0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
KAC-06040-CBA-JD-AA

KAC-06040-CBA-JD-AA

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    XFCPGA237

  • 描述:

    IMAGE SENSOR 6MP CMOS 267CPGA

  • 数据手册
  • 价格&库存
KAC-06040-CBA-JD-AA 数据手册
KAC-06040 IMAGE SENSOR 2832 (H) X 2128 (V) CMOS IMAGE SENSOR JUNE 13, 2014 DEVICE PERFORMANCE SPECIFICATION REVISION 1.1 PS-1593 KAC-06040 Image Sensor TABLE OF CONTENTS Summary Specification ........................................................................................................................................................................................ 5 Description ................................................................................................................................................................................................... 5 Features ........................................................................................................................................................................................................ 5 Applications ................................................................................................................................................................................................. 5 Ordering Information ........................................................................................................................................................................................... 6 KAC-06040 Image Sensor ......................................................................................................................................................................... 6 Evaluation Support..................................................................................................................................................................................... 6 Device Description ................................................................................................................................................................................................ 7 Architecture ................................................................................................................................................................................................. 7 Physical Orientation................................................................................................................................................................................... 8 Primary Pin Description ............................................................................................................................................................................ 9 Power Pin Description ............................................................................................................................................................................... 9 LVDS Pin Description ...............................................................................................................................................................................10 Imaging Performance ......................................................................................................................................................................................... 11 Typical Operation Conditions ................................................................................................................................................................11 Performance Specifications All Configurations ................................................................................................................................11 KAC-06040-ABA Configuration (Monochrome) ............................................................................................................................12 KAC-06040-CBA Configuration (Bayer RGB) .................................................................................................................................12 Typical Performance Curves ........................................................................................................................................................................... 13 Quantum Efficiency..................................................................................................................................................................................13 Monochrome with Microlens .............................................................................................................................................................13 Color (Bayer RGB) with Microlens ....................................................................................................................................................14 Angular Quantum Efficiency ..................................................................................................................................................................15 Dark Current versus Temperature .......................................................................................................................................................17 Power vs Frame Rate ...............................................................................................................................................................................18 Power and Frame Rate vs ADC Bit depth .......................................................................................................................................19 Defect Definitions ............................................................................................................................................................................................... 21 Operation Conditions for Defect Testing ..........................................................................................................................................21 Defect Definitions for Testing ..............................................................................................................................................................21 Test Definitions .................................................................................................................................................................................................... 22 Test Regions of Interest .........................................................................................................................................................................22 Tests .............................................................................................................................................................................................................22 Operation ................................................................................................................................................................................................................. 28 Register Addresses ..................................................................................................................................................................................28 Sensor States .............................................................................................................................................................................................28 Encoded Syncs ...........................................................................................................................................................................................29 Line Time ....................................................................................................................................................................................................30 Frame Time ................................................................................................................................................................................................31 Global Shutter Readout ..........................................................................................................................................................................32 Rolling Shutter Readout .........................................................................................................................................................................33 8 Bank LVDS Data Readout .............................................................................................................................................................................. 34 LVDS Banks ................................................................................................................................................................................................34 Ports per LVDS Bank ................................................................................................................................................................................34 8 Bank Pixel Order ....................................................................................................................................................................................35 De-Serializer Settings ..............................................................................................................................................................................36 Register Definition .............................................................................................................................................................................................. 37 Absolute Maximum Ratings ............................................................................................................................................................................. 38 Supplies .......................................................................................................................................................................................................38 CMOS Inputs ..............................................................................................................................................................................................38 Operating Ratings ................................................................................................................................................................................................ 39 Input Clock Conditions ............................................................................................................................................................................39 Operating Temperature..........................................................................................................................................................................39 www.truesenseimaging.com Revision 1.1 PS-1593 Pg 2 KAC-06040 Image Sensor CMOS IN/OUT ............................................................................................................................................................................................39 Supplies .......................................................................................................................................................................................................40 SPI (Serial Peripheral Interface) .................................................................................................................................................................... 41 Clock Polarity and Phase.........................................................................................................................................................................41 SPI Protocol ................................................................................................................................................................................................42 SPI interface ...............................................................................................................................................................................................44 SPI timing specification ...........................................................................................................................................................................44 LVDS Interface ...................................................................................................................................................................................................... 45 Standard LVDS characteristics ..............................................................................................................................................................45 Sub-LVDS characteristics ........................................................................................................................................................................45 In-block LVDS timing specification .......................................................................................................................................................46 Inter-block LVDS timing specification .................................................................................................................................................46 Storage and Handling ......................................................................................................................................................................................... 47 Storage Conditions...................................................................................................................................................................................47 ESD ...............................................................................................................................................................................................................47 Cover Glass Care and Cleanliness .........................................................................................................................................................47 Environmental Exposure ........................................................................................................................................................................47 Soldering Recommendations ................................................................................................................................................................47 Mechanical Information .................................................................................................................................................................................... 48 Completed Assembly ...............................................................................................................................................................................48 MAR (Multi-layer Anti-Reflective coating) Cover Glass...................................................................................................................52 Quality Assurance and Reliability ................................................................................................................................................................. 53 Quality and Reliability .............................................................................................................................................................................53 Replacement ..............................................................................................................................................................................................53 Liability of the Supplier ...........................................................................................................................................................................53 Liability of the Customer ........................................................................................................................................................................53 Test Data Retention .................................................................................................................................................................................53 Mechanical..................................................................................................................................................................................................53 Life Support Applications Policy ................................................................................................................................................................... 53 Revision Changes.................................................................................................................................................................................................. 54 www.truesenseimaging.com Revision 1.1 PS-1593 Pg 3 KAC-06040 Image Sensor TABLE OF FIGURES Figure 1: Block Diagram ................................................................................................................................................................................ 7 Figure 2: Package Pin Orientation – Top x-ray view ............................................................................................................................... 8 Figure 3: Monochrome QE (with Microlens) ..........................................................................................................................................13 Figure 4: Bayer QE (with Microlens) .........................................................................................................................................................14 Figure 5: Monochrome Relative Angular QE (with Microlens) ..........................................................................................................15 Figure 6: Monochrome Relative Angular QE (with Microlens) ..........................................................................................................16 Figure 7: Dark Current vs Temperature ..................................................................................................................................................17 Figure 8: Dual-Scan Power vs Frame Rate, 10 bit mode ......................................................................................................................18 Figure 9: Tri-Scan Power vs Frame Rate, 10 bit mode .........................................................................................................................18 Figure 10: Dual-Scan ADC Bit Depth impact on Frame Rate and Power .........................................................................................19 Figure 11: Tri-Scan vs Dual-Scan Power ...................................................................................................................................................20 Figure 12: Regions of Interest ...................................................................................................................................................................22 Figure 13: Sensor State Diagram ..............................................................................................................................................................28 Figure 14: Encoded Frame Syncs ..............................................................................................................................................................29 Figure 15: Dual-Scan Line Time Relationship .........................................................................................................................................30 Figure 16: Tri-Scan Line Time Relationship.............................................................................................................................................30 Figure 17: Default frame time configuration (Frame A) .....................................................................................................................31 Figure 18: Frame time with extended integration time. ....................................................................................................................31 Figure 19: Illustration of frame time for Global Shutter readout .....................................................................................................32 Figure 20: Illustration of Frame time for Rolling Shutter readout ...................................................................................................33 Figure 21: LVDS Bank labeling ...................................................................................................................................................................34 Figure 22: Number of LVDS pairs (ports) used vs. bit depth ..............................................................................................................34 Figure 23: Pixel readout order diagram ..................................................................................................................................................35 Figure 24: Pixel readout order table ........................................................................................................................................................36 Figure 25: Data stream of one LVDS Bank for 10bits ADC resolution.............................................................................................36 Figure 26: CPOL = 1 and CPHA = 1 configuration .................................................................................................................................41 Figure 27: SPI Write byte order .................................................................................................................................................................42 Figure 28: SPI Read byte order ..................................................................................................................................................................42 Figure 29: SPI Read with FBRB handshaking..........................................................................................................................................43 Figure 30: SPI timing chronogram ............................................................................................................................................................44 Figure 31: LVDS timing chronogram ........................................................................................................................................................46 Figure 32: Completed Assembly (1 of 5) .................................................................................................................................................48 Figure 33: Completed Assembly (2 of 5) .................................................................................................................................................49 Figure 34: Completed Assembly (3 of 5) .................................................................................................................................................50 Figure 35: Completed Assembly (4 of 5) .................................................................................................................................................51 Figure 36: Completed Assembly (5 of 5) .................................................................................................................................................51 Figure 37: MAR Cover Glass Specification ..............................................................................................................................................52 www.truesenseimaging.com Revision 1.1 PS-1593 Pg 4 KAC-06040 Image Sensor Summary Specification KAC-06040 Image Sensor DESCRIPTION The KAC-06040 Image Sensor is a high-speed 6 megapixel CMOS image sensor in a 1” optical format based on a 4.7 μm 5T CMOS platform. The image sensor features very fast frame rate, excellent NIR sensitivity, and flexible readout modes with multiple regions of interest (ROI). The readout architecture enables use of 8, 4, or 2 LVDS output banks for full resolution readout of 160 frames per second. Parameter Typical Value Architecture 5T Global Shutter CMOS Resolution 6 megapixels Aspect Ratio 4:3 Pixel Size 4.7 µm (H) x 4.7 µm (V) Total Number of Pixels 3024 (H) x 2320 (V) The image sensor has a pre-configured QHD (4 x 720p, 16:9) video mode, fully programmable, multiple ROI for windowing, programmable sub-sampling, and reverse readout (flip and mirror). The two ADCs can be configured for 8-bit, 10-bit, 12-bit or 14-bit conversion and output. Number of Effective Pixels 2848 (H) x 2144 (V) Number of Active Pixels 2832 (H) x 2128 (V) Active Image Size 13.1 mm (H) x 10.0 mm (V) 16.65 mm (diag.), 1” optical format Master Clock Input Speed 5 MHz to 50 MHz Maximum Pixel Clock Speed 200 MHz DDR LVDS, 400 Mbps Number of LVDS Outputs 64 differential pairs Additional features include interspersed video streams (dual-video), on-chip responsivity calibration, black clamping, overflow pixel for blooming reduction, blacksun correction (anti-eclipse), column and row noise correction, and integrated timing generation with SPI control, 4:1 and 9:1 averaging decimation modes. Number of Output Banks 8, 4, or 2 Frame Rate, 6 MP 1 - 160 fps 10 bits Charge Capacity 17,000 electrons Quantum Efficiency KAC-06040-CBA KAC-06040-ABA 40%, 47%, 45% (470, 540, 620 nm) 53%, 15%, 10% (500, 850, 900 nm) Read Noise (at maximum LVDS clock) 3.4 e- rms, Rolling Shutter 25 e- rms, Global Shutter FEATURES Dynamic Range 74 dB, Rolling Shutter 57 dB, Global Shutter Blooming Suppression >10,000x Image Lag 1.6 electron Digital Core Supply 2.0 V Analog Core Supply 1.8 V Pixel Supply 2.8 V & 3.5 V Power Consumption 2.3 W for 6 Mp @ 160 fps 10 bits Package 267 pin ceramic micro-PGA Each LVDS output bank consists of up to 8 differential pairs operating at 200 MHz DDR for a 400 Mbps data rate per pair. The pixel architecture allows rolling shutter operation for motion capture with optimized dynamic range or global shutter for precise still image capture.  Global shutter and rolling shutter  Very fast frame rate  High NIR sensitivity  Multiple regions of interest  Interspersed video streams APPLICATIONS  Machine Vision  Intelligent Transportation Systems  Surveillance www.truesenseimaging.com Cover Glass AR Coated, 2-sides All parameters are specified at T = 40 °C unless otherwise noted Revision 1.1 PS-1593 Pg 5 KAC-06040 Image Sensor Ordering Information KAC-06040 IMAGE SENSOR Catalog Number Product Name Description Marking Code 4H2284 KAC-06040-ABA-JD-AA Monochrome, micro-PGA Package, Sealed Clear Cover Glass with AR coating(both sides), Standard Grade KAC-06040-ABA Serial Number 4H2286 (1) KAC-06040-ABA-JD-AE Monochrome, micro-PGA Package, Sealed Clear Cover Glass with AR coating(both sides), Engineering Grade KAC-06040-ABA Serial Number 4H2287 KAC-06040-CBA-JD-AA Bayer (RGB) Color Filter Pattern, micro-PGA Package, Sealed Clear Cover Glass with AR coating(both sides), Standard Grade KAC-06040-CBA Serial Number 4H2289 (1) KAC-06040-CBA-JD-AE Bayer (RGB) Color Filter Pattern, micro-PGA Package, Sealed Clear Cover Glass with AR coating(both sides), Engineering Grade KAC-06040-CBA Serial Number Notes: 1. Engineering Grade samples might not meet final production testing limits, especially for cosmetic defects such as clusters, but also possibly column and row artifacts. Overall performance is representative of final production parts. EVALUATION SUPPORT Catalog Number Product Name Description 4H2306 KEK-TBD-KAC-06040-CB Evaluation Hardware for KAC-06040 Image Sensor (Bayer). Includes Image Sensor. 4H2307 KEK-TBD-KAC-06040-AB Evaluation Hardware for KAc-06040 Image Sensor (monochrome). Includes Image Sensor. 4H2211 Lens Mount Kit Lens Mount Kit that supports C, CS, and F mount lenses. Includes IR cut-filter for color imaging. See Application Note Product Naming Convention for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.truesenseimaging.com. Please address all inquiries and purchase orders to: Truesense Imaging, Inc. 1964 Lake Avenue Rochester, New York 14615 Phone: (585) 784-5500 E-mail: info@truesenseimaging.com ON Semiconductor reserves the right to change any information contained herein without notice. All information furnished by ON Semiconductor is believed to be accurate. www.truesenseimaging.com Revision 1.1 PS-1593 Pg 6 KAC-06040 Image Sensor Device Description LVDS Bank 3 LVDS Bank 5 7D0 à 7D6 Clk7 5D0 à 5D6 Clk5 Clk3 3D0 à 3D6 ARCHITECTURE LVDS Bank 7 Clk0 88 8 B G G R B G G R 8 8 88 88 2832 (H) x 2128 (V) 4.7 µm pixel B G G R B G G R 8 (0,0) 88 Timing Control, Sub-Sampling/Averaging 0D0 à 0D6 Digital Gain/Offset, Noise Correcction Clk1 LVDS Bank 0 1D0 à 1D6 LVDS Bank 1 Odd Row ADC, Analog Gain, Black-Sun Correction Even Row ADC, Analog Gain, Black-Sun Correction LVDS Bank 2 LVDS Bank 4 3.50 VA 3.3 VD 2.80 VA 2.0 VD 1.8 VA Chip Clock Trigger ResetN CSN Sclk MOSI MISO RBFB } Serial Peripheral Interface (SPI) ADC_Ref1 4.02 kΩ ±1% ADC_Ref2 LVDS Bank 6 6D0 à 6D6 Clk6 4D0 à 4D6 Clk4 2D0 à 2D6 Clk2 VSS 0V Figure 1: Block Diagram www.truesenseimaging.com Revision 1.1 PS-1593 Pg 7 KAC-06040 Image Sensor PHYSICAL ORIENTATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 A B C D E LVDS Bank 5 LVDS Bank 7 LVDS Bank 2 LVDS Bank 4 LVDS Bank 6 LVDS Bank 0 LVDS Bank 1 LVDS Bank 3 AA AB AC AD AE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Figure 2: Package Pin Orientation – Top x-ray view Notes: 1. 2. 3. 4. 5. The center of the pixel array is aligned to the physical package center. The region under the sensor die is clear of pins enabling the use of a heat sink. Non-symmetric mounting holes provide orientation and mounting precision. Non-symmetric pins prevent incorrect placement in PCB. Letter “F” indicator shows default readout direction relative to package pin 1 www.truesenseimaging.com Revision 1.1 PS-1593 Pg 8 KAC-06040 Image Sensor PRIMARY PIN DESCRIPTION Pin Name Type Description AB09 RESETN DI Sensor reset (0 V = Reset State) E07 CLK_In1 DI Sensor Input Clk_In1 (5 – 50 MHz) D08 CLK_In2 DI Sensor Input Clk_In2 (connect to Clk1) AB08 TRIGGER DI Trigger input (optional) AA05 SCLK DI SPI Master Clock AA06 CSN DI SPI Chip Select (0 V = Selected) AA07 MISO DO SPI Master Input, Slave Output AA08 MOSI DI SPI Master Output Slave Input AB05 FB DO SPI register read feedback D07 SPI_MS DI SPI CPOL/CPHA mode select AA14 ADC_Ref1 AO 4.02 kΩ ±1% resistor between Ref1 & Ref2 AA15 ADC_Ref2 AO 4.02 kΩ ±1% resistor between Ref1 & Ref2 AB06 FLO DO Flash output sync (optional) AB07 MSO DO Mechanical Shutter output sync (optional) E05 FEN DO Frame ENable reference output (optional) E06 LEN DO Line ENable reference output (optional) Notes: 1. 2. 3. 4. 5. 6. 7. DI = Digital Input, DO = Digital Output, AO = Analog Output Tie unused DI pins to Ground, No Connect (NC) unused DO pins By default Clk_In2 should equal Clk_In1 and should be the same source clock. The RESETN pin has a 62 kΩ internal pull-up resistor, so if left floating the chip will not be in reset mode. The TRIGGER pin has an internal 100 kΩ pull down resistor. If left floating (and at default polarity) then the sensor state will not be affected by this pin (ie defaults to ‘not triggered’ mode if floated) All of the DI and DO pins nominally operate at 0 V  2.0 V and are associated with the VDD_DIG power supply. The SPI_MS pin has an internal 100 kΩ pull down resistor. If left floating the CPOL/CHPA will be compatible with CPOL=CPHA=0 or CPOL=CPHA=1 POWER PIN DESCRIPTION Name Voltage Pins Description VDD_LVDS 3.3V D C04, C05, C23, C24, D04, D24, E04, E24, AA04, AA24, AB04, AB24, AC04, AC05, AC23, AC24 LVDS output supply VDD_DIG 2.0V D C18, C19, C20, C21, C22, D18, D19, D20, D21, D22, D23, E08, E18, E20, E21, E22, AA18, AA20, AA21, AA22, AB18, AB19, AB20, AB21, AB22, AB23, AC18, AC19, AC20, AC21, AC22, AB15 Digital core supply VDD_HV 3.5V A C11, D11, E11, AA11, AB11, AC11, C10, D10, E10, AA10, AB10, AC10 Pixel supply 1 Vref_P 2.8V A C13, D13, E13, AA13, AB13, AC13 Pixel supply 2 AVDD_LV 1.8V A C17, D16, D17, E17, AA17, AB16, AB17, AC17 Analog low voltage supply Vpixel_low 0V E09 Pixel Supply 3. Combine with VSS for normal operation. Can be pulsed for Extended Dynamic Range Operation VSS 0V A02, A14, A26, B14, C03, C06, C12, C14, C25, D03, D12, D14, D25, E03, E12, E19, E23, E25, AA03, AA12, AA19, AA23, AA25, AB03, AB12, AB14, AB25, AC03, AC06, AC12, AC14, AC25, AD14, AE02, AE14, AE26, D15, E15, AA09 Sensor ground reference No Connect NA A01, E14, E16, C09, D09, D05, D06, AA16, AC09 Unused and test-only pins. These pins must be floated. www.truesenseimaging.com Revision 1.1 PS-1593 Pg 9 KAC-06040 Image Sensor LVDS PIN DESCRIPTION Pin E01 1DCLK+ E02 1DCLK- D01 D02 C01 Name Descr Pin Name C07 3DCLK+ C08 3DCLK- 1DATA0+ A07 1DATA0- B07 1DATA1+ A08 Bank 1 LVDS Clock Descr Pin Name C15 5DCLK+ C16 5DCLK- 3DATA0+ A15 3DATA0- B15 3DATA1+ A16 Bank 3 LVDS Clock Descr Pin A22 7DCLK+ B22 7DCLK- 5DATA0+ A23 7DATA0+ 5DATA0- B23 7DATA0- 5DATA1+ A24 7DATA1+ Bank 5 LVDS Clock C02 1DATA1- B08 3DATA1- B16 5DATA1- B24 7DATA1- B01 1DATA2+ A09 3DATA2+ A17 5DATA2+ A25 7DATA2+ B02 1DATA2- A03 1DATA3+ B03 1DATA3- A04 1DATA4+ Bank 1 LVDS Data B09 3DATA2- A10 3DATA3+ B10 3DATA3- A11 3DATA4+ Bank 3 LVDS Data B17 5DATA2- A18 5DATA3+ B18 5DATA3- A19 5DATA4+ Bank 5 LVDS Data B25 7DATA2- B27 7DATA3+ B26 7DATA3- C27 7DATA4+ B04 1DATA4- B11 3DATA4- B19 5DATA4- C26 7DATA4- A05 1DATA5+ A12 3DATA5+ A20 5DATA5+ D27 7DATA5+ B05 1DATA5- B12 3DATA5- B20 5DATA5- D26 7DATA5- A06 1DATA6+ A13 3DATA6+ A21 5DATA6+ E27 7DATA6+ B06 1DATA6- B13 3DATA6- B21 5DATA6- E26 7DATA6- Pin AA01 0DCLK+ AA02 0DCLK- AB01 Name Descr Pin Name AC07 2DCLK+ AC08 2DCLK- 0DATA0+ AE07 AB02 0DATA0- AC01 0DATA1+ AC02 0DATA1- AD01 0DATA2+ AD02 0DATA2- AE03 0DATA3+ AD03 0DATA3- Bank 0 LVDS Clock Bank 0 LVDS Data Descr Pin Name Descr Pin Name AC15 4DCLK+ AC16 4DCLK- AD22 6DCLK- 2DATA0+ AE15 4DATA0+ AE23 6DATA0+ AD07 2DATA0- AD15 4DATA0- AD23 6DATA0- AE08 2DATA1+ AE16 4DATA1+ AE24 6DATA1+ AD08 2DATA1- AD16 4DATA1- AD24 6DATA1- AE09 2DATA2+ AE17 4DATA2+ AE25 6DATA2+ AD09 2DATA2- AD17 4DATA2- AD25 6DATA2- AE10 2DATA3+ AE18 4DATA3+ AD26 6DATA3+ AD10 2DATA3- AD18 4DATA3- AD27 6DATA36DATA4+ Bank 2 LVDS Clock Bank 2 LVDS Data Bank 4 LVDS Clock Bank 4 LVDS Data AE22 6DCLK+ AE04 0DATA4+ AE11 2DATA4+ AE19 4DATA4+ AC26 AD04 0DATA4- AD11 2DATA4- AD19 4DATA4- AC27 6DATA4- AE05 0DATA5+ AE12 2DATA5+ AE20 4DATA5+ AB26 6DATA5+ AD05 0DATA5- AD12 2DATA5- AD20 4DATA5- AB27 6DATA5- AE06 0DATA6+ AE13 2DATA6+ AE21 4DATA6+ AA26 6DATA6+ AD06 0DATA6- AD13 2DATA6- AD21 4DATA6- AA27 6DATA6- Notes: 1. 2. 3. 4. 5. 6. Des cr Name Bank 7 LVDS Clock Bank 7 LVDS Data Descr Bank 6 LVDS Clock Bank 6 LVDS Data All LVDS Data and Clock lines must be routed with 100 Ω differential transmission line traces. All the traces for a single LVDS Bank should be the same physical length to minimize skew between the clock and data lines. In 2 Bank mode, only LVDS banks 0 and 1 are active. In 4 Bank mode, only LVDS bank 0, 1, 2, and 3 are active. Float the pins of unused LVDS Banks to conserve power. Unused pins in active banks (due to ADC bit depth 10,000 - W/cm2 Design 27 7 13 Parasitic Light Sensitivity PLS - 728 - - Design 27 6 9 Dual-Video WDR - 140 RS 120 GS - dB Design 27 10, 11 Pulsed Pixel WDR (GS only) - 100 - dB Design 27 12, 11 Description Row Noise xIlumSat Notes 3 RS = Rolling Shutter operation mode, GS = Global Shutter operation mode, GR = Global Reset DS = Dual-Scan, TS = Tri-Scan www.truesenseimaging.com Revision 1.1 PS-1593 Pg 11 KAC-06040 Image Sensor KAC-06040-ABA Configuration (Monochrome) Description Symbol Wavelength (nm) Nom. Units Sampling Plan Temperature Tested At (°C) QEmax 550 850 900 52 15 9.0 % Design 27 Peak Quantum Efficiency Green NIR1 NIR2 Notes Test Responsivity 83 Design 27 20 Responsivity 7.3 Design 27 21 KAC-06040-CBA Configuration (Bayer RGB) Symbol Wavelengt h (nm) Nom. Units Sampling Plan Temperature Tested At (°C) QEmax 470 540 620 850 900 42 47 44 16 9.8 % Design 27 Responsivity Blue Green Red 18 36 39 Design 27 20 Responsivity Blue Green Red 1.6 3.1 3.4 Design 27 21 Description Peak Quantum Efficiency Gree n NIR1 NIR2 Notes 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Notes Test Measured per color, worst of all colors reported Value is over the range of 10% to 90% of photodiode saturation, Green response used. Uses 20LOG(PNe/ ne-T) Photodiode dark current made negligible Column Noise Correction active Row Noise Correction active Measured at ~70% illumination Storage node dark current made negligible GSE (Global Shutter Efficiency) = 1-1/PLS Min vs Max integration time at 30 fps WDR measures expanded exposure latitude from linear mode DR Min/Max responsivity in a 30 fps image Saturation Illumination referenced to a three line time integration. www.truesenseimaging.com Revision 1.1 PS-1593 Pg 12 KAC-06040 Image Sensor Typical Performance Curves QUANTUM EFFICIENCY Monochrome with Microlens Figure 3: Monochrome QE (with Microlens) www.truesenseimaging.com Revision 1.1 PS-1593 Pg 13 KAC-06040 Image Sensor Color (Bayer RGB) with Microlens Figure 4: Bayer QE (with Microlens) www.truesenseimaging.com Revision 1.1 PS-1593 Pg 14 KAC-06040 Image Sensor ANGULAR QUANTUM EFFICIENCY For the curves marked “Horizontal”, the incident light angle is varied along the wider array dimension. For the curves marked “Vertical”, the incident light angle is varied along the shorter array dimension. Figure 5: Monochrome Relative Angular QE (with Microlens) www.truesenseimaging.com Revision 1.1 PS-1593 Pg 15 KAC-06040 Image Sensor Figure 6: Monochrome Relative Angular QE (with Microlens) www.truesenseimaging.com Revision 1.1 PS-1593 Pg 16 KAC-06040 Image Sensor DARK CURRENT VERSUS TEMPERATURE Figure 7: Dark Current vs Temperature Note: “Dbl” denotes an approximate doubling temperature for the dark current for the displayed temperature range. www.truesenseimaging.com Revision 1.1 PS-1593 Pg 17 KAC-06040 Image Sensor POWER VS FRAME RATE The most effective method to set the frame rate is to use vertical blanking (Register 01F1h). Unnecessary chip operations are suspended during vertical blanking conserving significant power consumption and also minimizing the image storage time on the storage node when in Global Shutter Operation. Tri-scan can reach higher frame rates, but consumes more power at all frame rates. It is recommended use Dual-Scan unless the frame rate required can only be reached with Tri-Scan. The LVDS clock is ½ the PLL2 clock frequency. Figure 8: Dual-Scan Power vs Frame Rate, 10 bit mode Figure 9: Tri-Scan Power vs Frame Rate, 10 bit mode www.truesenseimaging.com Revision 1.1 PS-1593 Pg 18 KAC-06040 Image Sensor Power and Frame Rate vs ADC Bit depth Increasing the ADC bit depth impacts the frame rate by changing the ADC conversion time. The following figure shows the power and Frame rate range for several typical cases. For optimum image quality and power consumption the PLL2 and vertical blanking have been optimized for each bit depth and target frame rate. Because of the different parameters impacting the line time, Tri-Scan only has significant benefit at 10 bit operation. At 8 bit operation the LVDS readout time dominates the line time; and at 12 and 14 bit the ADC time dominates the line time and the pixel time is not significant. But at 10 bit operation Tri-Scan can almost halve the line time at the cost of additional power consumption. Figure 10: Dual-Scan ADC Bit Depth impact on Frame Rate and Power www.truesenseimaging.com Revision 1.1 PS-1593 Pg 19 KAC-06040 Image Sensor Figure 11: Tri-Scan vs Dual-Scan Power www.truesenseimaging.com Revision 1.1 PS-1593 Pg 20 KAC-06040 Image Sensor Defect Definitions OPERATION CONDITIONS FOR DEFECT TESTING Description Condition Operational Mode 10 bit ADC, 8 LVDS outputs, Global Shutter and Rolling Shutter modes, Dual-Scan, Black Level Clamp on, Column/Row Noise Correction on, 1x Analog Gain, 1x Digital Gain Notes Pixels Per Line 2832 Lines Per Frame 2128 Line Time 6.875 μsec Frame Time 8.25 msec Photodiode Integration Time 33 msec Storage Readout Time 7.85 msec Temperature 40 °C and 30 °C Light Source Continuous red, green and blue LED illumination (green only for monochrome sensor) Operation Nominal operating voltages and timing, PLL1 = 320 MHz, PLL2 = 410 MHz DEFECT DEFINITIONS FOR TESTING Description Definition Dark Field Defective Pixel 29 °C RS: Defect ≥ 20 dn GS: Defect ≥ 180 dn Limit Bright Field Defective Pixel Defect ≥ ±12% from local mean Cluster Defect A group of 2 to 10 contiguous defective pixels, but no more than 3 adjacent defects horizontally 11 Column/Row Major Defect A group of more than 10 contiguous defective pixels along a single column or row 0 Dark Field Faint Column/Row Defect RS: 3 dn threshold GS: 10 dn threshold 0 17 Bright Field Faint Column/Row Defect RS: 12 dn threshold GS: 18 dn threshold 0 18 40 °C RS: Defect ≥ 30 dn GS: Defect ≥ 240 dn 60 Test Notes 4 3, 4 5 1, 4 2 Notes: RS = Rolling Shutter, GS = Global Shutter 1. For the color devices, all bright defects are defined within a single color plane, each color plane is tested 2. Cluster defects are separated by no less than two good pixels in any direction. 3. Rolling Shutter Dark Field points are dominated by photodiode integration time, Global Shutter Dark Field defects are dominated by the readout time. 4. The net sum of all bright and dark field pixel defects in rolling and global shutter are combined and then compared to the test limit www.truesenseimaging.com Revision 1.1 PS-1593 Pg 21 KAC-06040 Image Sensor Test Definitions TEST REGIONS OF INTEREST Image Area ROI: Pixel (0, 0) to Pixel (2847, 2143) Active Area ROI: Pixel (8, 8) to Pixel (2839, 2135) Only the Active Area ROI pixels are used for performance and defect tests. 88 8 B G B G G R G R 2832 (H) x 2128 (V) 4.7 µm pixel 8,8 88 8 8 88 0,0 B G G R 8 88 Figure 12: Regions of Interest TESTS 1) Dark Field Local Non-Uniformity Floor (DSNU_flr) This test is performed under dark field conditions. A 4 frame average image is collected. This image is partitioned into 180 subregions of interest, each of which is 190 by 178 pixels in size. For each sub-region the standard deviation of all its pixels is calculated. The dark field local non-uniformity is the largest standard deviation found from all the sub regions of interest. Units: e rms (electrons rms) 2) Bright Field Local Photoresponse Non-Uniformity (PRNU_1) The sensor illuminated to 70% of saturation (~700 dn). In this condition a 4 frame average image is collected. From this 4 frame average image a 4 frame average dark image is subtracted. The Active Area Standard Deviation is the standard deviation of the resultant image and the Active Area Signal is the average of the resultant image.  Active Area Standard Deviation   PRNU_1 100 *  Active Area Signal   Units: %rms www.truesenseimaging.com Revision 1.1 PS-1593 Pg 22 KAC-06040 Image Sensor 3) Bright Field Global Non-Uniformity (PRNU_2) This test is performed with the sensor uniformly illuminated to 70% of saturation (~700 dn), a 4 frame average image is collected and a 4 frame averaged dark image is subtracted. The resultant image is partitioned into 180 subregions of interest, each of which is 190 by 178 pixels in size. The average signal level of each sub regions of interest (sub-ROI) is calculated. The highest sub-ROI average (Maximum Signal) and the lowest sub-ROI average (Minimum Signal) are then used in the following formula to calculate PRNU_2. PRNU_2  100 * Maximum Signal - Minimum Signal Active Area Signal Units: %pp 4) Dark Field Defect Test This test is performed under dark field conditions. The sensor is partitioned into 390 subregions of interest, each of which is 128 by 128 pixels in size. In each region of interest, the median value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the defect threshold specified in the Defect Definition Table section. 5) Bright Field Defect Test This test is performed with the imager illuminated to a level such that the output is at approximately 700 dn. The average signal level of all active pixels is found. The bright and dark thresholds are set as: Dark defect threshold = Active Area Signal * threshold Bright defect threshold = Active Area Signal * threshold The sensor is then partitioned into 390 subregions of interest, each of which is 128 by 128 pixels in size. In each region of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the bright threshold specified or if it is less than or equal to the median value of that region of interest minus the dark threshold specified. Example for bright field defective pixels:  Average value of all active pixels is found to be 700 dn  Lower defect threshold:  A specific 128 x 128 ROI is selected:  700 dn * 12 % = 84 dn o Median of this region of interest is found to be 690 dn. o Any pixel in this region of interest that is ≤ (690 - 84 dn) in intensity will be marked defective. o Any pixel in this region of interest that is ≥ (690 - 84 dn) in intensity will be marked defective All remaining 299 sub regions of interest are analyzed for defective pixels in the same manner. www.truesenseimaging.com Revision 1.1 PS-1593 Pg 23 KAC-06040 Image Sensor 6) Parasitic Light Sensitivity (PLS) Parasitic Light Sensitivity is the ratio of the light sensitivity of the photodiode to the light sensitivity of the storage node in Global Shutter. There is no equivalent distortion in Rolling Shutter. A low PLS value can provide distortion of the image on the storage node by the scene during readout. (unitless ratio) GSE (Global Shutter Efficiency) is a related unit. ( ) Detailed method: Photodiode Responsivity: The sensor is set in global shutter serial mode (integration time not overlapping readout) and the FLO signal is used to control a 550 nm normal incident (or large f# focused) illumination source so that the sensor is illuminated only during photodiode integration time (not illuminated during readout time). The integration time is not critical but should be large enough to create a measurable mean during this time. A 16 frameaverage illuminated photodiode image is recorded. A 16 frame-average dark frame using the same sensor settings is captured and is subtracted from the illuminated image. Detailed method: Storage Node Responsivity: The sensor is set to a special characterization mode where the PD signal is discarded and does not impact the storage node. A long total frame time (storage node exposure time) is used to increase the storage node signal. A 16 frame-average dark frame is captured. The sensor is illuminated by the same 550nm incident light source used for the photodiode responsivity. A 16 frame-average illuminated photodiode image is recorded; the dark frame image is subtracted from this. The integration time is not critical but should be set such that a significant response is detected, typically several orders of magnitude greater than the photodiode integration time. 7) Black-Sun Anti-blooming A typical CMOS image sensor has a light response profile that goes from 0 dn to saturation (1023 dn for KAC-06040 in 10 bit ADC mode) and, with enough light, back to 0 dn. The sensor reaching 0 dn at very bright illumination is often called the “Black-sun” artifact and is undesirable. Black-sun artifact is typically the dominant form of anti-blooming image distortion. For the KAC-06040 the Black-sun artifact threshold is measured at the onset of saturation distortion, not at the point where the output goes to 0 dn. To first order the onset of black-sun artifact for the KAC-06040 is not proportional to the integration time or readout time. 2 The sensor is placed in the dark at unity gain and illuminated with a 532 nm laser with the intensity of about 26 W/cm at the center of the sensor. The laser is strong enough to make the center of the laser spot below 1020 dn without any ND filters. ND filters are added to adjust the laser intensity until the signal in the region at the center of the spot increases to >1020 dn. 2 This illumination intensity at this ND filter is recorded (W/cm ) as the Black-Sun Anti-blooming. The ‘xIlumSat’ unit is calculated using and integration time of 100 µsec. Exposing the sensor to very strong illumination for extended periods of time will permanently alter the sensor performance in that localized region. www.truesenseimaging.com Revision 1.1 PS-1593 Pg 24 KAC-06040 Image Sensor 8) Read Noise This test is performed with no illumination and one line of integration time. The read noise is defined as one standard deviation of the frequency histogram containing the values of all pixels after the excessively deviant pixels (± three standard deviations) are removed. 9) Column Noise After all rows are averaged together. Shading (low frequency change wrt column address) is removed. A frequency histogram is constructed of the resulting column values. The column noise is the standard deviation of the frequency histogram of the column values. This Metric includes both temporal and FPN. 10) Row Noise All columns are averaged together. Shading (low frequency change wrt row address) is removed. A frequency histogram is constructed of the resulting row values. The row noise is the standard deviation of the frequency histogram of the row values. This Metric includes both temporal and FPN. 11) Maximum Photoresponse Non-Linearity The photoresponse nonlinearity is defined as the deviation from the best fit of the sensor response using 70% of saturation and zero signal as the reference points. The different signal levels are determined by varying the integration time. The sensor saturation level is (1023-dark offset). The dark offset is subtracted from the image for the following Mavg and Lavg.  The integration time is varied until the integration time required to reach the 70% saturation is determined. Mavg = the active array mean at the 70% saturation integration time.  The integration is set to 1/14 (5% exposure point). Lavg = meant at the 5% exposure point  PRNL (@ 5% saturation) =( (Lavg/Mavg) * (14/1) -1) * 100 12) Maximum Gain Difference Between Outputs The LVDS outputs contain no gain or offset error since these are purely digital segmentations. The predominant output mismatch comes from the pixel array readout segmentation. The sensor contains two ADC banks and four channels of analog line stores in its highest frame rate configuration, Tri-Scan. The sensor is factory calibrated to th match the gain differences between all four possible gain channels. The gain variations are manifest as an every 4 row gain pattern. In tri-scan, and an even/odd row gain difference in Dual-Scan. The sensor is factory calibrated to match the four possible row gains. This test is performed in Tri-Scan mode to test the worst case gain error including all possible 4 row gains after the calibration has been applied. The sensor is illuminated at 70% of saturation. The entire th test frame ROI into 4 groups of every 4 row. The first row group(average) is used as a reference and the following three row groups are compared to the first. The largest error is reported. ( (Second Row Average/First Row Average) -1 ) * 100 ( (Third Row Average/Frist Row Average) -1 ) * 100 ( (Fourth Row Average/First Row Average) -1 ) * 100 www.truesenseimaging.com Revision 1.1 PS-1593 Pg 25 KAC-06040 Image Sensor 13) Photodiode Dark Current The photodiode dark current is measured in rolling shutter read out mode using 105 msec integration time and an analog gain = 8. The value is converted to electrons/pix/sec using the formula: Photodiode dark current = average signal (DN) * el-per-DN (gain=8) / .105 seconds where ‘average signal (DN)’ is the average of all pixels in the sensor array, and ‘el-per-DN(gain=8)’ is measured on each sensor using the photon transfer method. 14) Storage Node Dark Current The storage node dark current is measured in global shutter read out mode using a special timing mode to prevent the photodiode dark current from being transferred to the storage node. In global shutter mode, the integration time of the storage node is the time it takes to read out a frame. The sensor analog gain is set to 2: Storage node dark current = average signal (DN) * el-per-DN (gain=2) / .0138 seconds where ‘average signal (DN)’ is the average of all pixels in the sensor array and ‘el-per-DN(gain=2)’ is measured on each sensor using the photon transfer method. 15) Lag Lag is measured as the number of electrons left in the photodiode after readout when the sensor is illuminated at 70% of Photodiode Charge Capacity. Analog gain is set to 8. With no illumination a 64 average dark image is recorded (Dark_ref). The ‘el-per-DN’ is measured using the photon transfer method. Illumination is adjusted blink every other frame such that the mean image output is 70% of the Photodiode Charge Capacity for even frames, and with no illumination for odd frames. A 64 frame average of Odd Dark Frames is recorded as Dark_Lag. Lag = (Dark_Lag - Dark_Ref) * el-per-DN’ Units: electrons rms 16) Photodiode Charge Capacity The sensor analog gain is reduced to 5 Sigma). All columns or rows are averaged together. The average of the local ROI of 128 columns or rows about the column/row being tested is determined. Any columns/rows greater than the local average by more than the threshold are identified. www.truesenseimaging.com Revision 1.1 PS-1593 Pg 26 KAC-06040 Image Sensor 18) Bright Field Faint Column/Row Defect A 4 frame average, 70% illumination image is acquired at one line time of integration. Major defective pixels are removed (> 5 Sigma). All columns or rows are averaged together. The average of the local ROI of 128 columns or rows about the column/row being tested is determined. Any columns/rows greater than the local average by more than the threshold are identified. 19) Total Pixelized Noise This test is performed with no illumination and one line of integration time. A single image is captured including both Temporal and Fixed Pattern Noise (FPN). A spatial low pass filter is applied to remove shading and excessively deviant pixels (± three standard deviations) are removed. The Total Pixelized Noise is defined as one standard deviation of the frequency histogram. 20) Responsivity ke/lux-sec This number is calculated by integrating the multiplication of the sensor QE by the human photopic response assuming a 3200K light source with a QT100 IR filter. This is a sharp 650nm cutoff filter. If the IR filter is removed a higher response value will result. 21) Responsivity V/lux-sec Voltage levels are not output from the sensor. This value uses the pixel output before analog gain to match the ADC input range. Including the ADC matching gain will result in a larger responsivity value. www.truesenseimaging.com Revision 1.1 PS-1593 Pg 27 KAC-06040 Image Sensor Operation This section is a brief discussion of the most common features and functions assuming default conditions. See the KAC-06040 User Guide for a full explanation of the sensor operation modes, options, and registers. REGISTER ADDRESSES The last bit of any register address is a Read/Write bit. Most references in this document refer to the Write address. All SPI reads are to an even address, all SPI writes are to an odd address. SENSOR STATES Figure 13 shows the sensor states, see the KAC-06040 User Guide for detailed explanation of the States. RESETN low or reset Reg 4060h RESET
KAC-06040-CBA-JD-AA 价格&库存

很抱歉,暂时无法提供与“KAC-06040-CBA-JD-AA”相匹配的价格&库存,您可以联系我们找货

免费人工找货