOLD CMPD ÉÉÉ ÉÉÉ ÇÇÇ A3 A1 ALTERNATE CONSTRUCTIONS 1 L 4 5 8X e XXXXX A WL Y W G BOTTOM VIEW b 0.10 M C A B 0.05 M C MILLIMETERS MIN MAX 0.45 0.55 0.00 0.05 0.13 REF 0.20 0.30 2.00 BSC 1.35 1.45 3.00 BSC 1.25 1.35 0.50 BSC 0.25 0.35 −−− 0.15 GENERIC MARKING DIAGRAM* SEATING PLANE E2 8 DIM A A1 A3 b D D2 E E2 e L L1 DETAIL B A3 A1 SIDE VIEW DETAIL A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25MM FROM THE TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L L 0.10 C TOP VIEW NOTE 4 DATE 23 MAR 2015 XXXXX AWLYWG = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. NOTE 3 RECOMMENDED SOLDERING FOOTPRINT* 1.56 8X 0.68 1.45 3.40 1 8X 0.30 0.50 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98AON42552E Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. UDFN8, 2X3 EXTENDED PAD PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS WLCSP4, 0.77x0.77 CASE 567JY ISSUE C DATE 07 MAR 2017 SCALE 4:1 A E PIN A1 REFERENCE ÈÈ D TOP VIEW NOTE 6 A3 DIE COAT (OPTIONAL) DETAIL A A2 0.05 C A DETAIL A 0.05 C A1 NOTE 4 NOTE 5 4X C SIDE VIEW NOTE 3 SEATING PLANE A2 DIM A A1 A2 A3 b D E e e X YW B 0.03 C A 1 X Y W 2 BOTTOM VIEW 0.40 PITCH 1 PACKAGE OUTLINE 4X 0.40 PITCH = Specific Device Code = Year = Work Week *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. RECOMMENDED SOLDERING FOOTPRINT* A MILLIMETERS MIN NOM MAX −−− −−− 0.35 0.04 0.06 0.08 0.23 REF 0.025 REF 0.15 0.155 0.16 0.75 0.77 0.79 0.75 0.77 0.79 0.40 BSC GENERIC MARKING DIAGRAM* e b 0.05 C A B NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. COPLANARITY APPLIES TO SPHERICAL CROWNS OF THE SOLDER BALLS. 5. DIMENSION b IS MEASURED AT THE MAXIMUM CONTACT BALL DIAMETER PARALLEL TO DATUM C. 6. BACKSIDE COATING IS OPTIONAL. B 0.16 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98AON85186F WLCSP4, 0.77X0.77 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS WLCSP4, 0.77x0.77 CASE 567PB ISSUE A SCALE 4:1 ÈÈ ÈÈ A E PIN A1 REFERENCE D NOTE 6 A3 DIE COAT (OPTIONAL) DETAIL A A2 0.05 C A DETAIL A 0.05 C A1 NOTE 4 NOTE 5 4X C SIDE VIEW NOTE 3 SEATING PLANE A2 DIM A A1 A2 A3 b D E e e X YW B 0.03 C A 1 X Y W 2 BOTTOM VIEW 1 0.40 PITCH PACKAGE OUTLINE 4X 0.40 PITCH = Specific Device Code = Year = Work Week *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. RECOMMENDED SOLDERING FOOTPRINT* A MILLIMETERS MIN NOM MAX −−− 0.30 −−− 0.04 0.055 0.07 0.19 REF 0.025 REF 0.15 0.155 0.16 0.75 0.77 0.79 0.75 0.77 0.79 0.40 BSC GENERIC MARKING DIAGRAM* e b 0.05 C A B NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 4. COPLANARITY APPLIES TO SPHERICAL CROWNS OF THE SOLDER BALLS. 5. DIMENSION b IS MEASURED AT THE MAXIMUM CONTACT BALL DIAMETER PARALLEL TO DATUM C. 6. BACKSIDE COATING IS OPTIONAL. B TOP VIEW DATE 09 NOV 2016 0.16 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98AON12765G WLCSP4, 0.77X0.77 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC 8, 150 mils CASE 751BD−01 ISSUE O E1 DATE 19 DEC 2008 E SYMBOL MIN A 1.35 1.75 A1 0.10 0.25 b 0.33 0.51 c 0.19 0.25 D 4.80 5.00 E 5.80 6.20 E1 3.80 4.00 MAX 1.27 BSC e PIN # 1 IDENTIFICATION NOM h 0.25 0.50 L 0.40 1.27 θ 0º 8º TOP VIEW D h A1 A θ c e b SIDE VIEW L END VIEW Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC MS-012. DOCUMENT NUMBER: DESCRIPTION: 98AON34272E SOIC 8, 150 MILS Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP8, 4.4x3.0, 0.65P CASE 948AL ISSUE A DATE 20 MAY 2022 q q GENERIC MARKING DIAGRAM* XXX YWW AG XXX Y WW A G = Specific Device Code = Year = Work Week = Assembly Location = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. DOCUMENT NUMBER: DESCRIPTION: 98AON34428E TSSOP8, 4.4X3.0, 0.65P Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
CAT24C64YI-G 价格&库存

很抱歉,暂时无法提供与“CAT24C64YI-G”相匹配的价格&库存,您可以联系我们找货

免费人工找货