0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FST3125MTCX

FST3125MTCX

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP14_5X4.4MM

  • 描述:

    IC BUS SWITCH 1 X 1:1 14TSSOP

  • 数据手册
  • 价格&库存
FST3125MTCX 数据手册
FST3125 4-Bit Bus Switch The ON Semiconductor FST3125 is a quad, high performance switch. The device is CMOS TTL compatible when operating between 4 and 5.5 Volts. The device exhibits extremely low RON and adds nearly zero propagation delay. The device adds no noise or ground bounce to the system. The device consists of four independent 1−bit switches with separate Output/Enable (OE) pins. Port A is connected to Port B when OE is low. If OE is high, the switch is high Z. http://onsemi.com MARKING DIAGRAMS Features • • • • • • • • 14 14 RON t 4 W Typical Less Than 0.25 ns−Max Delay Through Switch Nearly Zero Standby Current No Circuit Bounce Control Inputs are TTL/CMOS Compatible Pin−For−Pin Compatible With QS3125, FST3125, CBT3125 All Popular Packages: TSSOP−14, SOIC−14 These are Pb−Free Devices FST3125G AWLYWW 1 SOIC−14 D SUFFIX CASE 751A 1 14 14 FST 3125 ALYWG G 1 TSSOP−14 DT SUFFIX CASE 948G OE1 1A 1B OE2 2A 2B GND 1 2 3 4 5 6 7 14 13 12 11 10 9 8 VCC OE4 4A 4B OE3 3A 3B 1 A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) Figure 1. Pin Assignment for SOIC and TSSOP PIN NAMES Pin OE1, OE2, OE3, OE4 Description Bus Switch Enables 1A, 2A, 3A, 4A Bus A 1B, 2B, 3B, 4B Bus B NC Not Connected ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2013 June, 2013 − Rev. 0 1 Publication Order Number: FST3125/D FST3125 OE1 1A OE2 2A OE3 3A OE4 4A 1 2 3 1B 4 5 6 2B 10 9 8 3B 13 12 11 4B Figure 2. Logic Diagram TRUTH TABLE Inputs Outputs OE A, B L A=B H Z ORDERING INFORMATION Package Shipping† FST3125DR2G SOIC−14 (Pb−Free) 2500 Units / Tape & Reel FST3125DTR2G TSSOP−14 (Pb−Free) 2500 Units / Tape & Reel Device Order Number †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 2 FST3125 MAXIMUM RATINGS Symbol Value Unit DC Supply Voltage *0.5 to )7.0 V VI DC Input Voltage *0.5 to )7.0 V VO DC Output Voltage *0.5 to )7.0 V VI t GND *50 mA VO t GND *50 mA 128 mA VCC Parameter IIK DC Input Diode Current IOK DC Output Diode Current IO DC Output Sink Current ICC DC Supply Current per Supply Pin $100 mA IGND DC Ground Current per Ground Pin $100 mA TSTG Storage Temperature Range *65 to )150 _C TL Lead Temperature, 1 mm from Case for 10 Seconds TJ Junction Temperature Under Bias qJA Thermal Resistance (Note 1) MSL Moisture Sensitivity FR Flammability Rating VESD ILatchup SOIC TSSOP _C _C 125 170 _C/W Level 1 Oxygen Index: 28 to 34 ESD Withstand Voltage Latchup Performance 260 )150 UL 94 V−0 @ 0.125 in Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model u4000 u400 u2000 V Above VCC and Below GND at 85_C (Note 4) $100 mA Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow. 2. Tested to EIA/JESD22−A114−A. 3. Tested to EIA/JESD22−A115−A. 4. Tested to EIA/JESD78. RECOMMENDED OPERATING CONDITIONS Symbol VCC Parameter Supply Voltage VI Input Voltage VO Output Voltage TA Operating Free−Air Temperature Dt/DV Input Transition Rise or Fall Rate Min Max Unit 4.0 5.5 V (Note ) 0 5.5 V (HIGH or LOW State) 0 5.5 V −55 +125 _C 0 0 5 DC ns/V Operating, Data Retention Only Switch Control Input Switch I/O 5. Unused control inputs may not be left open. All control inputs must be tied to a high− or low−logic input voltage level. http://onsemi.com 3 FST3125 DC ELECTRICAL CHARACTERISTICS Symbol Parameter VIK Clamp Diode Resistance VIH High−Level Input Voltage VIL Low−Level Input Voltage Conditions IIN = *18mA VCC TA = −55_C to +125_C (V) Min Typ* 4.5 4.0 to 5.5 Max Unit *1.2 V 2.0 V 4.0 to 5.5 0.8 V Input Leakage Current 0 v VIN v 5.5 V 5.5 $1.0 mA IOZ OFF−STATE Leakage Current 0 v A, B v VCC 5.5 $1.0 mA RON Switch On Resistance (Note 6) VIN = 0 V, IIN = 64 mA 4.5 4 7 W VIN = 0 V, IIN = 30 mA 4.5 4 7 VIN = 2.4 V, IIN = 15 mA 4.5 8 15 11 20 II VIN = 2.4 V, IIN = 15 mA 4.0 ICC Quiescent Supply Current VIN = VCC or GND, IOUT = 0 5.5 3 mA DICC Increase In ICC per Input One input at 3.4 V, Other inputs at VCC or GND 5.5 2.5 mA *Typical values are at VCC = 5.0 V and TA = 25_C. 6. Measured by the voltage drop between A and B pins at the indicated current through the switch. AC ELECTRICAL CHARACTERISTICS Limits TA = −55_C to +125_C VCC = 4.5 to 5.5 V Symbol Parameter Conditions Figures Min Max VCC = 4.0 V Min Max Unit 0.25 0.25 ns tPHL, tPLH Prop Delay Bus to Bus (Note 7) VI = OPEN 3 and 4 tPZH, tPZL Output Enable Time VI = 7 V for tPZL VI = OPEN for tPZH 3 and 5 1.0 5.0 5.5 ns tPHZ, tPLZ Output Disable Time VI = 7 V for tPLZ VI = OPEN for tPHZ 3 and 5 1.5 5.3 5.6 ns 7. This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance). CAPACITANCE (Note 8) Symbol Parameter Conditions Typ Max Unit CIN Control Pin Input Capacitance VCC = 5.0 V 3 pF CI/O Input/Output Capacitance VCC, OE = 5.0 V 5 pF 8. TA = )25_C, f = 1 MHz, Capacitance is characterized but not tested. http://onsemi.com 4 FST3125 AC Loading and Waveforms VI 500 W FROM OUTPUT UNDER TEST CL * 500 W NOTES: 1. Input driven by 50 W source terminated in 50 W. 2. CL includes load and stray capacitance. *CL = 50 pF Figure 3. AC Test Circuit tf = 2.5 nS 90 % SWITCH INPUT tf = 2.5 nS 90 % 1.5 V 1.5 V 10 % 3.0 V Vmi 10 % tPLH GND tPLH VOH 1.5 V OUTPUT 1.5 V VOL Figure 4. Propagation Delays tf = 2.5 nS tf = 2.5 nS ENABLE INPUT 90 % 90 % 1.5 V 1.5 V 10 % 10 % GND tPZL tPZL OUTPUT 3.0 V 1.5 V tPZH VOL + 0.3 V VOL tPHZL VOH 1.5 V OUTPUT Figure 5. Enable/Disable Delays http://onsemi.com 5 VOH − 0.3 V MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−14 NB CASE 751A−03 ISSUE L 14 1 SCALE 1:1 D DATE 03 FEB 2016 A B 14 8 A3 E H L 1 0.25 B M DETAIL A 7 13X M b 0.25 M C A S B S 0.10 X 45 _ M A1 e DETAIL A h A C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 6.50 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 14 14X 1.18 XXXXXXXXXG AWLYWW 1 1 1.27 PITCH 14X XXXXX A WL Y WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−14 CASE 751A−03 ISSUE L DATE 03 FEB 2016 STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 2: CANCELLED STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−14 WB CASE 948G ISSUE C 14 DATE 17 FEB 2016 1 SCALE 2:1 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S DETAIL E K A −V− K1 J J1 ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE H G D DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 −−− 1.20 −−− 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ GENERIC MARKING DIAGRAM* 14 SOLDERING FOOTPRINT XXXX XXXX ALYWG G 7.06 1 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: 98ASH70246A DESCRIPTION: TSSOP−14 WB A L Y W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 www.onsemi.com 1 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
FST3125MTCX 价格&库存

很抱歉,暂时无法提供与“FST3125MTCX”相匹配的价格&库存,您可以联系我们找货

免费人工找货