0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FQPF5N50CYDTU

FQPF5N50CYDTU

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT78

  • 描述:

    MOSFET N-CH 500V 5A TO-220F

  • 数据手册
  • 价格&库存
FQPF5N50CYDTU 数据手册
Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. TM FQP5N50C/FQPF5N50C 500V N-Channel MOSFET General Description Features These N-Channel enhancement mode power field effect transistors are produced using Fairchild’s proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction, electronic lamp ballasts based on half bridge topology. • • • • • • 5A, 500V, RDS(on) = 1.4 Ω @VGS = 10 V Low gate charge ( typical 18nC) Low Crss ( typical 15pF) Fast switching 100% avalanche tested Improved dv/dt capability D ! ● ◀ G! G DS TO-220 TO-220F GD S FQP Series ▲ ● ● FQPF Series ! S Absolute Maximum Ratings Symbol VDSS ID TC = 25°C unless otherwise noted Parameter Drain-Source Voltage - Continuous (TC = 25°C) Drain Current FQP5N50C FQPF5N50C 500 - Continuous (TC = 100°C) Units V 5 5* A 2.9 2.9 * A 20 * A IDM Drain Current VGSS Gate-Source Voltage EAS Single Pulsed Avalanche Energy (Note 2) IAR Avalanche Current (Note 1) 5 A EAR Repetitive Avalanche Energy Peak Diode Recovery dv/dt Power Dissipation (TC = 25°C) (Note 1) 7.3 4.5 -55 to +150 mJ V/ns W W/°C °C 300 °C dv/dt PD TJ, TSTG TL - Pulsed (Note 1) 20 (Note 3) - Derate above 25°C Operating and Storage Temperature Range Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds ± 30 V 300 mJ 73 0.58 38 0.3 * Drain current limited by maximum junction temperature Thermal Characteristics Symbol RθJC Parameter Thermal Resistance, Junction-to-Case RθJS Thermal Resistance, Case-to-Sink Typ. 0.5 -- °C/W RθJA Thermal Resistance, Junction-to-Ambient 62.5 62.5 °C/W ©2003 Fairchild Semiconductor Corporation FQP5N50C 1.71 FQPF5N50C 3.31 Units °C/W Rev. A, April 2003 FQP5N50C/FQPF5N50C QFET Symbol TC = 25°C unless otherwise noted Parameter Test Conditions Min Typ Max Units 500 -- -- V -- 0.5 -- V/°C Off Characteristics BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = 250 µA ∆BVDSS / ∆TJ Breakdown Voltage Temperature Coefficient ID = 250 µA, Referenced to 25°C IDSS IGSSF IGSSR VDS = 500 V, VGS = 0 V -- -- 1 µA VDS = 400 V, TC = 125°C -- -- 10 µA Gate-Body Leakage Current, Forward VGS = 30 V, VDS = 0 V -- -- 100 nA Gate-Body Leakage Current, Reverse VGS = -30 V, VDS = 0 V -- -- -100 nA 2.0 -- 4.0 V -- 1.14 1.4 Ω -- 5.2 -- S -- 480 625 pF -- 80 105 pF -- 15 20 pF -- 12 35 ns -- 46 100 ns -- 50 110 ns -- 48 105 ns -- 18 24 nC Zero Gate Voltage Drain Current On Characteristics VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250 µA RDS(on) Static Drain-Source On-Resistance VGS = 10 V, ID = 2.5A gFS Forward Transconductance VDS = 40 V, ID = 2.5A (Note 4) Dynamic Characteristics Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance VDS = 25 V, VGS = 0 V, f = 1.0 MHz Switching Characteristics td(on) Turn-On Delay Time tr Turn-On Rise Time td(off) Turn-Off Delay Time tf Turn-Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge VDD = 250 V, ID = 5A, RG = 25 Ω (Note 4, 5) VDS = 400 V, ID = 5A, VGS = 10 V (Note 4, 5) -- 2.2 -- nC -- 9.7 -- nC Drain-Source Diode Characteristics and Maximum Ratings IS Maximum Continuous Drain-Source Diode Forward Current -- -- 5 A ISM -- -- 20 A VSD Maximum Pulsed Drain-Source Diode Forward Current VGS = 0 V, IS = 5 A Drain-Source Diode Forward Voltage -- -- 1.4 V trr Reverse Recovery Time -- 263 -- ns Qrr Reverse Recovery Charge -- 1.9 -- µC VGS = 0 V, IS = 5 A, dIF / dt = 100 A/µs (Note 4) Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 21.5 mH, IAS = 5A, VDD = 50V, RG = 25 Ω, Starting TJ = 25°C 3. ISD ≤ 5A, di/dt ≤ 200A/µs, VDD ≤ BVDSS, Starting TJ = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature ©2003 Fairchild Semiconductor Corporation Rev. A, April 2003 FQP5N50C/FQPF5N50C Electrical Characteristics FQP5N50C/FQPF5N50C Typical Characteristics VGS 15.0 V 10.0 V 8.0 V 7.0 V 6.5 V 6.0 V 5.5 V Bottom : 5.0 V Top : ID, Drain Current [A] 10 1 10 ID, Drain Current [A] 1 0 10 o 150 C o 25 C o 0 -55 C 10 ※ Notes : 1. VDS = 40V 2. 250μ s Pulse Test ※ Notes : 1. 250μ s Pulse Test 2. TC = 25℃ -1 10 -1 10 -1 0 10 2 1 10 10 4 6 8 10 VGS, Gate-Source Voltage [V] VDS, Drain-Source Voltage [V] Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics 4.5 1 10 3.5 IDR, Reverse Drain Current [A] VGS = 10V 3.0 2.5 2.0 VGS = 20V 1.5 1.0 150℃ ※ Notes : 1. VGS = 0V 2. 250μ s Pulse Test 25℃ ※ Note : TJ = 25℃ -1 0.5 0 5 10 15 10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 ID, Drain Current [A] VSD, Source-Drain voltage [V] Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature 1200 Ciss = Cgs + Cgd (Cds = shorted) Coss = Cds + Cgd Crss = Cgd 1000 12 10 800 Capacitance [pF] 0 10 Ciss Coss 600 400 ※ Notes ; 1. VGS = 0 V 2. f = 1 MHz Crss 200 VGS, Gate-Source Voltage [V] RDS(ON) [Ω ], Drain-Source On-Resistance 4.0 VDS = 100V VDS = 250V 8 VDS = 400V 6 4 2 ※ Note : ID = 5A 0 0 -1 10 0 10 1 10 0 5 10 15 20 VDS, Drain-Source Voltage [V] QG, Total Gate Charge [nC] Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics ©2003 Fairchild Semiconductor Corporation Rev. A, April 2003 FQP5N50C/FQPF5N50C Typical Characteristics (Continued) 1.2 3.0 BV DSS , (Normalized) Drain-Source Breakdown Voltage 2.5 RDS(ON) , (Normalized) Drain-Source On-Resistance 1.1 1.0 ※ Notes : 1. VGS = 0 V 2. ID = 250 μ A 0.9 0.8 -100 -50 0 50 100 2.0 1.5 1.0 ※ Notes : 1. VGS = 10 V 2. ID = 2.5 A 0.5 150 0.0 -100 200 -50 0 50 100 200 TJ, Junction Temperature [ C] TJ, Junction Temperature [ C] Figure 7. Breakdown Voltage Variation vs Temperature Figure 8. On-Resistance Variation vs Temperature 2 10 Operation in This Area is Limited by R DS(on) 2 Operation in This Area is Limited by R DS(on) 10 10 µs 10 µs 100 µs 1 10 1 ms 100 ms 10 ms DC 0 10 -1 10 100 µs 1 10 ID, Drain Current [A] ID, Drain Current [A] 150 o o 1 ms 10 ms 100 ms 0 10 DC -1 ※ Notes : 10 ※ Notes : o 1. TC = 25 C o 2. TJ = 150 C 3. Single Pulse o 1. TC = 25 C o 2. TJ = 150 C 3. Single Pulse -2 10 -2 0 1 10 2 10 3 10 10 VDS, Drain-Source Voltage [V] 10 0 10 1 10 2 10 3 10 VDS, Drain-Source Voltage [V] Figure 9-1. Maximum Safe Operating Area for FQP5N50C Figure 9-2. Maximum Safe Operating Area for FQPF5N50C 6 5 ID, Drain Current [A] 4 3 2 1 0 25 50 75 100 125 150 TC, Case Temperature [℃] Figure 10. Maximum Drain Current vs Case Temperature ©2003 Fairchild Semiconductor Corporation Rev. A, April 2003 (Continued) 0 D = 0 .5 0 .2 0 .1 10 ※ N o te s : 1 . Z θ J C (t) = 1 .7 1 ℃ /W M a x . 2 . D u ty F a c to r, D = t 1 /t 2 3 . T J M - T C = P D M * Z θ J C (t) 0 .0 5 -1 0 .0 2 0 .0 1 θ JC (t), T h e rm a l R e s p o n s e 10 FQP5N50C/FQPF5N50C Typical Characteristics PDM Z s in g le p u ls e t1 t2 10 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t 1 , S q u a re W a v e P u ls e D u ra tio n [s e c ] D = 0 .5 10 0 0 .2 0 .1 ※ N o te s : 1 . Z θ J C (t) = 3 .3 1 ℃ /W M a x . 2 . D u ty F a c to r, D = t 1 /t 2 3 . T J M - T C = P D M * Z θ J C (t) 0 .0 5 10 -1 0 .0 2 θ JC (t), T h e rm a l R e s p o n s e Figure 11. Transient Thermal Response Curve for FQP5N50C Z 0 .0 1 PDM s in g le p u ls e t1 10 t2 -2 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t 1 , S q u a re W a v e P u ls e D u ra tio n [s e c ] Figure 11-2. Transient Thermal Response Curve for FQPF5N50C ©2003 Fairchild Semiconductor Corporation Rev. A, April 2003 FQP5N50C/FQPF5N50C Gate Charge Test Circuit & Waveform VGS Same Type as DUT 50KΩ Qg 200nF 12V 10V 300nF VDS VGS Qgs Qgd DUT 3mA Charge Resistive Switching Test Circuit & Waveforms VDS RL VDS 90% VDD VGS RG VGS DUT 10V 10% td(on) tr td(off) t on tf t off Unclamped Inductive Switching Test Circuit & Waveforms BVDSS 1 EAS = ---- L IAS2 -------------------2 BVDSS - VDD L VDS BVDSS IAS ID RG VDD DUT 10V tp ©2003 Fairchild Semiconductor Corporation ID (t) VDS (t) VDD tp Time Rev. A, April 2003 FQP5N50C/FQPF5N50C Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT + VDS _ I SD L Driver RG VGS VGS ( Driver ) Same Type as DUT VDD • dv/dt controlled by RG • ISD controlled by pulse period Gate Pulse Width D = -------------------------Gate Pulse Period 10V IFM , Body Diode Forward Current I SD ( DUT ) di/dt IRM Body Diode Reverse Current VDS ( DUT ) Body Diode Recovery dv/dt VSD VDD Body Diode Forward Voltage Drop ©2003 Fairchild Semiconductor Corporation Rev. A, April 2003 FQP5N50C/FQPF5N50C Mechanical Dimensions TO - 220 Dimensions in Millimeters ©2003 Fairchild Semiconductor Corporation Rev. A, April 2003 (Continued) 3.30 ±0.10 TO-220F 10.16 ±0.20 2.54 ±0.20 ø3.18 ±0.10 (7.00) (1.00x45°) 15.87 ±0.20 15.80 ±0.20 6.68 ±0.20 (0.70) 0.80 ±0.10 ) 0° (3 9.75 ±0.30 MAX1.47 #1 +0.10 0.50 –0.05 2.54TYP [2.54 ±0.20] 2.76 ±0.20 2.54TYP [2.54 ±0.20] 9.40 ±0.20 4.70 ±0.20 0.35 ±0.10 Dimensions in Millimeters ©2003 Fairchild Semiconductor Corporation Rev. A, April 2003 FQP5N50C/FQPF5N50C Package Dimensions TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT™ ActiveArray™ FACT Quiet series™ Bottomless™ FAST® FASTr™ CoolFET™ CROSSVOLT™ FRFET™ GlobalOptoisolator™ DOME™ EcoSPARK™ GTO™ E2CMOS™ HiSeC™ EnSigna™ I2C™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be or (b) support or sustain life, or (c) whose failure to perform reasonably expected to cause the failure of the life support when properly used in accordance with instructions for use device or system, or to affect its safety or effectiveness. provided in the labeling, can be reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. ©2003 Fairchild Semiconductor Corporation Rev. I2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com © Semiconductor Components Industries, LLC N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 1 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com
FQPF5N50CYDTU 价格&库存

很抱歉,暂时无法提供与“FQPF5N50CYDTU”相匹配的价格&库存,您可以联系我们找货

免费人工找货