0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HUF76439S3S

HUF76439S3S

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT404

  • 描述:

    MOSFET N-CH 60V 75A D2PAK

  • 数据手册
  • 价格&库存
HUF76439S3S 数据手册
HUF76439S3S October 2013 Data Sheet N-Channel Logic Level UltraFET Power MOSFET 60 V, 71 A, 14 mΩ Packaging Features JEDEC TO-263AB DRAIN (FLANGE) GATE SOURCE • Ultra Low On-Resistance - rDS(ON) = 0.012Ω, VGS = 10V - rDS(ON) = 0.014Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE® and SABER™ Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol • Switching Time vs RGS Curves D Ordering Information PART NUMBER HUF76439S3ST G PACKAGE TO-263AB BRAND 76439S S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified HUF76439S3ST UNITS Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 60 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS 60 V ±16 V Drain Current Continuous (TC = 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 75 75 54 52 Figure 4 A A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 1.20 W W/oC Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T L Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T pkg 300 260 oC oC NOTES: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html For severe environments, see our Automotive HUFA series. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2001 Fairchild Semiconductor Corporation HUF76439S3S Rev. C0 HUF76439S3S Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 60 - - V ID = 250µA, VGS = 0V , T C = -40oC (Figure 12) 55 - - V VDS = 55V, VGS = 0V - - 1 µA VDS = 50V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figures 9, 10) - 0.010 0.012 Ω ID = 54A, VGS = 5V (Figure 9) - 0.0117 0.014 Ω ID = 52A, VGS = 4.5V (Figure 9) - 0.0125 0.015 Ω TO-263AB - - 0.96 oC/W - - 62 oC/W THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time tON td(ON) - 470 ns 16 - ns tr - 300 - ns - 29 - ns tf - 105 - ns tOFF - - 200 ns - - 205 ns Fall Time Turn-Off Time - td(OFF) Rise Time Turn-Off Delay Time VDD = 30V, ID = 52A VGS = 4.5V, RGS = 3.9Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 30V, ID = 75A VGS = 10V, RGS = 3.9Ω (Figures 16, 21, 22) - 11 - ns - 125 - ns td(OFF) - 45 - ns tf - 125 - ns tOFF - - 255 ns GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V VDD = 30V, ID = 50A, Ig(REF) = 1.0mA - 70 84 nC - 38 45 nC - 2.5 3 nC Gate to Source Gate Charge Qgs - 8 - nC Gate to Drain “Miller” Charge Qgd - 19 - nC Threshold Gate Charge (Figures 14, 19, 20) CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) - 2745 - pF - 840 - pF - 145 - pF MIN TYP MAX UNITS ISD = 54A - - 1.25 V ISD = 27A - - 1.00 V Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2001 Fairchild Semiconductor Corporation SYMBOL VSD TEST CONDITIONS trr ISD = 54A, dISD/dt = 100A/µs - - 72 ns QRR ISD = 54A, dISD/dt = 100A/µs - - 140 nC HUF76439S3S Rev. C0 HUF76439S3S Typical Performance Curves 80 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 VGS = 10V 60 VGS = 4.5V 40 20 0.2 0 0 25 50 75 100 150 125 0 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 1000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I25 150 VGS = 10V VGS = 5V 100 50 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2001 Fairchild Semiconductor Corporation HUF76439S3S Rev. C0 HUF76439S3S Typical Performance Curves (Continued) 500 100 100µs If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 1000 100 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 1ms SINGLE PULSE TJ = MAX RATED TC = 25oC 1 1 10ms 10 STARTING TJ = 25oC STARTING TJ = 150oC 10 0.01 100 0.1 1 10 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 150 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 120 VGS = 10V VGS = 5V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 150 90 60 TJ = 175oC 30 TJ = -55oC 120 2.0 2.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 90 60 VGS = 3.5V 30 VGS = 3V TJ = 25oC 0 VGS = 4V 0 3.5 4.0 3.0 4.5 VGS, GATE TO SOURCE VOLTAGE (V) 0 5.0 FIGURE 7. TRANSFER CHARACTERISTICS 4 FIGURE 8. SATURATION CHARACTERISTICS 25 2.5 20 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 75A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) ID = 50A 15 ID = 25A 10 5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 75A 2.0 1.5 1.0 0.5 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT ©2001 Fairchild Semiconductor Corporation -80 -40 160 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 200 FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE HUF76439S3S Rev. C0 HUF76439S3S Typical Performance Curves (Continued) 1.2 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 1.1 1.0 0.4 0.9 -80 -40 0 40 80 120 160 200 -80 -40 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 40 80 120 200 160 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 10 5000 CISS = CGS + CGD CRSS = CGD 1000 0 TJ , JUNCTION TEMPERATURE (oC) COSS ≅ CDS + CGD 100 VGS = 0V, f = 1MHz VDD = 30V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 50A ID = 25A 2 0 50 0.1 1.0 10 0 60 15 30 45 60 75 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 500 1000 VGS = 10V, VDD = 30V, ID = 75A 800 SWITCHING TIME (ns) SWITCHING TIME (ns) VGS = 4.5V, VDD = 30V, ID = 48A tr 600 400 tf 200 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE ©2001 Fairchild Semiconductor Corporation tf 300 tr 200 td(ON) td(ON) 0 td(OFF) 100 td(OFF) 0 400 0 50 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) 50 FIGURE 16. SWITCHING TIME vs GATE RESISTANCE HUF76439S3S Rev. C0 HUF76439S3S Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2001 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76439S3S Rev. C0 HUF76439S3S PSPICE Electrical Model .SUBCKT HUF76439 2 1 3 ; rev 17 June 1999 CA 12 8 3.70e-9 CB 15 14 3.80e-9 CIN 6 8 2.60e-9 LDRAIN DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DPLCAP 10 RLDRAIN RSLC1 51 DBREAK + EBREAK 11 7 17 18 66.25 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RSLC2 5 51 ESLC 11 - RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 + 50 - IT 8 17 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 5.17e-9 LSOURCE 3 7 2.33e-9 DRAIN 2 5 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 4.72e-3 RGATE 9 20 0.88 RLDRAIN 2 5 10 RLGATE 1 9 51.7 RLSOURCE 3 7 23.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 4.43e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*225),3.5))} .MODEL DBODYMOD D (IS = 2.52e-12 RS = 3.53e-3 TRS1 = 1.79e-3 TRS2 = 1.27e-6 CJO = 2.82e-9 TT = 4.90e-8 M = 0.43) .MODEL DBREAKMOD D (RS = 1.95e- 1TRS1 = 9.01e- 4TRS2 = 2.07e-6) .MODEL DPLCAPMOD D (CJO = 2.28e- 9IS = 1e-30 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 1.88 KP = 2.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.88) .MODEL MSTROMOD NMOS (VTO = 2.31 KP = 137 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.65 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.8 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.19e- 3TC2 = -1.91e-7) .MODEL RDRAINMOD RES (TC1 = 1.15e-2 TC2 = 3.07e-5) .MODEL RSLCMOD RES (TC1 = 9.92e-4 TC2 = 1.23e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.65e-3 TC2 = -7.94e-6) .MODEL RVTEMPMOD RES (TC1 = -1.39e- 3TC2 = -2.13e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.0 VOFF= -2.5) VON = -2.5 VOFF= -6.0) VON = -0.5 VOFF= 0.0) VON = 0.0 VOFF= -0.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2001 Fairchild Semiconductor Corporation HUF76439S3S Rev. C0 HUF76439S3S SABER Electrical Model REV 17 June 1999 template ta76445 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 2.52e-12, cjo = 2.82e-9, tt = 4.90e-8, m = 0.43) d..model dbreakmod = () d..model dplcapmod = (cjo = 2.28e-9, is = 1e-30, m = 0.85 ) m..model mmedmod = (type=_n, vto = 1.88, kp = 2.1, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.31, kp = 137, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.65, kp = 0.05, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6, voff = -2.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.5, voff = -6) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -0.5) LDRAIN DPLCAP 10 RSLC1 51 c.ca n12 n8 = 3.70e-9 c.cb n15 n14 = 3.80e-9 c.cin n6 n8 = 2.60e-9 RLDRAIN RDBREAK RSLC2 72 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.19e-3, tc2 = -1.91e-7 res.rdbody n71 n5 = 3.53e-3, tc1 = 1.79e-3, tc2 = 1.27e-6 res.rdbreak n72 n5 = 1.95e-1, tc1 = 9.01e-4, tc2 = 2.07e-6 res.rdrain n50 n16 = 4.72e-3, tc1 = 1.15e-2, tc2 = 3.07e-5 res.rgate n9 n20 = 0.88 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 51.7 res.rlsource n3 n7 = 23.3 res.rslc1 n5 n51 = 1e-6, tc1 = 9.92e-4, tc2 = 1.23e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 4.43e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.39e-3, tc2 = -2.13e-7 res.rvthres n22 n8 = 1, tc1 = -2.65e-3, tc2 = -7.94e-6 21 RDBODY DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.17e-9 l.lsource n3 n7 = 2.33e-9 DRAIN 2 5 - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 + 6 8 EGS 19 CB + - - IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 66.25 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/225))** 3.5)) } } ©2001 Fairchild Semiconductor Corporation HUF76439S3S Rev. C0 HUF76439S3S SPICE Thermal Model th JUNCTION REV 23 June 1999 HUF76439T CTHERM1 th 6 3.00e-3 CTHERM2 6 5 1.90e-2 CTHERM3 5 4 6.95e-3 CTHERM4 4 3 7.00e-3 CTHERM5 3 2 2.95e-2 CTHERM6 2 tl 12.55 RTHERM1 RTHERM1 th 6 6.32e-3 RTHERM2 6 5 1.57e-2 RTHERM3 5 4 4.43e-2 RTHERM4 4 3 2.49e-1 RTHERM5 3 2 3.75e-1 RTHERM6 2 tl 4.98e-2 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUF76445T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 3.00e-3 ctherm.ctherm2 6 5 = 1.90e-2 ctherm.ctherm3 5 4 = 6.95e-3 ctherm.ctherm4 4 3 = 7.00e-3 ctherm.ctherm5 3 2 = 2.95e-2 ctherm.ctherm6 2 tl = 12.55 rtherm.rtherm1 th 6 = 6.32e-3 rtherm.rtherm2 6 5 = 1.57e-2 rtherm.rtherm3 5 4 = 4.43e-2 rtherm.rtherm4 4 3 = 2.49e-1 rtherm.rtherm5 3 2 = 3.75e-1 rtherm.rtherm6 2 tl = 4.98e-2 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2001 Fairchild Semiconductor Corporation CASE HUF76439S3S Rev. C0 HUF76439S3S TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. Sync-Lock™ F-PFS™ AccuPower™ ® FRFET® AX-CAP®* ®* ® SM BitSiC™ Global Power Resource PowerTrench GreenBridge™ PowerXS™ Build it Now™ TinyBoost® Green FPS™ Programmable Active Droop™ CorePLUS™ TinyBuck® ® Green FPS™ e-Series™ QFET CorePOWER™ TinyCalc™ QS™ Gmax™ CROSSVOLT™ TinyLogic® GTO™ Quiet Series™ CTL™ TINYOPTO™ IntelliMAX™ RapidConfigure™ Current Transfer Logic™ TinyPower™ ISOPLANAR™ DEUXPEED® ™ TinyPWM™ Dual Cool™ Marking Small Speakers Sound Louder TinyWire™ EcoSPARK® Saving our world, 1mW/W/kW at a time™ and Better™ TranSiC™ EfficentMax™ SignalWise™ MegaBuck™ TriFault Detect™ ESBC™ SmartMax™ MICROCOUPLER™ TRUECURRENT®* SMART START™ MicroFET™ ® SerDes™ Solutions for Your Success™ MicroPak™ SPM® MicroPak2™ Fairchild® STEALTH™ MillerDrive™ Fairchild Semiconductor® UHC® SuperFET® MotionMax™ FACT Quiet Series™ ® Ultra FRFET™ SuperSOT™-3 mWSaver FACT® UniFET™ SuperSOT™-6 OptoHiT™ FAST® VCX™ SuperSOT™-8 OPTOLOGIC® FastvCore™ VisualMax™ OPTOPLANAR® SupreMOS® FETBench™ VoltagePlus™ SyncFET™ FPS™ XS™ tm *Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used here in: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I66 ©2001 Fairchild Semiconductor Corporation HUF76439S3S Rev. C0 Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: onsemi: HUF76439S3S
HUF76439S3S 价格&库存

很抱歉,暂时无法提供与“HUF76439S3S”相匹配的价格&库存,您可以联系我们找货

免费人工找货