0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FQA9P25

FQA9P25

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TO-3P-3

  • 描述:

    MOSFET P-CH 250V 10.5A TO-3P

  • 数据手册
  • 价格&库存
FQA9P25 数据手册
Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. QFET TM FQA9P25 250V P-Channel MOSFET General Description Features These P-Channel enhancement mode power field effect transistors are produced using Fairchild’s proprietary, planar stripe, DMOS technology. This advanced technology is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand a high energy pulse in the avalanche and commutation modes. These devices are well suited for high efficiency switching DC/DC converters. • • • • • • -10.5A, -250V, RDS(on) = 0.62Ω @VGS = -10 V Low gate charge ( typical 29 nC) Low Crss ( typical 27 pF) Fast switching 100% avalanche tested Improved dv/dt capability S ! ● ● G! ▶ ▲ ● TO-3PN G DS Absolute Maximum Ratings Symbol VDSS ID ! FQA Series D TC = 25°C unless otherwise noted Parameter Drain-Source Voltage - Continuous (TC = 25°C) Drain Current FQA9P25 -250 - Continuous (TC = 100°C) IDM Drain Current VGSS Gate-Source Voltage EAS Single Pulsed Avalanche Energy IAR EAR dv/dt PD TJ, TSTG TL - Pulsed (Note 1) Units V -10.5 A -6.6 A -42 A ± 30 V (Note 2) 650 mJ Avalanche Current (Note 1) -10.5 A Repetitive Avalanche Energy Peak Diode Recovery dv/dt Power Dissipation (TC = 25°C) (Note 1) 15 -5.5 150 1.2 -55 to +150 mJ V/ns W W/°C °C 300 °C (Note 3) - Derate above 25°C Operating and Storage Temperature Range Maximum lead temperature for soldering purposes, 1/8” from case for 5 seconds Thermal Characteristics Symbol RθJC Parameter Thermal Resistance, Junction-to-Case Typ -- RθCS Thermal Resistance, Case-to-Sink RθJA Thermal Resistance, Junction-to-Ambient ©2000 Fairchild Semiconductor International Max 0.83 Units °C/W 0.24 -- °C/W -- 40 °C/W Rev. A2, December 2000 FQA9P25 December 2000 Symbol TC = 25°C unless otherwise noted Parameter Test Conditions Min Typ Max Units -250 -- -- V -- -0.2 -- V/°C Off Characteristics BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = -250 µA ∆BVDSS / ∆TJ Breakdown Voltage Temperature Coefficient ID = -250 µA, Referenced to 25°C IDSS IGSSF IGSSR VDS = -250 V, VGS = 0 V -- -- -1 µA VDS = -200 V, TC = 125°C -- -- -10 µA Gate-Body Leakage Current, Forward VGS = -30 V, VDS = 0 V -- -- -100 nA Gate-Body Leakage Current, Reverse VGS = 30 V, VDS = 0 V -- -- 100 nA Zero Gate Voltage Drain Current On Characteristics VGS(th) Gate Threshold Voltage VDS = VGS, ID = -250 µA -3.0 -- -5.0 V RDS(on) Static Drain-Source On-Resistance VGS = -10 V, ID = -5.25 A -- 0.48 0.62 Ω gFS Forward Transconductance VDS = -40 V, ID = -5.25 A -- 6.1 -- S -- 910 1180 pF -- 170 220 pF -- 27 35 pF ns (Note 4) Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance VDS = -25 V, VGS = 0 V, f = 1.0 MHz Switching Characteristics td(on) Turn-On Delay Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge VDD = -125 V, ID = -9.4 A, RG = 25 Ω (Note 4, 5) VDS = -200 V, ID = -9.4 A, VGS = -10 V (Note 4, 5) -- 20 50 -- 150 310 ns -- 45 100 ns -- 65 140 ns -- 29 38 nC -- 7.6 -- nC -- 14 -- nC A Drain-Source Diode Characteristics and Maximum Ratings IS Maximum Continuous Drain-Source Diode Forward Current -- -- -10.5 ISM -- -- -42 A VSD Maximum Pulsed Drain-Source Diode Forward Current VGS = 0 V, IS = -10.5 A Drain-Source Diode Forward Voltage -- -- -5.0 V trr Reverse Recovery Time Qrr Reverse Recovery Charge VGS = 0 V, IS = -9.4 A, dIF / dt = 100 A/µs (Note 4) -- 190 -- ns -- 1.45 -- µC Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 9.4mH, IAS = -10.5A, VDD = -50V, RG = 25 Ω, Starting TJ = 25°C 3. ISD ≤ -9.4A, di/dt ≤ 300A/µs, VDD ≤ BVDSS, Starting TJ = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature ©2000 Fairchild Semiconductor International Rev. A2, December 2000 FQA9P25 Electrical Characteristics FQA9P25 Typical Characteristics VGS -15.0 V -10.0 V -8.0 V -7.0 V -6.5 V -6.0 V Bottom : -5.5 V Top : -I D, Drain Current [A] 1 10 -I D , Drain Current [A] 1 10 0 10 ※ Notes : 1. 250μs Pulse Test 2. TC = 25℃ 150℃ 0 10 25℃ ※ Notes : 1. VDS = -50V 2. 250μs Pulse Test -55℃ -1 -1 10 -1 0 10 10 1 10 2 10 4 6 8 10 -VGS , Gate-Source Voltage [V] -VDS, Drain-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics VGS = - 10V 1.5 1 -I DR , Reverse Drain Current [A] RDS(on) [ Ω ], Drain-Source On-Resistance 2.0 VGS = - 20V 1.0 0.5 ※ Note : TJ = 25℃ 0 10 150℃ ※ Notes : 1. VGS = 0V 2. 250μs Pulse Test 25℃ -1 0.0 0 10 20 30 10 40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -ID , Drain Current [A] -VSD , Source-Drain Voltage [V] Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature 12 2400 Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd 1600 ※ Notes : 1. VGS = 0 V 2. f = 1 MHz Ciss Coss 1200 800 Crss 400 VDS = -50V 10 -V GS , Gate-Source Voltage [V] 2000 Capacitance [pF] 10 VDS = -125V VDS = -200V 8 6 4 2 ※ Note : ID = -9.4 A 0 0 -1 10 0 10 1 10 -VDS, Drain-Source Voltage [V] Figure 5. Capacitance Characteristics ©2000 Fairchild Semiconductor International 0 5 10 15 20 25 30 35 QG, Total Gate Charge [nC] Figure 6. Gate Charge Characteristics Rev. A2, December 2000 FQA9P25 Typical Characteristics (Continued) 3.0 1.2 RDS(ON) , (Normalized) Drain-Source On-Resistance -BV DSS , (Normalized) Drain-Source Breakdown Voltage 2.5 1.1 1.0 0.9 ※ Notes : 1. VGS = 0 V 2. ID = -250 μA 0.8 -100 -50 0 50 100 150 2.0 1.5 1.0 ※ Notes : 1. VGS = -10 V 2. ID = -4.7 A 0.5 0.0 -100 200 -50 o 0 50 100 150 200 o TJ, Junction Temperature [ C] TJ, Junction Temperature [ C] Figure 7. Breakdown Voltage Variation vs. Temperature Figure 8. On-Resistance Variation vs. Temperature 12 Operation in This Area is Limited by R DS(on) 2 10 10 -I D, Drain Current [A] -I D, Drain Current [A] 100 µs 1 ms 1 10 10 ms DC 0 10 ※ Notes : o 1. TC = 25 C 8 6 4 2 o 2. TJ = 150 C 3. Single Pulse -1 10 0 1 10 0 25 2 10 10 50 100 125 150 Figure 10. Maximum Drain Current vs. Case Temperature 0 D = 0 .5 ※ N o te s : 1 . Z θ J C ( t ) = 0 . 8 3 ℃ /W M a x . 2 . D u ty F a c t o r , D = t 1 /t 2 3 . T J M - T C = P D M * Z θ J C( t ) 0 .2 10 -1 0 .1 0 .0 5 PDM 0 .0 2 0 .0 1 θ JC ( t) , T h e r m a l R e s p o n s e Figure 9. Maximum Safe Operating Area 10 75 TC, Case Temperature [℃] -VDS, Drain-Source Voltage [V] t1 t2 Z s in g le p u ls e 10 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t 1 , S q u a r e W a v e P u ls e D u r a t io n [ s e c ] Figure 11. Transient Thermal Response Curve ©2000 Fairchild Semiconductor International Rev. A2, December 2000 FQA9P25 Gate Charge Test Circuit & Waveform VGS Same Type as DUT 50KΩ Qg 200nF 12V -10V 300nF VDS VGS Qgs Qgd DUT -3mA Charge Resistive Switching Test Circuit & Waveforms VDS RL t on VDD VGS RG td(on) VGS t off tr td(off) tf 10% DUT -10V VDS 90% Unclamped Inductive Switching Test Circuit & Waveforms BVDSS 1 EAS = ---- L IAS2 -------------------2 BVDSS - VDD L VDS tp ID RG VDD DUT -10V tp ©2000 Fairchild Semiconductor International VDD Time VDS (t) ID (t) IAS BVDSS Rev. A2, December 2000 FQA9P25 Peak Diode Recovery dv/dt Test Circuit & Waveforms + VDS DUT _ I SD L Driver RG VGS VGS ( Driver ) I SD ( DUT ) Compliment of DUT (N-Channel) VDD • dv/dt controlled by RG • ISD controlled by pulse period Gate Pulse Width D = -------------------------Gate Pulse Period 10V Body Diode Reverse Current IRM di/dt IFM , Body Diode Forward Current VDS ( DUT ) VSD Body Diode Forward Voltage Drop VDD Body Diode Recovery dv/dt ©2000 Fairchild Semiconductor International Rev. A2, December 2000 FQA9P25 Mechanical Dimensions TO-3PN Dimensions in Millimeters ©2000 Fairchild Semiconductor International Rev. A2, December 2000 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ E2CMOS™ FACT™ FACT Quiet Series™ FAST® FASTr™ GTO™ HiSeC™ ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. ©2000 Fairchild Semiconductor International Rev. A, January 2000 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com © Semiconductor Components Industries, LLC N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 1 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com
FQA9P25 价格&库存

很抱歉,暂时无法提供与“FQA9P25”相匹配的价格&库存,您可以联系我们找货

免费人工找货