0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FIN1048MTCX

FIN1048MTCX

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP16

  • 描述:

    IC RECEIVER 0/4 16TSSOP

  • 数据手册
  • 价格&库存
FIN1048MTCX 数据手册
Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Revised August 2003 FIN1048 3.3V LVDS 4-Bit Flow-Through High Speed Differential Receiver General Description Features This quad receiver is designed for high speed interconnect utilizing Low Voltage Differential Signaling (LVDS) technology. The receiver translates LVDS levels, with a typical differential input threshold of 100mV, to LVTTL signal levels. LVDS provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed transfer of clock and data. ■ Greater than 400Mbs data rate The FIN1048 can be paired with its companion driver, the FIN1047, or any other LVDS driver. ■ Power-Off protection ■ Flow-through pinout simplifies PCB layout ■ 3.3V power supply operation ■ 0.4ns maximum differential pulse skew ■ 2.5ns maximum propagation delay ■ Low power dissipation ■ Fail safe protection for open-circuit, shorted and terminated conditions ■ Meets or exceeds the TIA/EIA-644 LVDS standard ■ Pin compatible with equivalent RS-422 and LVPECL devices ■ 16-Lead SOIC and TSSOP packages save space Ordering Code: Order Number FIN1048M FIN1048MTC Package Number M16A MTC16 Package Description 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code. Connection Diagram Pin Descriptions Pin Name Description ROUT1, ROUT2, ROUT3, ROUT4 LVTTL Data Outputs RIN1+, RIN2+, RIN3+, RIN4+ Non-Inverting LVDS Inputs RIN1−, RIN2−, RIN3−, RIN4− Inverting LVDS Inputs EN Driver Enable Pin EN Inverting Driver Enable Pin VCC Power Supply GND Ground Function Table Inputs EN RIN+ ROUT− ROUT H L or Open H L H H L or Open L H H L or Open Fail Safe Condition DS500588 L H X H X X Z L or Open X X X Z H = HIGH Logic Level Z = High Impedance © 2003 Fairchild Semiconductor Corporation Outputs EN L = LOW Logic Level X = Don’t Care Fail Safe = Open, Shorted, Terminated www.fairchildsemi.com FIN1048 3.3V LVDS 4-Bit Flow-Through High Speed Differential Receiver September 2001 FIN1048 Absolute Maximum Ratings(Note 1) Supply Voltage (VCC) −0.5V to +4.6V Recommended Operating Conditions DC Input Voltage (VIN) −0.5V to +4.6V Supply Voltage (VCC) DC Input Voltage (VOUT) −0.5V to 6V DC Output Current (IO) Storage Temperature Range (TSTG) 16 mA (|VID|) −65°C to +150°C (Soldering, 10 seconds) 260°C ≥ 10,000V 0 to VCC −40°C to +85°C Operating Temperature (TA) Note 1: The “Absolute Maximum Ratings”: are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification. ≥ 450V ESD (Machine Model) 0.05V to 2.35V Input Voltage (VIN) Lead Temperature (TL) ESD (Human Body Model) 100mV to VCC Common-Mode Input Voltage (VIC) 150°C Max Junction Temperature (TJ) 3.0V to 3.6V Magnitude of Differential Voltage DC Electrical Characteristics Over supply voltage and operating temperature ranges, unless otherwise specified Symbol Parameter Test Conditions Min Typ Max (Note 2) VTH Differential Input Threshold HIGH See Figure 1 and Table 1 VTL Differential Input Threshold LOW See Figure 1 and Table 1 IIN Input Current VIN = 0V or VCC ±20 µA II(OFF) Power-Off Input Current VCC = 0V, VIN = 0V or 3.6V ±20 µA VIH Input High Voltage (EN or EN) 2.0 VCC + 1.0 V VIL Input Low Voltage (EN or EN) GND 0.8 V VOH Output HIGH Voltage IOH = −100 µA Output LOW Voltage −100 V 2.4 IOH = 100 µA 0.2 IOL = 8 mA 0.5 IOZ Disabled Output Leakage Current EN = 0.8 and EN* = 2V, VOUT = 3.6V or 0V VIK Input Clamp Voltage IIK = −18 mA ICCZ Disabled Power Supply Current Receiver Disabled ICC Power Supply Current Receiver Enabled, (RIN+ = 1V and RIN− = 1.4V) CIN Input Capacitance COUT Output Capacitance µA 5 mA 15 mA V or (RIN+ = 1.4V and RIN− = 1V) www.fairchildsemi.com 2 V ±20 −1.5 Note 2: All typical values are at TA = 25°C and with VCC = 3.3V. mV mV VCC −0.2 IOH = −8 mA VOL 100 Units 3.5 pF 6 pF Over supply voltage and operating temperature ranges, unless otherwise specified Symbol Parameter Test Conditions Min Typ Max (Note 3) Units tPLH Propagation Delay LOW-to-HIGH 1.0 2.5 ns tPHL Propagation Delay HIGH-to-LOW 1.0 2.5 ns tTLH Output Rise Time (20% to 80%) |VID| = 400 mV, CL = 10 pF, 0.7 1.2 ns tTHL Output Fall Time (80% to 20%) RL = 1kΩ 0.7 1.2 ns tSK(P) Pulse Skew |tPLH - tPHL| See Figure 1 and Figure 2 0.4 ns tSK(LH) Channel-to-Channel Skew tSK(HL) (Note 4) 0.3 ns tSK(PP) Part-to-Part Skew (Note 5) 1.0 ns fMAX Maximum Operating Frequency RL = 1kΩ, CL = 10 pF, (Note 6) see Figure 1 and Figure 2 200 375 MHz tZH LVTTL Output Enable Time from Z to HIGH 6.0 ns tZL LVTTL Output Enable Time from Z to LOW RL = 1kΩ, CL = 10 pF, 6.0 ns tHZ LVTTL Output Disable Time from HIGH to Z See Figure 3 6.0 ns tLZ LVTTL Output Disable Time from LOW to Z 6.0 ns Note 3: All typical values are at TA = 25°C and with VCC = 3.3V. Note 4: tSK(LH), tSK(HL) is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction. Note 5: tSK(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits. Note 6: fMAX Criteria: Input tR = tF < 1 ns, VID = 300 mV, (1.05V to 1.35V pp), 50% duty cycle; Output duty cycle 40% to 60%, VOL < 0.5V, VOH > 2.4V. All channels switching in phase. Note A: All differential input pulses have frequency = 10MHz, tR or tF = 1ns Note B: CL includes all probe and jig capacitances FIGURE 1. Differential Receiver Voltage Definitions and Propagation Delay and Transition Time Test Circuit TABLE 1. Receiver Minimum and Maximum Input Threshold Test Voltages Applied Voltages (V) Resulting Differential Input Resulting Common Mode Input Voltage (mA) Voltage (V) VIC VIA VIB VID 1.25 1.15 100 1.2 1.15 1.25 −100 1.2 2.4 2.3 100 2.35 2.3 2.4 −100 2.35 0.1 0 100 0.05 0 0.1 −100 0.05 1.2 1.5 0.9 600 0.9 1.5 −600 1.2 2.4 1.8 600 2.1 1.8 2.4 −600 2.1 0.6 0 600 0.3 0 0.6 −600 0.3 3 www.fairchildsemi.com FIN1048 AC Electrical Characteristics FIN1048 FIGURE 2. LVDS Input to LVTTL Output AC Waveforms Test Circuit for LVTTL Outputs Voltage Waveforms Enable and Disable Times FIGURE 3. LVTTL Outputs Test Circuit and AC Waveforms www.fairchildsemi.com 4 FIN1048 Physical Dimensions inches (millimeters) unless otherwise noted 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A 5 www.fairchildsemi.com FIN1048 3.3V LVDS 4-Bit Flow-Through High Speed Differential Receiver Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16 Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. www.fairchildsemi.com www.fairchildsemi.com 6 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com © Semiconductor Components Industries, LLC N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 1 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com
FIN1048MTCX 价格&库存

很抱歉,暂时无法提供与“FIN1048MTCX”相匹配的价格&库存,您可以联系我们找货

免费人工找货