0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LC823450XATBG

LC823450XATBG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    154-WFBGA,WLCSP

  • 描述:

    IC AUDIO PROCESSOR LSI 154WLCSP

  • 数据手册
  • 价格&库存
LC823450XATBG 数据手册
LC823450 Low Power & High-Resolution Audio Processing System LSI for Portable Sound Solution www.onsemi.com Description LC823450 is an ultra−low power, 32−bit, 192 kHz high−resolution audio−capable signal processing system−on−chip (SoC). It consists of dual ARM Cortex−M3, 32−bit DSP (LPDSP32) core, hard wired MP3 encoder/decoder, and integrated SRAM. It is also equipped with analog peripheral functionality, such as PLLs, class−D stereo HP amplifier, 6−band equalizer and ADCs/DACs. Our proprietary LPDSP32 supports Noise/Echo cancellation, and playback speed control capability for MP3, WMA, AAC and PCM with VBR. With fine−tuned power management and dedicated hard wired audio blocks, LC823450 provides a significantly longer battery life without compromising audio quality, for voice recorders and wearable audio applications. This document describes features, basic functions, electrical specifications, characteristics, application diagram and package dimension of this LSI. TQFP128 14 x 14/ TQFP128L CASE 932BA WLCSP154 5.52 x 5.33 CASE 567LD Features • • • • • • • • • Ultra Low Power Consumption Arm® Cortex®−M3 Dual Core Proprietary 32−bit DSP Core (LPDSP32) Internal Large Scale Size SRAM: 1656 kB (1.5 MB + 120 kB) High−Resolution 32−bit & 192 kHz Audio Processing Capability Several DSP Codes Available for Audio Functions Hard Wired Audio Functions Built−in MP3 Decoder, MP3 Encoder 6 Band Equalizer Synchronous SRC, Asynchronous SRC, etc. Analog Blocks Built−in System PLL, Audio PLL 16−bit DAC, Class−D amp, etc. USB2.0 Device and USB2.0 Host with a Integrated PHY eMMC and SD card I/F Serial Flash I/F(Quad) with Cache Memory SPI, UART, I2C, etc. LFBGA240 11 x 11 CASE 566EY ORDERING INFORMATION See detailed ordering and shipping information on page 53 of this data sheet. Typical Applications • • • • Sound Recorders Wearable Audio Players Bluetooth Headsets Smart Phone Accessories © Semiconductor Components Industries, LLC, 2017 June, 2018 − Rev. 9 1 Publication Order Number: LC823450/D LC823450 ABSTRACT Features • Cortex−M3 Dual Core, AMBA® (AHB/APB) System ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ 1 2 ♦ Internal SRAM (1.5M-byte) Internal ROM (256k-byte). Boot code, Standard Functions SDRAM Controller (1 * CS) 64M to 256Mbit SDRAM / Mobile SDRAM External Memory Controller (2 * CS) NOR FLASH, SRAM, ROM supported, 8/16 bit I/F LCD controller supported Internal ROM boot and External memory device boot available DMA Controller (8ch) Interrupt Controller (External 90ch, Internal 82ch) SPI (1ch) Serial Flash I/F (1ch) Quad SPI, cache memory (16k-byte, 4way set associative, 128line) function available 1.8V dedicated power supply UART (3ch) UART1: w/flow control (CTS, RTS) UART0, UART2: w/o flow control I2C (2ch) Single Master, Full/Standard GPIO (90ch) Plain Timer w/ Watch Dog Timer (1ch×3) Multiple Timer (2ch×4) 10bit ADC (6ch) SD Card I/F (3ch) eSD/eMMC, UHS−I, w/o CPRM − SD0: eSD/eMMC boot supported (Internal ROM Boot function) 1.8 V dedicated power supply − SD1: Multiplexed w/ Memory Stick I/F 1.8 V dedicated power supply − SD2: 1.8 V dedicated power supply Memory Stick I/F (1ch) Multiplexed w/ SD1 USB2.0 Host (HS/FS/LS) Controller, Device (HS/FS) Controller. Integrated PHY Xtal (XT1) is required for USB function. 48 MHz for Host, and 12,20,24,48 MHz for device w/o OTG function. Host and Device share an integrated PHY. ♦ Real Time Clock 2 modes below are available − General RTC mode: RTC w/o key input − KeyInt RTC mode: RTC w/ key input which enables power on function SWD (Serial Wire Debug) is supported as the debug interface. SWV (Serial Wire Viewer) is supported as the trace interfaceOnly one of Cortex−M3 Dual Core can be traced. Availability of features explained here depends on products. • MP31 Hard Wired Encoder/Decoder ♦ MP3 MPEG1, MPEG2, MPEG2.5 − Sampling rate: 8 kHz,11.025 kHz,12 kHz,16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz − Bit rate:8 Kbps to 320 Kbps (Decoder−VBR supported) • LPDSP32 System ♦ Internal SRAM (120 kbyte) ♦ Internal ROM (220 kbyte) ♦ WMA2 (Microsoft WMA Decoder Profile Level3) − Sampling rate: 8 kHz, 11.025 kHz, 16 kHz, 22.05 kHz, 32 kHz, 44.1 kHz, 48 kHz − Bit rate: 5 Kbps to 320 Kbps (VBR supported) ♦ AAC (MPEG4 LC−AAC) − Bit rate: 8 Kbps to 320 Kbps (VBR supported) ♦ Variable Speed Control playback (0.5 to 4.0 times speed) − While WMA and AAC playback, up to 2.0 time speed − While PCM playback, up to 4.0 times speed − While MP3 playback w/ hard wired decoder, up to 4.0 times speed ♦ Noise Canceller, etc. ♦ JTAG ICE MPEG Layer−3 audio coding technology licensed from Fraunhofer IIS and Thomson. Supply of this product does not convey license nor imply any right to distribute content created with this product in revenue−generating broadcast systems (terrestrial, satellite, cable and/or other distribution channels), streaming applications (via Internet, intranets and/or networks), other content distribution systems (pay−audio or audio−on−demand applications and the like) or on physical media (compact discs, digital versatile discs, semiconductor chips, hard drives, memory cards and the like). For details, please visit http://mp3licensing.com/ Supply of this product does not convey license under the relevant intellectual property of Thomson and/or Fraunhofer Gesellschaft nor imply any right to use this product in any finished end user or ready−to−use final product. An independent license for such use is required. For details, please visit http://mp3licensing.com/. This product contain technology of Microsoft company ownership, and you cannot distribute or use without getting license from Microsoft Licensing company. www.onsemi.com 2 LC823450 • Bluetooth Protocol Stack Available3 • Other Audio Functions Available: • Power Supply ♦ 6band Equalizer (EQ3) Volume, Mute ♦ Level Meter ♦ Audio Timer w/ interrupt generation ♦ 16/24/32bit 192 kHz PCM I/F (2ch×2). Master/slave, I2S ♦ SSRC (Synchronous Sampling Rate Converter) 0.25 to 64 conversion capable ♦ ASRC (Asynchronous Sampling Rate Converter) jitter reducing function supporting USB audio class and Bluetooth streaming ♦ Beep generator ♦ Digital Microphone I/F (2ch×1) ♦ 16bit Audio DAC (2ch) w/ Class−D Amplifier for Head Phone (2ch). Need external LC LPF Audio Clock Generation ♦ Dedicated PLL for audio(PLL2:1 V and PLL3:3 V operation integrated) ♦ Selectable PLL reference clock XT1 (1 to 50 MHz Main xtal) XTRTC (32.768 KHz RTC xtal) PCM I/F MCLK0 (/MCLK1), BCK0, BCK1 ♦ ♦ • 3 Typical voltage: − LOGIC(Vdd1), XT1(VddXT1), PLL1(AVddPLL1), PLL2(AVddPLL2) = 1.0 V − PLL3(AVddPLL3) = 3.3 V − RTC(VddRTC) = 1.0 V − I/O(Vdd2) = 1.8 V or 3.3 V − SD0(VddSD0) = 1.8 V or 3.3 V − SD1(VddSD1) = 1.8 V or 3.3 V − SD2(VddSD2) = 1.8 V or 3.3 V − S−Flash I/F(VddQSPI) = 1.8 V or 3.3 V − ADC(AVddADC) = 3.3 V − USB PHY1(AVddUSBPHY1, DVddUSBPHY1) = 1.0 V(w/o USB connection) or 1.2 V (w/ USB connection) − USB PHY2(AVddUSBPHY2) = 2.8 V (w/o USB connection) or 3.3 V (w/ USB connection) − Class−D Amplifier(AVddDAMPL,AVddDAMPR) = 1.2 V The product name for which Bluetooth Protocol Stack is available is determined. Please contact our representative for license fee for the Stack. Copyright 1999−2014 OpenSynergy GmbH All rights reserved. All unpublished rights reserved. www.onsemi.com 3 LC823450 Package Code and Functional Difference Table 1. FUNCTIONAL DIFFERENCE Function Package Code TA Package Cortex−M3 Dual Core XA, XC TQFP128L XB, XD WLP154 Single Single LFBGA240 Dual SDRAM Controller 8bit I/F (LCD I/F, etc.) Available 8bit I/F (LCD I/F, etc.) Available Available Available 10bit ADC Conversion Speed MAX 5 MHz MAX 20 MHz (Note 3) 10bit ADC Reference Voltage VRH = AvddADC VRL = AVssADC (Note 2) VRH = AVddADC and lower VRL = AVssADC and higher PCM1(PCM I/F ch1) BCK1/LRCK1 share pins with other function Available Available Available MP3 Hard Wired Encoder Available Available Available 16bit Audio DAC, Class−D AMP Available Available Available PLL2 (1 V PLL) PLL3 (3 V PLL) Only PLL2 Available Available Only PLL2 XTALINFO[1:0] Input “00” (24 MHz) Available Available Available “1” (General RTC mode) Available Available Available Available Available Available RTCMODE Input KEYINT[2:0] Input 1. 2. 3. 4. Dual Available External Memory Controller SD2 RA, RB External Interrupt 45 ch 61 ch 61 ch 90 ch GPIO 45 ch 61 ch 61 ch 90 ch Pin shared for multiple function. Refer to Terminal Functions for details. VR is open inside. VRH = AvddADC, VRL = AVssADC inside. While there is decoupling capacitor. If not, it should be 5 MHz. www.onsemi.com 4 LC823450 Block Diagram SWD/SWV ICE 1Mhz∼ 50MHz JTAG ICE XT1 Arm Cortex−M3 Arm Cortex−M3 32.768kHz XTRTC DMAC (8ch) LPDSP32 Multilayer Bus EXT4 SDRAM CTRL S−Flash I/F (1ch) Cache (16 Kbyte) BASIC PHY XT1 Plain Timer (1ch×3) ROM (220k byte) ISOLATED−D SRAM (512k byte) SRAM (512k byte) ISOLATED−B ISOLATED−C ISOLATED−I ISOLATED−E External Memory Controller Main Module Manager SRAM (120k byte) ISOLATED−G Reset Controller USB 2.0 APB Bridge BUF (4.5 Kbyte) SRAM (512k byte) USB 2.0 Host USB 2.0 Device ROM (256k byte) 10bit ADC (6ch) Multiple Timer (2ch×4) PORT0∼4 (80 I/O) PORT5 (10 I/O) UART (3ch) I2C (2ch) SPI (1ch) RTC EXT1 ISOLATED−H BUF (512/512 byte x 3) SD I/F (3ch) OSC System PLL MS I/F MS PB XT1 XTRTC RC EXT3 XTRTC OSC ATM Audio Buffer (64 Kbyte) ISOLATED Audio PLL BEEP VOLUME MP3 Decoder PCM I/F PCM I/F Digital Mic 16bit Audio DAC MP3 Encoder EQ3 METER MUTE SSRC BCK0/1 MCLK0/1 (PCM I/F) XT1 XTRTC AHB CLK (HCLK) ASRC ISOLATED−A Class−D AMP Figure 1. Top www.onsemi.com 5 ISOLATED−F not used intenationally EXT2 not used intenationally LC823450 Bus Matrix Arm Cortex−M3 DMAC (8ch) LPDSP32 USB 2.0 Host OHCI EHCI PM DMB DMA DMIO D−bus i−bus System−Bus D−Bus I−Bus System−Bus System ROM LPDSP32 ROM SRAM (Seg 0) . . . Arm Cortex−M3 SRAM (Seg 8) SRAM (Seg 9) BASIC Peripheral EXT1 Peripheral EXT3 Peripheral EXT4 Peripheral APB Peripheral Figure 2. Bus Matrix www.onsemi.com 6 LC823450 Audio 64KB SRAM divided into A ~ N Audio Buffers by register settings Internal Bus A buffer 8 MP3 Encoder RAM B buffer BIT1−0, MONO Dredirect E redirect Jredirect L redirect 16 Bit conv Bit conv Gredirect RAM Nredirect 24 C buffer 0 BIT1−0, MONO D E C S E L E redirect Jredirect Lredirect 8 Bit conv Bit conv Gredirect RAM Nredirect MP3 Decoder 16 1 24 METER (DEC) MUTE (DEC) 32 D buffer 32Bit conv RAM 24 VOLUME (DEC) Bit conv BIT1−0, MONO SSRC 24 32 E buffer 32 RAM Bit conv 32 VOLUME (SP0) EQ3 BIT1−0, MONO F buffer BIT1−0, MONO S I N S E L 0 1 SINGEN 32 Bit conv Bit conv Jredirect RAM 32 0 32 E redirect L redirect 1 DWNMIX (PS0) EQ3 VOLUME (PS0) MUTE (PS0) S E L Digtal Mic DMCKO0 DMDIN0 DMCKO1 DMDIN1 PCMSP 0 PCM input DIN0 (PCM input) PCM PS0 PCM output DOUT0 (PCM output METER (SP0) Dredirect Gredirect P C M S E L BEEP 24 16bit Audio DAC Class−D AMP LOUT ROUT Nredirect METER (SP1) G buffer AudioTimer0 32 RAM MCLK0/ BCK0/ LRCK0 METER (PS0) LRCK0 VOLUME (SP1) Bit conv BIT1−0, MONO H buffer 32 BIT1−0, MONO Dredirect Bit conv Gredirect Jredirect L redirect DWNMIX (PS1) VOLUME (PS1) 32 RAM Nredirect BIT1−0, MONO AudioTimer1 Dredirect E redirect L redirect Nredirect 24 Bit conv Bit conv Gredirect RAM ASRC J buffer 32Bit conv RAM 24 Bit conv BIT1−0, MONO K buffer BIT1−0, MONO Dredirect E redirect Bit conv Gredirect Jredirect Nredirect L buffer RAM RAM CBIT1−0, CMONO Bit conv 32Bit conv BIT1−0, MONO M buffer 32 BIT1−0, MONO Dredirect E redirect Bit conv Gredirect Jredirect L redirect RAM RAM CBIT1−0, CMONO N buffer Bit conv PCM PS1 PCM output DIN1 (PCM input) 32Bit conv BIT1−0, MONO Figure 3. Audio www.onsemi.com 7 DOUT1 (PCM output MCLK1/ BCK1/ LRCK1 METER (PS1) I buffer PCM input 32 Bit conv E redirect PCM SP1 LRCK1 LC823450 FCLKCNT ・ ・ ・ ・ ・ ・ Clock Hierarchy PHI1 pin 1MHz~ 50MHz XT1 SYSTEM PLL (PLL1) 1/4 1/4 XT1 (XIN1/XOUT1 pin) 1/2 32.768kHz 1/1、 1/2、 1/4、 1/8、 1/16 XTRTC (XIN32K/XOUT32K pin) 1/4 PHI0 pin XTRTC 1/1、 1/2、 1/4、 1/8、 1/16 PLL1 XT1 RC BASIC CLK ADC MCLKCNTAPB M3Core0 CORECNT M3Core1 1/2、 1/4、 1/8、 1/16、 1/32、 1/64 [Note] PORT0 INTC PORT1 DMAC PORT2 Cache PORT3 PORT4 S−Flash I/ F PORT5 SCK1 RTC External Memory Controller(XMC) USB2.0 Host XTRTC I2C0 USB PHY XT1 I2C1 SCL1 1/{ (2~ 65535)×8} APB CLK(PCLK) MCLKCNTAPB UART0 1/(1~ 64) SCL0 1/{ (2~ 65535)×8} USB2.0 Device 1/(1~ 64) SCK0 1/{ (2~ 256)×4} SRAM/ ROM 1/1、 1/2、 1/4、 1/8 1/{ (1~ 8) + (0~ 63)/64} SPI − M3Core0, M3Core1 and LPDSP32 has additional clock gating switch enabled by the execution of a dedicated operation. LPDSP32 MCLKCNTBASIC ADCCLK (Internal) 1/{ (8~ 16)× (1~ 65536)} AHB CLK(HCLK) UART1 MCLKCNTEXT1 MCLKCNTEXT1 1/{ (8~ 16)× (1~ 65536)} Plain Timer0 UART2 Plain Timer1 1/{ (8~ 16)× (1~ 65536)} Plain Timer2 CLOCKEN Multiple Timer0 MP3DEC Multiple Timer1 Multiple Timer2 MP3ENC 1/2 FS384 DECCLK 1/2、 1/4、 FS192 ENCCLK 1/4、 1/8、 1/8 1/1、 1/2、 1/4 1/16 Multiple Timer3 Audio PLL FS256 AUDIO Control XTRTC System PLL BEEP BCK1 XT1 1/4 MCLK0/MCLK1 (input) 1/1、 1/2、 1/4、 1/8 1/1、 1/2、 1/4、 1/8 AHB CLK (HCLK) − ENCCLK frequency should be 192 * FS while FS is Sampling Frequency of MPEG1 mode of MP3. ex.) ENCCLK should be 8.4672MHz to make all of MP3 data 44.1/22.05/11.025KHz (MPEG1/MPEG2/MPEG2.5). VOLUME SP1 VOLUME PS1 − DECCLK frequency should be 384 * FS while FS is Sampling Frequency of MPEG1 mode of MP3. ex.) DECCLK should be 16.9344MHz to make all of MP3 data 44.1/22.05/11.025KHz (MPEG1/MPEG2/MPEG2.5). METER DEC SDCLK2 BCK0 − Regarding the frequency of SSRCFCCLK and ASRCFCCLK, refer to the SSRC and ASRC Programmer’ s Model documents. VOLUME PS0 SD1(Card Detect) (PLL2 or PLL3) − Regarding the initial value of switches described in this figure, refer to the appropriate documents. VOLUME SP0 1/1、 1/2、 1/4、 1/8、 1/16、 1/32、 1/64、 1/128、 1/256、 1/512 XTRTC AUDIO PLL [Note] VOLUME DEC SD1(Main Function) METER SP0 METER PS0 1/1、 1/2、 1/4、 1/8、 1/16、 1/32、 1/64、 1/128、 1/256、 1/512 METER SP1 METER PS1 SD2(Main Function) MUTE DEC SD2(Card Detect) MS I/ F MCLKCNTEXT1 ASRCFCLK EQ3 SDCLK1 MCLKCNTEXT1 SSRCFCLK ASRC 1/1、 1/2、 1/4、 1/8、 1/16、 1/32、 1/64、 1/128、 1/256、 1/512 SD0(Card Detect) MCLKCNTEXT1 FS768 FS384 SSRC SD0(Main Function) MCLKCNTEXT1 1/1、 1/2、 1/4 1/3 1/2 OSC System SDCLK0 MCLKCNTEXT1 AUDCLK 1/1、 1/2、 1/4、 1/8、 1/16、 1/32 MUTE PS0 SCLK PCMPS0 PCMSP0 MS PageBuffer PCMPS1 PCMSP1 MCLKCNTEXT3 AudioTimer0 AUDIO BUFFER AudioTimer1 SINGEN 1/(1~ 64) MCLKCNTEXT4 − Class−D AMP has additional clock source and gating switch for being used as GPO. PCKGEN SDRAM CTRL SDRCLK AHB CLK (EXT4 only) [Note] DigitalMIC 1/ 1, 1/ 2, 1/ 4 Damp CTL FS384 Class−D AMP FCEDAC 16bit Audio DAC(Noise Shaping ) DAC(Main) 1/ 1, 1/ 2, 1/ 4 1/ 8, 1/ 16 Figure 4. Clock Hierarchy www.onsemi.com 8 1/ 1, 1/ 2, 1/ 4, 1/ 8, 1/ 16, 1/ 32 1/ 1, 1/ 21/ 4, 1/ 8, 1/ 16, 1/ 32 MCLK0/MCLK1 (output) LC823450 Memory Map All Area (Cortex−M3) 0x4005 FFFF 0x4004 F000 0x4004 D000 0x4004 C000 0x4004 B000 0x4004 A000 0x4004 9000 0x4004 8000 0x4004 7000 0x4004 6000 reserved MS SD2 SD1 SD0 PlainTimer2 PlainTimer1 PlainTimer0 MultipleTimer3 MultipleTimer2 MultipleTimer1 MultipleTimer0 AHB EXT1 peripherals 0xE010 0000 0xE004 0000 0xE000 0000 0x6402 0000 0x6000 0000 AHB EXT4 peripherals 0x6401 FFFF 0x6400 1000 0x6400 0000 0x6200 0000 0x6000 0000 System Private peripheral bus − External Private peripheral bus − Internal reserved AHB EXT 4 peripherals reserved APB peripherals AHB EXT 3 peripherals AHB EXT 1 peripherals BASIC peripherals SRAM memories external m emory reserved 0x4009 FFFF SD RAM CTRL reserved 0x4008 F000 0x4006 4000 0x4006 5000 0x4007 FFFF 0x4008 0000 0x4008 1000 0x4008 2000 0x4008 3000 0x4008 4000 0x4008 5000 0x4008 6 000 0x4008 7 000 0x4008 8 000 0x4008 9000 0x4008 A000 0x4008 B000 0x4008 C 000 0x4008 D 000 0x4008 E 000 SD RAM Memory A rea APB peripherals AHB EXT3 peripherals 0x4006 3000 0x4006 2000 0x4006 1000 0x4006 0000 reserved RTC UART 2 UART 1 UART 0 I2 C1 I2 C0 SPI ADC PORT 5 PORT 4 PORT 3 PORT 2 PORT 1 PORT 0 System Controller reserved Audio Controles MP3 Encoder MP3 Decoder Audio Functions Audio Buffer www.onsemi.com 0x4004 5000 0x4004 4000 0x4004 3000 Audio PLL System PLL 0x400A 0000 0x4008 0000 OSC System reserved 0x0000 0000 0x4000 0000 0x4006 0000 0x4004 0000 BASIC peripherals USB 2.0 device (DMAC) USB 2.0 device (CPU) reserved DSP CMDIF MUTEX REG DMAC INTC USB 2.0 Host S−Flash I/F External MEM RTL 9 0x4004 2000 0x4004 1000 0x4004 0000 0x4003 FFFF 0x4003 0000 0x4002 0000 0x4001 0000 0x4000 7000 0x4000 6000 0x4000 5000 0x4000 4000 0x4000 3000 0x4000 2000 0x4000 1000 0x4000 0000 Figure 5. All Area (Cortex−M3) LC823450 Code Area (Cortex−M3) Table 2. CODE AREA (CORTEX−M3) − UNREMAPPED (AFTER RESET) Cortex−M3−0 System − Bus I−Bus Cortex−M3−1 D−Bus System − Bus I−Bus USB20HC D−Bus Address Master/Slave 0x1C00 0000 Reserved 0x1A00 0000 External Memory 1 0x1800 0000 External Memory 0 0x0600 0000 Reserved 0x0500 0000 S−Flash I/F (Memory, Cache) 0x0224 0000 Reserved 0x0220 0000 256 KB Internal ROM 0x0219 E000 Reserved 0x0218 0000 120 KB Internal SRAM (seg 9) d d 0x0217 8000 32 KB Internal SRAM (seg 8) d d 0x0214 0000 224 KB Internal SRAM (seg 7) d d 0x0210 0000 256 KB Internal SRAM (seg 6) d d 0x020C 0000 256 KB Internal SRAM (seg 5) d d 0x020A 0000 128 KB Internal SRAM (seg 4) d d 0x0208 0000 128KB Internal SRAM (seg 3) d d 0x0204 0000 256 KB Internal SRAM (seg 2) d d 0x0202 0000 128 KB Internal SRAM (seg 1) d d 0x0200 0000 128 KB Internal SRAM (seg 0) d d 0x0004 0000 Reserved 0x0000 0000 256 KB Internal ROM Shadow Area d d d d d d d DMAC d d d www.onsemi.com 10 EHCI OHCI LC823450 Table 3. CODE AREA (CORTEX−M3) − REMAPPED (REMAP[1:0] = 2’B01) Cortex−M3−0 System − Bus I−Bus Cortex−M3−1 D−Bus System − Bus I−Bus USB20HC D−Bus Address Master/Slave 0x1C00 0000 Reserved 0x1A00 0000 External Memory 1 0x1800 0000 External Memory 0 0x0600 0000 Reserved 0x0500 0000 S−Flash I/F (Memory, Cache) 0x0224 0000 Reserved 0x0220 0000 256 KB Internal ROM 0x0219 E000 Reserved 0x0218 0000 120 KB Internal SRAM (seg 9) d d 0x0217 8000 32 KB Internal SRAM (seg 8) d d 0x0214 0000 224 KB Internal SRAM (seg 7) d d 0x0210 0000 256 KB Internal SRAM (seg 6) d d 0x020C 0000 256 KB Internal SRAM (seg 5) d d 0x020A 0000 128 KB Internal SRAM (seg 4) d d 0x0208 0000 128 KB Internal SRAM (seg 3) d d 0x0204 0000 256 KB Internal SRAM (seg 2) d d 0x0202 0000 128 KB Internal SRAM (seg 1) d d 0x0200 0000 128 KB Internal SRAM (seg 0) d d 0x0002 0000 Reserved 0x0000 0000 128 KB Internal SRAM (seg 0) Shadow Area d d 0x1C00 0000 Reserved d d d d d d d DMAC d www.onsemi.com 11 EHCI OHCI LC823450 Table 3. CODE AREA (CORTEX−M3) − REMAPPED (REMAP[1:0] = 2’B01) (continued) Cortex−M3−0 System − Bus I−Bus Cortex−M3−1 D−Bus System − Bus I−Bus USB20HC D−Bus Address Master/Slave 0x1A00 0000 External Memory 1 0x1800 0000 External Memory 0 0x0600 0000 Reserved 0x0500 0000 S−Flash I/F (Memory, Cache) 0x0224 0000 Reserved 0x0220 0000 256 KB Internal ROM 0x0219 E000 Reserved 0x0218 0000 120 KB Internal SRAM (seg 9) d d 0x0217 8000 32 KB Internal SRAM (seg 8) d d 0x0214 0000 224 KB Internal SRAM (seg 7) d d 0x0210 0000 256 KB Internal SRAM (seg 6) d d 0x020C 0000 256 KB Internal SRAM (seg 5) d d 0x020A 0000 128 KB Internal SRAM (seg 4) d d 0x0208 0000 128 KB Internal SRAM (seg 3) d d 0x0204 0000 256 KB Internal SRAM (seg 2) d d 0x0202 0000 128 KB Internal SRAM (seg 1) d d 0x0200 0000 128 KB Internal SRAM (seg 0) d d 0x0000 0000 External Memory 0 Shadow Area d d d d d d d d DMAC d d www.onsemi.com 12 EHCI OHCI LC823450 SRAM Area (Cortex−M3) Table 4. SRAM AREA (CORTEX−M3) Cortex−M3−0 System − Bus I−Bus Cortex−M3−1 D−Bus System − Bus I−Bus USB20HC D−Bus Master/Slave 0x2600 0000 Reserved 0x2500 0000 S−Flash I/F (Memory, Cache) d d d 0x2400 0000 S−Flash I/F (Memory, No Cache) d d d 0x2019 E000 Reserved 0x2018 0000 120 KB Internal SRAM (seg 9) Shadow Area d d d 0x2017 8000 32 KB Internal SRAM (seg 8) Shadow Area d d d 0x2014 0000 224 KB Internal SRAM (seg 7) Shadow Area d d d 0x2010 0000 256 KB Internal SRAM (seg 6) Shadow Area d d d 0x200C 0000 256 KB Internal SRAM (seg 5) Shadow Area d d d 0x200A 0000 128 KB Internal SRAM (seg 4) Shadow Area d d d 0x2008 0000 128 KB Internal SRAM (seg 3) Shadow Area d d d 0x2004 0000 256 KB Internal SRAM (seg 2) Shadow Area d d d 0x2002 0000 128 KB Internal SRAM (seg 1) Shadow Area d d d 0x2000 0000 128 KB Internal SRAM (seg 0) Shadow Area d d d www.onsemi.com 13 DMAC EHCI Address OHCI LC823450 Other Area (Cortex−M3) Table 5. OTHER AREA (CORTEX−M3) Cortex−M3−0 System − Bus I−Bus Cortex−M3−1 D−Bus System − Bus I−Bus Address Master/Slave 0xE010 0000 Reserved 0xE00F F000 ROM Table d (Note 5) d (Note 5) 0xE00F E000 CORE REG d (Note 5) d (Note 5) 0xE004 1000 Reserved 0xE004 0000 TPIU d (Note 5) d (Note 5) 0xE000 F000 Reserved 0xE000 E000 NVIC d (Note 5) d (Note 5) 0xE000 3000 Reserved 0xE000 2000 FPB d (Note 5) d (Note 5) 0xE000 1000 DWT d (Note 5) d (Note 5) 0xE000 0000 ITM d (Note 5) d (Note 5) 0x6400 1000 Reserved 0x6400 0000 SDRAM CTRL 0x6200 0000 Reserved 0x6000 0000 SDRAM Memory Area 0x4008 F000 Reserved 0x4008 E000 USB20HC D−Bus DMAC d d d d RTC d d 0x4008 D000 UART2 d d d 0x4008 C000 UART1 d d d 0x4008 B000 UART0 d d d 0x4008 A000 I2C1 d d 0x4008 9000 I2C0 d d 0x4008 8000 SPI d d d 0x4008 7000 ADC d d d www.onsemi.com 14 EHCI d OHCI LC823450 Table 5. OTHER AREA (CORTEX−M3) (continued) Cortex−M3−0 Cortex−M3−1 USB20HC Address Master/Slave System − Bus 0x4008 6000 PORT5 d d 0x4008 5000 PORT4 d d 0x4008 4000 PORT3 d d 0x4008 3000 PORT2 d d 0x4008 2000 PORT1 d d 0x4008 1000 PORT0 d d 0x4008 0000 System Controller d d 0x4006 5000 Reserved 0x4006 4000 Audio Controls d d 0x4006 3000 MP3 Encoder d d 0x4006 2000 MP3 Decoder d d 0x4006 1000 Audio Functions d d 0x4006 0000 Audio Buffer d d d 0x4004 D000 MS d d d 0x4004 C000 SD2 d d d 0x4004 B000 SD1 d d d 0x4004 A000 SD0 d d d 0x4004 9000 Plain Timer2 d d 0x4004 8000 Plain Timer1 d d 0x4004 7000 Plain Timer0 d d 0x4004 6000 Multiple Timer3 d d 0x4004 5000 Multiple Timer2 d d 0x4004 4000 Multiple Timer1 d d 0x4004 3000 Multiple Timer0 d d 0x4004 2000 Audio PLL d d 0x4004 1000 System PLL d d I−Bus D−Bus System − Bus www.onsemi.com 15 I−Bus D−Bus DMAC EHCI OHCI LC823450 Table 5. OTHER AREA (CORTEX−M3) (continued) Cortex−M3−0 Cortex−M3−1 USB20HC Address Master/Slave System − Bus 0x4004 0000 OSC System d d 0x4003 0000 Reserved 0x4002 0000 USB2.0 Device(DMAC) d d d 0x4001 0000 USB2.0 Device(CPU) d d d 0x4000 7000 Reserved 0x4000 6000 DSP CMDIF d d 0x4000 5000 MUTEX REG d d 0x4000 4000 DMAC d d 0x4000 3000 INTC d d 0x4000 2000 USB2.0 Host d d 0x4000 1000 S−Flash I/F d d 0x4000 0000 External MEM CTL d d I−Bus D−Bus System − Bus I−Bus D−Bus EHCI DMAC d 5. Access from internal peripheral bus(AHB/APB). LPDSP32 Table 6. LPDSP32 − DMA LPDSP32 Address Master/Slave DMA 0x23 7000 Reserved 0x20 0000 220 KB LPDSP32 ROM d 0x18 0000 Reserved d 0x17 8000 32 KB Internal SRAM (seg 8) d 0x14 0000 224 KB Internal SRAM (seg 7) d 0x10 0000 256 KB Internal SRAM (seg 6) d 0x0C 0000 256 KB Internal SRAM (seg 5) d 0x0A 0000 128 KB Internal SRAM (seg 4) d 0x08 0000 128 KB Internal SRAM (seg 3) d 0x04 0000 256 KB Internal SRAM (seg 2) d 0x02 0000 128 KB Internal SRAM (seg 1) d 0x00 0000 128 KB Internal SRAM (seg 0) d www.onsemi.com 16 OHCI LC823450 Table 7. LPDSP32 − DMB LPDSP32 Address Master/Slave DMB 0x98 0000 reserved 0x97 8000 32 KB Internal SRAM (seg 8) Shadow Area d 0x94 0000 224 KB Internal SRAM (seg 7) Shadow Area d 0x90 0000 256 KB Internal SRAM (seg 6) Shadow Area d 0x8C 0000 256 KB Internal SRAM (seg 5) Shadow Area d 0x8A 0000 128 KB Internal SRAM (seg 4) Shadow Area d 0x88 0000 128 KB Internal SRAM (seg 3) Shadow Area d 0x84 0000 256 KB Internal SRAM (seg 2) Shadow Area d 0x82 0000 128 KB Internal SRAM (seg 1) Shadow Area d 0x80 0000 128 KB Internal SRAM (seg 0) Shadow Area d Table 8. LPDSP32 − DMIO LPDSP32 Address Master/Slave DMIO 0xF0 1000 reserved 0xF0 0000 SDRAM CTRL d 0xD0 0000 SDRAM Memory Area d 0xC6 5000 reserved 0xC6 4000 Audio Controls d 0xC6 3000 MP3 Encoder d 0xC6 2000 MP3 Decoder d 0xC6 1000 Audio Functions d 0xC6 0000 Audio Buffer d 0xC4 A000 Reserved 0xC4 9000 Plain Timer2 d 0xC4 8000 Plain Timer1 d 0xC4 7000 Plain Timer0 d 0xC4 6000 Multiple Timer3 d 0xC4 5000 Multiple Timer2 d 0xC4 4000 Multiple Timer1 d 0xC4 3000 Multiple Timer0 d 0xC4 2000 Audio PLL d 0xC4 1000 System PLL d 0xC4 0000 OSC System d 0xC0 7000 Reserved 0xC0 6000 DSP CMDIF www.onsemi.com 17 d LC823450 Table 8. LPDSP32 − DMIO (continued) LPDSP32 Address Master/Slave DMIO 0xC0 5000 MUTEX REG d 0xC0 4000 DMAC d 0xC0 3000 INTC d 0xC0 0000 Reserved Table 9. LPDSP32 − PM LPDSP32 Address Master/Slave 0x48 3332 Reserved 0x48 0000 32 KB Internal SRAM (seg 8) 0x41 6666 Reserved 0x40 0000 224 KB Internal SRAM (seg 7) 0x39 9998 Reserved 0x38 0000 256 KB Internal SRAM (seg 6) 0x31 9998 Reserved 0x30 0000 256 KB Internal SRAM (seg 5) 0x28 CCCC Reserved 0x28 0000 128 KB Internal SRAM (seg 4) 0x20 CCCC Reserved 0x20 0000 128 KB Internal SRAM (seg 3) 0x19 9998 Reserved 0x18 0000 256 KB Internal SRAM (seg 2) 0x10 CCCC Reserved 0x10 0000 128 KB Internal SRAM (seg 1) 0x08 CCCC Reserved 0x08 0000 128 KB Internal SRAM (seg 0) 0x00 C000 Reserved 0x00 0000 120 KB Internal SRAM (seg 9) www.onsemi.com 18 PM f f f f f f f f f f LC823450 TERMINAL FUNCTIONS TA: Package Code = “TA” XA: Package Code = “XA” XB: Package Code = “XB” XC: Package Code = “XC” XD: Package Code = “XD” RA: Package Code = “RA” RB: Package Code = “RB” Table 10. TERMINAL FUNCTIONS Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB VddSD1 JTAG/SWD − O JTAG test data outputSD d d d d SDWP1 Pos I SD I/F Ch1 write protect d d d d INS Neg I Memory Stick INS d d d d GPIO21 − B GPIO d d d d EXTINT21 − I External Interrupt 2−bit1 d d d d TDI − I JTAG test data input d d d d TDO SDCD1 VddSD1 Neg I SD I/F Ch2 write protect d d d d SWO − O Serial wire view data d d d d GPIO20 − B GPIO d d d d EXTINT20 − I External Interrupt 2−bit0 d d d d TMS − I JTAG test data select d d d d SDWP2 Pos I SD I/F Ch2 write protect d (Note 6) d d GPIO28 − B GPIO d d d d d d d d d d d d EXTINT28 VddSD2 − I External Interrupt 2−bit8 TCK Pos I JTAG test clock SDCD2 Neg I SD I/F Ch2 detect d (Note 6) d d GPIO29 − B GPIO d d d d EXTINT29 − I External Interrupt 2−bit9 d d d d SWDCLK Pos I Serial wire clock d d d d DMCKO1 − O Digital MicCh1Clock Output d d d d GPIO58 − B GPIO d d d d EXTINT58 − I External Interrupt 5−bit8 d d d d SWDIO − B Serial wire Data d d d d DMDIN1 − I Digital MicCh1 Data Input d d d d GPIO59 − B GPIO d d d d EXTINT59 − I External Interrupt 5−bit9 d d d d 6 6 6 6 d d d d VddSD2 Vdd2 Vdd2 Sum RTC XIN32K XOUT32K VDET VddRTC Pos I 32.768 kHz XTAL Input (XTRTC) − O 32.768 kHz XTAL Output (XTRTC) d d d d Neg I RTC power detect Input d d d d www.onsemi.com 19 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB VddRTC d d d d d d d d RTC RTCINT Neg O RTC Interrupt Output (Normal:HiZ, Interrupt enabled: Low Output ) BACKUPB Neg I RTC backup mode input KEYINT[2:0] − I RTC KEY input can be used when KeyInt RTC mode VddRTC d d d RTCMODE − I RTC mode input (Note 7) Set General RTC or KeyInt RTC mode RTCMODE = G “0”: KeyInt RTC mode G “1”: General RTC mode Bonding internally for “TA” product VddRTC d d d VddRTC − P RTC power supply − d d d d VssRTC − P RTC ground − d d d d 7 11 11 11 Sum EXTERNAL INTERRUPT/GPIO Vdd2 SDRADDR12 − O SDRAM address GPIO2A − B GPIO d EXTINT2A − I External Interrupt 2−bit10 d SCL1 − O I2C ch1 Clock (open drain output) GPIO2B − B EXTINT2B − Vdd2 d d d d d GPIO d d d d I External Interrupt 2−bit11 d d d d d d d d d d d d d d d d SDA1 − B I2C GPIO2C − B GPIO EXTINT2C − I External Interrupt 2−bit12 SDRADDR11 − O SDRAM address DMCKO0 − O Digital Mic Clock Ch0 Output d d d d GPIO2D − B GPIO d d d d EXTINT2D − I External Interrupt 2−bit13 d d d d EXTINT2E − I External Interrupt 2−bit14 d d d d GPIO2E − B GPIO *While Internal ROM boot, this terminal is used as boot monitor signal. d d d d EXTINT2F − I External Interrupt 2−bit14 d d d d GPIO2F − B GPIO *While Internal ROM boot, this terminal is used as boot monitor signal. d d d d 5 5 5 6 d d d d ch1 Clock (open drain output) Vdd2 Vdd2 Vdd2 Vdd2 Sum SPI (SERIAL I/F CH0)/S−FLASH I/F (SERIAL I/F CH1) Vdd2 Neg B Serial I/F Ch0 Clock GPIO1D − B GPIO d d d d EXTINT1D − I External Interrupt 1−bit13 d d d d SCK0 www.onsemi.com 20 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB Vdd2 d d d d SPI (SERIAL I/F CH0)/S−FLASH I/F (SERIAL I/F CH1) SDI0 − I Serial I/F Ch0 Data Input GPIO1E − B GPIO d d d d EXTINT1E − I External Interrupt 1−bit14 d d d d SDO0 − O Serial I/F Ch0 Data Output d d d d GPIO1F − B GPIO d d d d EXTINT1F − I External Interrupt 1−bit15 d d d d Neg O Serial I/F Ch1 Clock (QSPI Clock) GPIO0D − B GPIO d d d d EXTINT0D − I External Interrupt 0 bit13 d d d d SDI1(QIO0) − O(B) Serial I/F Ch1 Data Input (QSPI Data 1) d d d d GPIO0E − B GPIO d d d d EXTINT0E − I External Interrupt 0−bit14 d d d d SDO1(QIO1) − I(B) Serial I/F Ch1 Data Input (QSPI Data 1) d d d d GPIO0F − B GPIO d d d d EXTINT0F − I External Interrupt 0−bit15 d d d d Neg O(B) d d d d GPIO11 − B GPIO d d d d EXTINT11 − I External Interrupt 1−bit1 d d d d Neg O(B) d d d d GPIO12 − B GPIO d d d d EXTINT12 − I External Interrupt 1−bit2 d d d d 8 8 8 8 SCK1 SWP1(QIO2) SHOLD1(QIO3) Vdd2 VddQSPI VddQSPI VddQSPI Serial I/F Ch1 write protect (QSPI Data 2) VddQSPI VddQSPI Serial I/F Ch1 hold (QSPI Data 3) Sum d I2C SCL0 − O I2C ch0 Clock (open drain output) d d d d GPIO07 − B GPIO d d d d EXTINT07 − I External Interrupt 0−bit7 d d d d d d d d Vdd2 SDA0 − B I2C GPIO08 − B GPIO d d d d EXTINT08 − I External Interrupt 0−bit8 d d d d 2 2 2 2 d d d d ch0 Data (open drain output) Vdd2 Sum UART VddSD2 TXD1 − O UART Ch1 transmit Data SDAT20 − B SD I/F Ch2 Data 0 d (Note 6) d d GPIO04 − B GPIO d d d d EXTINT04 − I External Interrupt 0−bit4 d d d d www.onsemi.com 21 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB VddSD2 d d d d UART RXD1 − I UART Ch1 receive Data SDAT21 − B SD I/F Ch2 Data 1 d (Note 6) d d GPIO05 − B GPIO d d d d EXTINT05 − I External Interrupt 0−bit5 d d d d Neg I UART Ch1 clear to send d d d d SDAT22 − B SD I/F Ch2 Data 2 d (Note 6) d d RXD0 − I UART Ch0 receive Data d d d d GPIO56 − B GPIO d d d d EXTINT56 − I External Interrupt 5−bit6 d d d d Neg O UART Ch1 request to send d d d d SDAT23 − B SD I/F Ch2 Data 3 d (Note 6) d d TXD0 − O UART Ch0 transmit Data d d d d GPIO57 − B GPIO d d d d EXTINT57 − I External Interrupt 5−bit7 d d d d TXD2 − O UART Ch2 transmit Data d d d d TIOCA10 − B MTM1 Ch0A − target signal of pulse−length−reader function − output of sentinel−inform−function − output of PWM output d d d d GPIO0B − B GPIO d d d d EXTINT0B − I External Interrupt 0−bit11 d d d d RXD2 − I UART ch2 receive Data d d d d TIOCA11 − B MTM1 Ch1A − target signal of pulse−length−reader function − output of sentinel−inform−function − output of PWM output d d d d GPIO0C − B GPIO d d d d EXTINT0C − I External Interrupt 0−bit12 d d d d 6 6 6 6 d d d d CTS1 RTS1 VddSD2 VddSD2 VddQSPI VddQSPI Sum TIMER VddSD2 TIOCA00 − B MTM0 Ch0A − target signal of pulse−length−reader function − output of sentinel−inform−function − output of PWM output SDCLK2 − O SD I/F Ch2 Clock Output d (Note 6) d d PHI0 − O System Clock Output 0 d d d d GPIO09 − B GPIO d d d d EXTINT09 − I External Interrupt 0−bit9 d d d d www.onsemi.com 22 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB VddSD2 d d d d TIMER TIOCA01 − B MTM0 Ch1A − target signal of pulse−length−reader function − output of sentinel−inform−function − output of PWM output SDCMD2 − B SD I/F Ch2 command line d (Note 6) d d PHI1 − O System Clock Output 1 d d d d GPIO0A − B GPIO d d d d EXTINT0A − I External Interrupt 0−bit10 d d d d TIOCB00 − B MTM0 Ch0B − target signal of pulse−length−reader function − output of sentinel−inform−function d d d d DIN1 − I PCM1 Data Input d d d d DMDIN0 − I Digital Mic Data Ch0 Input d d d d GPIO02 − B GPIO d d d d EXTINT02 − I External Interrupt 0−bit2 d d d d TIOCB01 − B MTM0 Ch1B − target signal of pulse−length−reader function − output of sentinel−inform−function d d d d DMCKO0 − O Digital Mic Clock Ch0 Output d d d d Neg O Serial I/Fch1 QSPI chip select *While Serial Flash Boot, this is used as chip select of Serial Flash d d d d GPIO03 − B GPIO d d d d EXTINT03 − I External Interrupt 0−bit3 d d d d TCLKA0 − I MTM0 external Clock A d d d d BCK1 − B PCM1 bit Clock d d d d GPIO00 − B GPIO d d d d EXTINT00 − I External Interrupt 0−bit0 d d d d TCLKB0 − I MTM0 external Clock B d d d d LRCK1 − B PCM1 LR Clock d d d d GPIO01 − B GPIO d d d d EXTINT01 − I External Interrupt 0−bit1 d d d d 6 6 6 6 d d d d QSCS Vdd2 VddQSPI Vdd2 Vdd2 Sum PCM I/F Vdd2 MCLK0 Pos B PCM0 master Clock MCLK1 Pos B PCM1 master Clock d d d d GPIO18 − B GPIO d d d d EXTINT18 − I External Interrupt 1−bit8 d d d d www.onsemi.com 23 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB Vdd2 d d d d PCM I/F BCK0 − B PCM0 bit Clock DMCKO1 − O Digital Mic Ch1 Clock Output d d d d GPIO19 − B GPIO d d d d EXTINT19 − I External Interrupt 1−bit9 d d d d LRCK0 − B PCM0 LR Clock d d d d DMDIN1 − I Digital Mic ch1 Data Input d d d d GPIO1A − B GPIO d d d d EXTINT1A − I External Interrupt 1−bit10 d d d d DIN0 − I PCM0 Data Input d d d d DMDIN0 − I Digital Mic Ch0 Data Input d d d d GPIO1B − B GPIO d d d d EXTINT1B − I External Interrupt 1−bit11 d d d d DOUT0 − O PCM0 Data Output d d d d DMCKO0 − O Digital Mic Ch0 Data Input d d d d GPIO1C − B GPIO d d d d EXTINT1C − I External Interrupt 1−bit12 d d d d BCK1 − B PCM1 bit Clock d d d GPIO13 − B GPIO d d d EXTINT13 − I External Interrupt 1−bit3 d d d LRCK1 − B PCM1 LR Clock d d d GPIO14 − B GPIO d d d EXTINT14 − I External Interrupt 1−bit4 d d d DOUT1 − O PCM1 Data Output d d d d GPIO15 − B GPIO d d d d EXTINT15 − I External Interrupt 1−bit5 d d d d 6 8 8 8 d d d d Vdd2 Vdd2 Vdd2 Vdd2 Vdd2 Vdd2 Sum SD IF/MS IF VddSD0 SDCLK0 − O SD I/F Ch0 Clock Output SDCMD0 − B SD I/F Ch0 command line d d d d SDAT0[3:0] − B SD I/F Ch0 Data d d d d SDCLK1 − O SD I/F Ch1 Clock Output d d d d SCLK − O Memory Stick Clock Output d d d d GPIO22 − B GPIO d d d d EXTINT22 − I External Interrupt 2−bit2 d d d d SDCMD1 − B SD I/F Ch1 command line d d d d BS − O Memory Stick BS d d d d GPIO23 − B GPIO d d d d EXTINT23 − I External Interrupt 2−bit3 d d d d VddSD1 www.onsemi.com 24 VddSD1 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB VddSD1 d d d d SD IF/MS IF SDAT1[3:0] − B SD I/F Ch1 Data DATA[3:0] − B Memory Stick Data d d d d GPIO2[7:4] − B GPIO d d d d EXTINT2[7:4] − I External Interrupt 2−bit7 to bit4 d d d d 12 12 12 12 Sum SDRAM I/F Vdd2 Neg O SDRAM Clock Output SDRCKE Pos O SDRAM Clock enable Output d SDRCS Neg O SDRAM chip select Output d SDRWE Neg O SDRAM write enable Output SDRCAS Neg O SDRAM CAS Output d SDRRAS Neg O SDRAM RAS Output d SDRDQM[1:0] Pos O SDRAM Data mask byte lane select d SDRADDR[10:0] − O SDRAM address (Note 8) SDRBA[1:0] − O SDRAM bank select d SDRDATA[15:0] − B SDRAM Data d SDRCLK d Vdd2 d Vdd2 Sum d 0 0 0 37 d d d EXTERNAL MEMORY I/F Vdd2 Neg O Chip select0 GPIO06 − B GPIO d d d EXTINT06 − I External Interrupt 0−bit6 d d d NCS1 Neg O Chip select1 d d d RXD0 − I UART Ch0 receive Data d d d GPIO10 − B GPIO d d d EXTINT10 − I External Interrupt 1−bit0 d d d Neg O Read enable d d d GPIO17 − B GPIO d d d EXTINT17 − I External Interrupt 1−bit7 d d d NCS0 NRD NWRENWRL Vdd2 Vdd2 Vdd2 Neg O Write enable, write enable low d d d GPIO30 − B GPIO d d d EXTINT30 − I External Interrupt 3−bit0 d d d NHBNWRH − O High byte select, write enable high d d d TXD0 − O UART Ch0 transmit Data d d d GPIO31 − B GPIO d d d EXTINT31 − I External Interrupt 3−bit1 d d d NLBEXA0 − O Low byte select, address0 d d d GPIO16 − B GPIO d d d EXTINT16 − I External Interrupt 1−bit6 d d d www.onsemi.com 25 Vdd2 Vdd2 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB EXTERNAL MEMORY I/F Vdd2 EXA[20:15] − O Address GPIO4[5:0] − B GPIO d EXTINT4[5:0] − I External Interrupt 4−bit5 to bit0 d EXA[14:9] − O Address GPIO3[F:A] − B GPIO d EXTINT3[F:A] − I External Interrupt 3−bit15 to bit10 d EXA[8:1] − O Address GPIO3[9:2] − B GPIO d EXTINT3[9:2] − I External Interrupt 3−bit9 to bit2 d EXD[7:0] − B Data GPIO4[D:6] − B EXTINT4[D:6] − EXD[15:8] d Vdd2 d Vdd2 d Vdd2 d d d GPIO d d d I External Interrupt 4−bit13 to bit6 d d d − B Data GPIO5[5:0] GPIO4[F:E] − B GPIO d EXTINT5[5:0] EXTINT4[F:E] − I External Interrupt 5−bit5 to bit0, External Interrupt 4−bit15 to bit14 d Vdd2 Sum d 0 14 14 42 Xtal, PLL XIN1 − I XTAL input (XT1) VddXT1 d d d d XOUT1 − O XTAL output (XT1) VddXT1 d d d d VddXT1 − P XTAL power supply (XT1) − d d d d VssXT1 − P XTAL ground (XT1) − d d d d XTALINFO[1:0] − B XTAL frequency input (Note 9) XTALINFO[1:0] = G “00”: 24 MHz G “01”: 12 MHz G “10”: 20 MHz G “11”: 48 MHz Used for determining clock frequency setting while internal ROM boot. Bonding internally for “TA” product d d d VCNT1 − O PLL1 VCO control AvddPLL1 − P AvssPLL1 − VCNT2 Vdd2 AvddPLL1 d d d d PLL1 analog power supply − d d d d P PLL1 analog ground − d d d d − O PLL2 VCO control AvddPLL2 d (Note 10) d d d (Note 10) AvddPLL2 − P PLL2 analog power supply − d (Note 10) d d d (Note 10) VCNT3 − O PLL3 VCO control AvddPLL3 d (Note 11) d d d (Note 11) www.onsemi.com 26 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB Xtal, PLL AvddPLL3 − P PLL3 analog power supply − d (Note 11) d d d (Note 11) AvssPLL2 − P PLL2/3 analog ground (Note 12) − d d d d 10 14 14 12 Sum USB−PHY USBDP − B USB D+ AVddUSBPHY2 or AVddUSBPHY1 d d d d USBDM − B USB D− AVddUSBPHY2 or AVddUSBPHY1 d d d d USBEXT12 − O USB−PHY reference resister AVddUSBPHY2 d d d d AvddUSBPHY1 − P USB−PHY 1.0V analog power supply − d 2 d 2 d 2 d 2 DVddUSBPHY1 − P USB−PHY 1.0V digital power supply. Connected to AVddUSBPHY1 internally in case of no DVddUSBPHY1 port available − AvddUSBPHY2 − P USB−PHY 3.3V analog power supply − d 2 d 2 d 2 d 2 AvddUSBPHY − P USB−PHY analog ground − d 4 d 4 d 4 d 4 11 11 11 13 d d d d Sum d 2 10BIT ADC AN[5:0] − I ADC Input AVddADC VRH − I ADC High reference AVddADC d VRL − I ADC Low reference AVddADC d VR − O ADC reference voltage AVddADC AVddADC − P ADC analog power − d d d d AVssADC − P ADC analog ground − d d d d 8 8 8 11 d d d d d d Sum d CLASS−D AMP Avdd−DAMPL LOUT − O Lch Class D AMP Output GPLOUT − O Genereal purpose Output (GPO) ROUT − O Rch Class D AMP Output GPROUT − O Genereal purpose Output (GPO) AVddDAMPL − P Lch Class D AMP analog power supply AVddDAMPR − P AVssDAMPL − AVssDAMPR − d d Avdd−DAMPR d d d d d d − d d d d Rch Class D AMP analog power supply − d d d d P Lch Class D AMP analog power supply − d d d d P Rch Class D AMP analog power supply − d d d d 6 6 6 6 Sum www.onsemi.com 27 LC823450 Table 10. TERMINAL FUNCTIONS (continued) Terminal Name Polarity Direction Function Available (d) Multiplexed Function IO POWER TA XA,XC XB,XD RA, RB OTHER, POWER − B Bootmodeselect Vdd2 d d d d TEST Pos I Test mode (normally connect to ground) Vdd2 d d d d NRES Neg I LSI reset Input Vdd2 d d d d Vdd1 − P Digital core power − d 7 d 7 d 7 d 8 Vdd2 − P Digital IO power − d 8 d 8 d 8 d 15 VddSD0 − P Digital IO power (SDI/F Ch0) − d d d d VddSD1 − P Digital IO power (SD(MS)I/F Ch1) − d d d d VddSD2 − P Digital IO power (SDI/F Ch2) − d d d d VddQSPI − P Digital IO power (QSPI) − d 12 d 14 d 14 d 23 BMODE[1:0] Sum 35 37 37 54 All Sum 128 154 154 240 6. 7. 8. 9. This function is not available Set according to the General RTC mode or KeyInt RTC mode. Bonding internally for “TA” product as described on Page 7. SDRAM address bit is 13bit including SDRADDR [12:11]. Set according to the frequency of XT1 (12/20/24/48 MHz). Bonding internally for “TA’’ product as described on Page 5. 10. Audio clock is generated by one of PLL2 (1 V) or PLL3 (3 V). One of PLL2 or PLL3 is available for “TA”, “RA” and “RB” products. Please refer to Page 5 for more information. Both of PLL2 and PLL3 are available for “XA”,“XB”, “XC” and “XD” products. 11. Audio clock is generated by one of PLL2 (1 V) or PLL3 (3 V). One of PLL2 or PLL3 is available for “TA”, “RA” and “RB” products. Please refer to Page 5 for more information. Both of PLL2 and PLL3 are available for “XA”,“XB”, “XC” and “XD” products. 12. Analog ground is shared by PLL2 and PLL3. 13. Unused Input terminals and input state terminals of bidirectional should be set Pull−up/Down resister ON or connect to digital power supply or ground (don’t let open). www.onsemi.com 28 LC823450 Boot Mode Boot modes available depend on BMODE[1:0] port status. Table 11. BOOT MODE IPL Mode Physical Boot USB BMODE1 BMODE0 PD 470 kW PD 470 kW Explanation Internal ROM boot(eMMC Physical Boot with USB download – SD card I/F Ch0 + USB Device + EXTINT2E + EXTINT2F) By using Boot operation mode of eMMC, load IPL2(program) from eMMC connected to SD0 to internal SRAM and jump to IPL2. IPL2 is written through USB. Physical Boot SD PD 470 kW PU 470 kW Internal ROM boot (eMMC Physical Boot with SD Ch1 download – SD card I/F Ch0 + SD card I/F Ch1 + EXTINT2E + EXTINT2F) By using Boot operation mode of eMMC, load IPL2(program) from eMMC connected to SD0 to internal SRAM and jump to IPL2. IPL2 is written through SD1. User Area Boot USB PD 1 kW PU or PD 470 kW Internal ROM boot(User Area Boot with USB download – SD card I/F Ch0 + USB Device + EXTINT2E + EXTINT2F) Load IPL2(program) from user area of eMMC connected to SD0 to internal SRAM and jump to IPL2. IPL2 is written through USB. User Area Boot SD PU 470 kW PD 1 kW Internal ROM boot(User Area Boot with SD Ch1 download – SD card I/F Ch0 + SD card I/F Ch1 + EXTINT2E + EXTINT2F) Load IPL2(program) from user area of eMMC connected to SD0 to internal SRAM and jump to IPL2. IPL2 is written through SD1. SPI Boot USB PU 470 kW PU 470 kW Internal ROM boot(external Serial Flash SPI Boot with USB download – S−Flash I/F + USB Device + EXTINT2E + EXTINT2F + TIOCB01) Load IPL2(program) from Serial Flash connected to S−Flash I/F to internal SRAM and jump to IPL2. IPL2 is written through USB. SPI Boot SD PD 470 kW PU 1 kW Internal ROM boot(external Serial Flash SPI Boot with SD Ch1 download − S−Flash I/F + SD card I/F Ch1 + EXTINT2E + EXTINT2F + TIOCB01) Load IPL2 (program) from Serial Flash connected to S−Flash I/F to internal SRAM and jump to IPL2. IPL2 is written through SD1. QSPI Boot USB PU 1 kW PU 470 kW Internal ROM boot (external Serial Flash QSPI Boot with USB download – S−Flash I/F(QSPI) + USB Device + EXTINT2E + EXTINT2F + TIOCB01) Fetch IPL2 (program) from Serial Flash connected to S−Flash I/F. IPL2 is written by using DO command directly through USB. QSPI Boot SD PU 1 kW PD 470 kW Internal ROM boot (external Serial Flash QSPI Boot with SD Ch1 download – S−Flash I/F(QSPI) + SD card I/F Ch1 + EXTINT2E + EXTINT2F + TIOCB01) Fetch IPL2 (program) from Serial Flash connected to S−Flash I/F. IPL2 is written through SD1. User Area Delete PD 1 kW PU 1 kW Internal ROM boot (User Area IPL2 delete – SD card I/F Ch0 + EXTINT2E + EXTINT2F) After deleting IPL2 by using this mode, IPL2 can be written again while User Area Boot mode. www.onsemi.com 29 LC823450 Table 11. BOOT MODE (continued) IPL Mode Partition Delete BMODE1 BMODE0 PD 470 kW PD 1 kW Explanation Internal ROM boot (Partition Area IPL2 delete – SD card I/F Ch0 + EXTINT2E + EXTINT2F) After deleting IPL2 by using this mode, IPL2 can be written again while eMMC Physical Boot mode. SPI All Erase PU 470 kW PU 1 kW Internal ROM boot(external Serial Flash SPI all area delete – S−Flash I/F + EXTINT2E + EXTINT2F + TIOCB01) Delete all content of Serial Flash. This mode should be used in case of SPI mode operation of Serial Flash SDCH0 All Erase PD 1 kW PD 1 kW Internal ROM boot(all area delete – SD card I/F Ch0 + EXTINT2E + EXTINT2F) Delete all content of eMMC including Partition area. Take a lot of time to delete. Trim also processed in case of eMMC supporting Trim function. QSPI All Erase PU 1 kW PD 1 kW Internal ROM boot(external Serial Flash QSPI all area delete – S−Flash I/F(QSPI) + EXTINT2E + EXTINT2F + TIOCB01) Delete all content of Serial Flash. This mode should be used in case of QSPI fetch mode operation of Serial Flash External ROM Boot Hi−z PU 470 kW PD 470 kW PU 1 kW PU 1 kW External memory boot(External−0) Fetch from external memory(External0) connected to XMC(external memory controller) External I/F ports below forced to Hi−z − EXA[20:1], EXD[15:0], NCS[1:0], NRD, NWRENWRL, NHBNWRH, NLBEXA0 − SDCLK0, SDCMD0, SDAT0[3:0] − CK1, SDI1(QIO0), SDO1(QIO1), SWP1(QIO2), SHOLD1(QIO3), TIOCB01 14. In case of TQFP128L, WLP154, don’t use external memory boot (External−0) www.onsemi.com 30 LC823450 Boot Port • QSPI Boot/QSPI All Erase is processed by using Some ports are used in internal ROM code while booting as below. • EXTINT2E(GPIO2E): OUT for power supply control • EXTINT2F(GPIO2F): OUT for indicating status of boot, start of USB connection and USB disconnection, error status by Low/High of this port. • Use SDCMD1, SDAT1[3:0], SDCLK1 as SD1. SDCD1 and SDWP1 are not used. Port function switch is processed during write from SD1. • SPI Boot/SPI All Erase is processed by using 4 ports SCK1, QSCS, SDO1,SDI1. SHOLD1 and SWP1 are not used. SCK1, QSCS, SDO1, SDI1, SHOLD1, SWP1. • External ROM Boot is processed by using NCS0 and external memory controller ports. GPIO2E is not used. • In case of External I/F ports Hi−z mode, external memory interface ports such as NCS0, NCS1 and external memory controller ports is used. GPIO2E is used as input port. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Table 12. PORTS USED DURING IPL Ports Used (Note 15) IPL Mode Physical Boot USB Physical Boot SD User Area Boot USB User Area Boot SD SPI Boot USB P2E(power supply control), P2F(status monitoring) P2E(power supply control), P2F(status monitoring) P22(SDCLK1) P23(SDCMD1) P24(SDDATA10) P25(SDDATA11) P26(SDDATA12) P27(SDDATA13) P2E(power supply control), P2F(status monitoring) P2E(power supply control), P2F(status monitoring) P22(SDCLK1) P23(SDCMD1) P24(SDDATA10) P25(SDDATA11) P26(SDDATA12) P27(SDDATA13) P2E(power supply control), P2F(status monitoring) P0D(SCK1) P03(QSCS) P0F(SDO1) P0E(SDI1) SPI Boot SD P2E(power supply control), P2F(status monitoring) P0D(SCK1) P03(QSCS) P0F(SDO1) P0E(SDI1) P22(SDCLK1) P23(SDCMD1) P24(SDDATA10) P25(SDDATA11) P26(SDDATA12) P27(SDDATA13) QSPI Boot USB P2E(power supply control), P2F(status monitoring) P0D(SCK1) P03(QSCS) P0F(SDO1) P0E(SDI1) P011(SWP1) P12(SHOLD1) P22(SDCLK1) P23(SDCMD1) P24(SDDATA10) P25(SDDATA11) P26(SDDATA12) P27(SDDATA13) User Area Delete P2E(power supply control), P2F(status monitoring) Partition Delete P2E(power supply control), P2F(status monitoring) SPI Erase P2E(power supply control), P2F(status monitoring) P0D(SCK1) P03(QSCS) P0F(SPIOUT) P0E(SDI1) SDCH0 All Erase P2E(power supply control), P2F(status monitoring) QSPI All Erase External ROM Boot HI-z P2E(power supply control), P2F(status monitoring) P0D(SCK1) P03(QSCS) P0F(SDO1) P0E(SDI1) P11(SWP1) P12(SHOLD1) P06(NCS0) P17(NRD) P30(NWRENWRL) P31(NHBNWRH) P16(NLBEXA0) P32(EXA01) P33(EXA02) P34(EXA03) P35(EXA06) P36(EXA05) P37(EXA06) P38(EXA07) P39(EXA08) P3A(EXA09) P3B(EXA10) P3C(EXA11) P3D(EXA12) P3E(EXA13) P3F(EXA14) P40(EXA15) P41(EXA16) P42(EXA17) P43(EXA18) P44(EXA19) P45(EXA20) P46(EXD00) P47(EXD01) P48(EXD02) P49(EXD03) P4A(EXD04) P4B(EXD05) P4C(EXD06) P4D(EXD07) P4E(EXD08) P4F(EXD09) P50(EXD10) P51(EXD11) P52(EXD12) P53(EXD13) P54(EXD14) P55(EXD15) SDCLK0 Hi-z state 15. In this table “Pxx” means “GPIOxx”. For example “P2E” means “GPIO2E”. www.onsemi.com 31 LC823450 GPIO2F During boot, GPIO2F is used as GPIO and indicates boot status and error occurrence by output of Low/High. When errors occur during boot sequences, for example writing of IPL2, GPIO2F reports the sort of error. GPIO0F can indicate the status of USB connection and the completion of USB file transfer. And Delete Mode, completion of Erase, and status of Erase can be reported by sequence of Low/High. For more detail about the behavior of ports used during boot, refer to the document LC823450 Series IPL specification. SDIF PullUp In case of boot mode using SDIF port, internal PullUp resistor is used (SDCMD0, SDAT0[3:0] / SDCMD1, SDAT1[3:0]). So, external PullUp resistor is not required on board. QSCS PullUp In case of boot mode using QSCS, PullUp of GPIO03(QSCS) is active by the hard reset. After GPIO2E is set to high, GPIO03 set to QSCS and PullUp set to inactive. In case of Hi−z boot, PullUp is forced to inactive. PIN ASSIGNMENT Table 13. PIN ASSIGNMENT I/O Input Type Output Type I Input CMOS CMOS Input 3−State Tristate Output O Output schmitt schmitt Input OD Open Drain Output B Bidirectional X Xtal X Xtal P Power 3A 3.3 V analog 3A 3.3 V analog NC Non Connect 1A 1.0 V analog 1A 1.0/1.2 V analog Drive (example) PU/PD IO Circuit Type 4 mA 3.3 V 4 mA Output PU Pull−up resister 4/8 mA 3.3 V with 4 mA, 8 mA output drivability switch PD Pull−down resister 0.3 mA−OD 1.0 V 0.3 mA open drain Output PU/PD Pull−up, pull−down resister Refer to Page 30 for circuit diagram Table 14. LFBGA240 TQFP128L WLP154 I/O Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type SDRDATA2 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) M11 Vss G N12 Vdd2 P H8 TCLKA0/ BCK1/ GPIO00/ EXTINT00 I/ B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) SDRDATA3 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) L10 TCLKB0/ LRCK1/ GPIO01/ EXTINT01 I/ B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) 5 K9 NHBNWRH/ TXD0/ GPIO31/ EXTINT31 O/ O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 6 N11 NCS1/ RXD0/ GPIO10/ EXTINT10 O/ I/ B/ I Schmitt 3−State 2/4/8 mA PU Vdd2 3ISU/3T2 (4)(8) No. Ball No. No 1 R16 − − 2 N14 1 1 3 P15 2 2 4 P16 3 3 5 N15 − − 6 N16 4 4 7 M16 − 8 M15 − Ball Pin Name www.onsemi.com 32 LC823450 Table 14. LFBGA240 TQFP128L WLP154 I/O Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type SDRDATA4 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) NCS0/ GPIO06/ EXTINT06 O/ B/ I Schmitt 3−State 2/4/8 mA PU Vdd2 3ISU/3T2 (4)(8) GPIO2A/ EXTINT2A/ B/ I/ Schmitt 3−State 2/4/8 mA PU/PD Vdd2 3ISUD/3T2 (4)(8) SDRADDR12 O PD Vdd2 3ISD/3T2 (4)(8) No. Ball No. No 9 M14 − − 10 M13 − 7 11 L16 − − 12 L15 − − Vdd2 P 13 L14 − − Vss G 14 L13 5 8 L9 15 L12 − 9 N10 16 K16 − 17 K15 − 18 K14 − 10 19 K13 − 11 20 K12 − 21 H13 − 22 J14 23 Ball M10 Pin Name Vdd1 P NRD/ GPIO17/ EXTINT17 O/ B/ I Schmitt 3−State 2/4/8 mA − SDRADDR5 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) − SDRADDR6 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) M9 NWRENWRL/ GPIO30/ EXTINT30 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) N9 EXD0/ GPIO46/ EXTINT46 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) − SDRADDR7 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) − SDRDATA5 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) − − SDRDATA6 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) J13 − − Vdd2 P 24 H10 − − Vss G 25 J12 − − SDRDATA7 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 26 J11 − − SDRDATA8 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 27 H11 − − SDRDATA9 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 28 H16 6 12 J8 SCK1/ GPIO0D/ EXTINT0D O/ B/ I Schmitt 3−State 6/8/10 mA PU/PD VddQSPI 3ISUD/3T6 (8)(10) 29 H14 7 13 N8 TIOCB01/ DMCKO0/ QSCS/ GPIO03/ EXTINT03 B/ O/ Schmitt 3−State 6/8/10 mA PU/PD VddQSPI 3ISUD/3T6 (8)(10) Schmitt 3−State 6/8/10 mA PU/PD VddQSPI 3ISUD/3T6 (8)(10) Schmitt 3−State 6/8/10 mA PU/PD VddQSPI 3ISUD/3T6 (8)(10) 30 J16 8 14 M8 SDO1(QIO1)/ GPIO0F/ EXTINT0F 31 G14 9 15 L8 VddQSPI 32 H15 10 16 K8 SDI1(QIO0)/ GPIO0E/ EXTINT0E O/ B/ I I(B)/ B/ I P O(B) / B/ I 33 J15 11 17 N7 Vss 34 G16 12 18 M7 SWP1(QIO2)/ GPIO11/ EXTINT11 O(B) / B/ I G Schmitt 3−State 6/8/10 mA PU/PD VddQSPI 3ISUD/3T6 (8)(10) 35 G15 13 19 L7 SHOLD1(QIO3)/ GPIO12/ EXTINT12 O(B) / B/ I Schmitt 3−State 6/8/10 mA PU/PD VddQSPI 3ISUD/3T6 (8)(10) 36 H12 14 20 K7 TXD2/ TIOCA10/ GPIO0B/ EXTINT0B O/ B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD VddQSPI 3ISUD/3T1 (2)(4) www.onsemi.com 33 LC823450 Table 14. LFBGA240 TQFP128L WLP154 Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type I/ B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD VddQSPI 3ISUD/3T1 (2)(4) TDI/ SDCD1/ SWO/ GPIO20/ EXTINT20 I/ I/ O/ B/ I Schmitt 3−State 2 mA PU/PD VddSD1 3ISUD/3T2 M6 TDO/ SDWP1/ INS/ GPIO21/ EXTINT21 O/ I/ I/ B/ I Schmitt 3−State 2 mA PU/PD VddSD1 3ISUD/3T2 24 L6 SDCMD1/ BS/ GPIO23/ EXTINT23 B/ O/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD1 3ICUD/3T6 (8)(10) 19 25 K6 SDAT10/ DATA0/ GPIO24/ EXTINT24 B/ B/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD1 3ICUD/3T6 (8)(10) F14 20 26 N5 VddSD1 P E14 21 27 M5 SDAT11/ DATA1/ GPIO25/ EXTINT25 B/ B/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD1 3ICUD/3T6 (8)(10) 44 F13 22 28 L5 Vss G 45 E16 23 29 J6 SDAT12/ DATA2/ GPIO26/ EXTINT26 B/ B/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD1 3ICUD/3T6 (8)(10) 46 E15 24 30 N4 SDAT13/ DATA3/ GPIO27/ EXTINT27 B/ B/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD1 3ICUD/3T6 (8)(10) 47 D16 25 31 M4 SDCLK1/ SCLK/ GPIO22/ EXTINT22 O/ O/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD1 3ICUD/3T6 (8)(10) 48 F12 − − SDRADDR8 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 49 E12 − − SDRADDR9 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 50 F11 − − SDRADDR10 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 51 E13 26 32 L4 Vdd1 P 52 D13 27 33 N3 Vss G 53 D14 28 34 N2 Vdd2 P 54 D15 − − SDRBA0 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 55 C16 − − SDRBA1 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 56 C15 − − SDRCAS O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 57 C14 − − SDRRAS O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 58 B16 − − Vdd2 P 59 B15 − − Vss G 60 A16 − − SDRCKE O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 61 A15 − − SDRCLK O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 62 A14 29 35 M3 SDCLK0 O CMOS 3−State 6/8/10 mA VddSD0 3IC/3T6 (8)(10) 63 B14 30 36 K5 SDCMD0 B CMOS 3−State 6/8/10 mA PU/PD VddSD0 3ICUD/3T6 (8)(10) 64 C12 31 37 N1 VddSD0 P 65 B13 32 38 L3 SDAT00 B CMOS 3−State 6/8/10 mA PU/PD VddSD0 3ICUD/3T6 (8)(10) 66 C13 33 39 M2 Vss G No. Ball No. No Ball 37 G13 15 21 J7 RXD2/ TIOCA11/ GPIO0C/ EXTINT0C 38 G12 16 22 N6 39 G11 17 23 40 F16 18 41 F15 42 43 Pin Name I/O www.onsemi.com 34 LC823450 Table 14. LFBGA240 TQFP128L WLP154 I/O Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type SDAT01 B CMOS 3−State 6/8/10 mA PU/PD VddSD0 3ICUD/3T6 (8)(10) M1 SDAT02 B CMOS 3−State 6/8/10 mA PU/PD VddSD0 3ICUD/3T6 (8)(10) 42 J5 SDAT03 B CMOS 3−State 6/8/10 mA PU/PD VddSD0 3ICUD/3T6 (8)(10) 37 43 K3 TIOCA01/ SDCMD2/ PHI1/ GPIO0A/ EXTINT0A B/ B/ O/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD2 3ICUD/3T6 (8)(10) A11 38 44 L2 TXD1/ SDAT20/ GPIO04/ EXTINT04 O/ B/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD2 3ICUD/3T6 (8)(10) 72 B11 39 45 J4 RXD1/ SDAT21/ GPIO05/ EXTINT05 I/ B/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD2 3ICUD/3T6 (8)(10) 73 D12 40 46 L1 VddSD2 P 74 C10 41 47 H6 CTS1/ SDAT22/ I/ B/ CMOS 3−State 6/8/10 mA PU/PD VddSD2 3ICUD/3T6 (8)(10) RXD0/ GPIO56/ EXTINT56 I/ B/ I No. Ball No. No Ball 67 A13 34 40 K4 68 A12 35 41 69 B12 36 70 C11 71 Pin Name 75 E11 42 48 K2 Vss G 76 B10 43 49 K1 RTS1/ SDAT23/ TXD0/ GPIO57/ EXTINT57 O/ B/ O/ B/ I CMOS 3−State 6/8/10 mA PU/PD VddSD2 3ICUD/3T6 (8)(10) 77 D11 44 50 J3 TCK/ SDCD2/ GPIO29/ EXTINT29 I/ I/ B/ I Schmitt 3−State 1/2/4mA PU/PD VddSD2 3ISUD/3T1 (2)(4) 78 D10 45 51 H5 TMS/ SDWP2/ GPIO28/ EXTINT28 I/ I/ B/ I Schmitt 3−State 1/2/4mA PU/PD VddSD2 3ISUD/3T1 (2)(4) 79 A10 46 52 J2 TIOCA00/ SDCLK2/ PHI0/ GPIO09/ EXTINT09 B/ O/ O/ B/ I Schmitt 3−State 6/8/10 mA PU/PD VddSD2 3ISUD/3T6 (8)(10) 80 E10 − − SDRCS O − 3−State 2/4/8mA Vdd2 3T2 (4)(8) 81 F10 − − SDRWE O − 3−State 2/4/8mA Vdd2 3T2 (4)(8) 82 G10 − − SDRDQM0 O − 3−State 2/4/8mA Vdd2 3T2 (4)(8) 83 D9 − − SDRDQM1 O − 3−State 2/4/8mA Vdd2 3T2 (4)(8) 84 E9 − − SDRDATA10 B CMOS 3−State 2/4/8mA PD Vdd2 3ICD/3T2 (4)(8) 85 F9 − − SDRDATA11 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 86 A9 47 53 J1 Vdd1 P 87 B9 48 54 H4 Vss G 88 G9 − 55 G5 XTALINFO0 B Schmitt 3−State 2/4/8 mA PU Vdd2 3ISU/3T2 (4)(8) 89 C9 49 56 H1 Vdd2 P 90 H9 − − SDRDATA12 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 91 G8 − − SDRDATA13 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 92 F8 − − SDRDATA14 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 93 E8 − − SDRDATA15 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) www.onsemi.com 35 LC823450 Table 14. LFBGA240 TQFP128L WLP154 No. Ball No. No Ball 94 D8 50 57 H2 VddRTC P 95 A7 − 58 H3 RTCMODE I 96 B8 51 59 G2 VssRTC G 97 A8 52 60 G1 XIN32K I 98 C8 53 61 G3 XOUT32K O Pin Name I/O Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type CMOS − − − VddRTC 1IC X − − − VddRTC X − X − − VddRTC X 99 B7 54 62 F1 VDET I CMOS − − − VddRTC 1IC 100 C7 55 63 G4 RTCINT(Note 16) O − OD 0.3 mA−OD − VddRTC OD3 101 D7 56 64 F2 BACKUPB I Schmitt − − − VddRTC 1IS 102 E7 − 65 F3 KEYINT0 I Schmitt − − PD VddRTC 1ISD 103 F7 − 66 F4 KEYINT1 I Schmitt − − PD VddRTC 1ISD 104 G7 − 67 E1 KEYINT2 I Schmitt − − PD VddRTC 1ISD 105 A6 57 68 E2 AVddADC P 106 B6 − − VRH I 3A − − − AVddADC 3A 107 C6 − − VR O − 3A − − AVddADC 3A 108 D6 − − VRL I 3A − − − AVddADC 3A 109 E6 58 69 D1 AVssADC G 110 C5 59 70 E3 AN5 I 3A − − − AVddADC 3A 111 B5 60 71 D2 AN4 I 3A − − − AVddADC 3A 112 A5 61 72 D3 AN3 I 3A − − − AVddADC 3A 113 C4 62 73 C1 AN2 I 3A − − − AVddADC 3A 114 B4 63 74 C2 AN1 I 3A − − − AVddADC 3A 115 A4 64 75 B1 AN0 I 3A − − − AVddADC 3A 116 D5 − 76 F5 NLBEXA0/ GPIO16/ EXTINT16 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 117 F6 − 77 E4 EXD1/ GPIO47/ EXTINT47 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 118 A3 − − EXA1/ GPIO32/ EXTINT32 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 119 B3 − − EXA2/ GPIO33/ EXTINT33 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 120 A2 − − EXA3/ GPIO34/ EXTINT34 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 121 A1 − − Vss G 122 B2 − − Vdd2 P 123 B1 − − EXA4/ GPIO35/ EXTINT35 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 124 C1 − − EXA5/ GPIO36/ EXTINT36 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 125 C2 − − EXA6/ GPIO37/ EXTINT37 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 126 C3 65 78 SCL0/ GPIO07/ EXTINT07 O/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) 127 D3 − − EXA7/ GPIO38/ EXTINT38 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 128 D4 66 79 SDA0/ GPIO08/ EXTINT08 B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) A1 B2 www.onsemi.com 36 LC823450 Table 14. LFBGA240 TQFP128L WLP154 No. Ball No. No 129 E4 − − 130 E5 67 80 131 D1 68 132 D2 133 F4 134 Ball Pin Name I/O Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type EXA8/ GPIO39/ EXTINT39 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) C3 SDO0/ GPIO1F/ EXTINT1F O/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) 81 D4 Vss G 69 82 A2 Vdd2 P − − EXA9/ GPIO3A/ EXTINT3A O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) F5 − − EXA10/ GPIO3B/ EXTINT3B O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 135 G5 − − EXA11/ GPIO3C/ EXTINT3C O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 136 G4 70 83 SCK0/ GPIO1D/ EXTINT1D B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) 137 G6 − − EXA12/ GPIO3D/ EXTINT3D O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 138 H4 71 84 SWDCLK/ GPIO58/ EXTINT58/ I/ B/ I/ Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) DMCKO1 O EXA13/ GPIO3E/ EXTINT3E O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) SDI0/ GPIO1E/ EXTINT1E I/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) EXA14/ GPIO3F/ EXTINT3F O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) SWDIO/ GPIO59/ EXTINT59/ B/ B/ I/ Schmitt 3−State 2 mA PU Vdd2 3ISU/3T2 139 H5 − − 140 H6 72 85 141 J4 − − 142 J5 73 86 B3 A3 F6 C4 DMDIN1 I 143 H7 − 87 E5 EXD2/ GPIO48/ EXTINT48 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 144 J6 − 88 A4 EXD3/ GPIO49/ EXTINT49 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 145 E3 74 89 B4 Vdd1 P 146 F3 − − 147 G3 − 90 148 K6 − 149 K5 150 Vdd2 P Vss G − EXA15/ GPIO40/ EXTINT40 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) − − EXA16/ GPIO41/ EXTINT41 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) L5 − − EXA17/ GPIO42/ EXTINT42 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 151 M4 − − EXA18/ GPIO43/ EXTINT43 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 152 K4 − − Vss G 153 E2 − − DVddUSBPHY1 P 154 F2 75 91 A5 AVddUSBPHY1 P 155 G2 76 92 C5 AVssUSBPHY G D5 www.onsemi.com 37 LC823450 Table 14. LFBGA240 TQFP128L WLP154 I/O Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type USBDM B 3A 3A − − AVddUSB PHY2 3A B6 USBDP B 3A 3A − − AVddUSB PHY2 3A 95 C6 AVssUSBPHY G 96 D6 AVddUSBPHY2 P 81 97 E6 AVssUSBPHY G 82 98 B7 USBEXT12 O − 3A − − AVddUSB PHY2 3A 83 99 C7 AVddUSBPHY2 P 84 100 D7 AVddUSBPHY1 P J3 85 101 E7 AVssUSBPHY G K3 − − DVddUSBPHY1 P L1 − − Vss G 167 K2 86 102 B8 VddXT1 P 168 K1 87 103 A8 XIN1 I X − − − VddXT1 X 169 L2 88 104 D8 VssXT1 G 170 L3 89 105 C8 XOUT1 O 171 L4 90 106 E8 Vdd1 P − X − − VddXT1 X 172 M3 − − Vss G 173 M2 91 107 A9 AVddPLL1 P 174 M1 92 108 B9 VCNT1 O − 1A − − AVddPLL1 1A 175 N1 93 109 C9 AVssPLL1 G 176 N3 − 110 A10 EXD4/ GPIO4A/ EXTINT4A B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 177 N2 − − Vss G 178 P1 − − Vdd2 P 179 P2 − 111 B10 EXD5/ GPIO4B/ EXTINT4B B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 180 R1 − 112 D9 EXD6/ GPIO4C/ EXTINT4C B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 181 R2 − − EXA19/ GPIO44/ EXTINT44 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 182 R3 − − EXA20/ GPIO45/ EXTINT45 O/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 183 P3 − 113 A11 EXD7/ GPIO4D/ EXTINT4D B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 184 N4 94 114 F7 TIOCB00/ DMDIN0/ B/ I/ Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) DIN1/ GPIO02/ EXTINT02 I/ B/ I G No. Ball No. No Ball 156 E1 77 93 B5 157 F1 78 94 158 G1 79 159 H2 80 160 J1 161 H1 162 J2 163 H3 164 165 166 Pin Name 185 R4 − 115 B11 Vss 186 P4 95 116 A12 Vdd2 P 187 M6 96 117 C10 DOUT1/ GPIO15/ EXTINT15 O/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) 188 N5 − − EXD8/ GPIO4E/ EXTINT4E B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 189 M5 − − EXD9/ GPIO4F/ EXTINT4F B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) www.onsemi.com 38 LC823450 Table 14. LFBGA240 TQFP128L WLP154 No. Ball No. No Ball 190 L6 − 118 G6 191 M7 − − 192 N7 − 119 193 N6 97 120 194 L7 − − 195 M8 98 121 Pin Name I/O Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type BCK1/ GPIO13/ EXTINT13 B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) EXD10/ GPIO50/ EXTINT50 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) G7 LRCK1/ GPIO14/ EXTINT14 B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) B12 MCLK0/ MCLK1/ GPIO18/ EXTINT18 B/ B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) EXD11/ GPIO51/ EXTINT51 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) BCK0/ DMCKO1/ GPIO19/ EXTINT19 B/ O/ Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) EXD12/ GPIO52/ EXTINT52 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) Schmitt 3−State 2/4/8 mA PU Vdd2 3ISU/3T2 (4)(8) H7 B/ I 196 K7 − − 197 P5 99 122 C11 Vdd2 P 198 J7 − 123 D10 XTALINFO1 B 199 P6 100 124 C12 Vss G 200 L8 − − EXD13/ GPIO53/ EXTINT53 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) 201 K8 101 125 LRCK0/ DMDIN1/ GPIO1A/ EXTINT1A B/ I/ Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) EXD14/ GPIO54/ EXTINT54 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) DIN0/ DMDIN0/ GPIO1B/ EXTINT1B I/ Schmitt 3−State 1/2/4 mA PU/PD Vdd2 I/ B/ I 3ISUD/3T1 (2)(4) EXD15/ GPIO55/ EXTINT55 B/ B/ I Schmitt 3−State 2/4/8 mA PD Vdd2 3ISD/3T2 (4)(8) DOUT0/ DMCKO0/ GPIO1C/ EXTINT1C O/ O/ Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) 202 J8 − − 203 N9 102 126 204 M9 − − 205 N8 103 127 206 E9 F8 E10 B/ I B/ I P7 104 128 D11 NRES I Schmitt − − − Vdd2 3IS 207 L9 105 129 D12 BMODE0 B Schmitt 3−State 2 mA PU/PD Vdd2 3ISUD/3T2 208 K9 106 130 F9 BMODE1 B Schmitt 3−State 2 mA PU/PD Vdd2 3ISUD/3T2 209 J9 107 131 F10 TEST I Schmitt − − Vdd2 3IS 210 P8 108 132 E11 Vdd2 P 211 H8 109 133 E12 Vss G 212 P9 110 134 G10 Vdd1 P 213 R5 111 135 F11 AVssDAMPR G 214 R6 112 136 F12 ROUT/ GPROUT O/ O − 1A − − AVddDAM PR 1A 215 R7 113 137 G11 AVddDAMPR P 216 R8 114 138 G12 AVddDAMPL P 217 R9 115 139 H12 LOUT/ GPLOUT O/ O − 1A − − AVddDAM PL 1A 218 R10 116 140 H11 AVssDAMPL G www.onsemi.com 39 LC823450 Table 14. LFBGA240 TQFP128L WLP154 No. Ball 219 P10 − − Vdd1 P 220 N11 117 141 H10 Vss G (Note 17) 142 J12 AVddPLL3 P 143 J11 VCNT3 O 118 144 J10 AVssPLL2 G (Note 18) No. No Ball Pin Name I/O 221 P12 222 R12 119 145 K11 VCNT2 O 223 R13 120 146 K12 AVddPLL2 P 224 P11 121 147 G9 Vdd1 P 225 R11 − − Vss G 226 N12 − − Vdd2 P 227 M10 122 148 GPIO2D/ EXTINT2D/ DMCKO0/ SDRADDR11 B/ I/ O/ O 228 L10 − − 229 K10 123 149 230 J10 − − 231 N10 − − 232 M11 124 150 233 P13 125 234 L11 126 235 R14 236 K11 237 H9 G8 Input Type Output Type Drive PU/PD IO Pwr Grp IO Circuit Type − 3A − − AVddPLL3 3A − 1A − − AVddPLL2 1A Schmitt 3−State 2/4/8 mA PU/PD Vdd2 3ISUD/3T (4)(8) SDRADDR0 O − 3−State 2/4/8 mA GPIO2E/ EXTINT2E B/ I Schmitt 3−State 1/2/4 mA SDRADDR1 O − 3−State 2/4/8 mA PU/PD Vdd2 3T2(4)(8) Vdd2 3ISUD/3T1 (2)(4) Vdd2 3T2 (4)(8) SDRADDR2 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) L12 GPIO2F/ EXTINT2F B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) 151 L11 Vss G 152 K10 SCL1/ GPIO2B/ EXTINT2B O/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) 127 153 M12 Vdd2 P 128 154 J9 SDA1/ GPIO2C/ EXTINT2C B/ B/ I Schmitt 3−State 1/2/4 mA PU/PD Vdd2 3ISUD/3T1 (2)(4) M12 − − SDRDATA0 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 238 N13 − − SDRDATA1 B CMOS 3−State 2/4/8 mA PD Vdd2 3ICD/3T2 (4)(8) 239 P14 − − SDRADDR3 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 240 R15 − − SDRADDR4 O − 3−State 2/4/8 mA Vdd2 3T2 (4)(8) 16. RTCINT (open drain Output) 3.6 V tolerant. 17. Pin assignment of TQFP128L which can use PLL3 is as below. PLL3 118 AvddPLL3 119 VCNT3 120 AVssPLL2 18. Pin assignment of LFBGA240 which can use PLL3 is as below. PLL3 221 AvddPLL3 222 VCNT3 223 AVssPLL2 www.onsemi.com 40 LC823450 Input/Output Circuit Attribute : 1IS Attribute : 3IS VddIO (Note 19) VddIO (Note 19) PAD PAD Vss Vss Attribute : 1IC Attribute : 1ISD VddIO (Note 19) VddIO (Note 19) PAD PAD Vss Vss Attribute : 3T2(4)(8) Attribute : OD3 2/4/8mA PAD PAD Out/Hiz Vss Vss Attribute : 3ICUD/3T6(8)(10) ON/OFF DRVcnt Attribute : 3ICD/3T2(4)(8) VddIO (Note 19) VddIO (Note 19) DRVcnt (Note 20) (Note 20) PAD PAD Out/Hiz Out/Hiz ON/OFF ON/OFF Vss Vss Attribute : 3ISUD/3T2 Attribute : 3ISUD/3T1(2)(4), /3T2(4)(8), /3T6(8)(10) ON/OFF DRVcnt VddIO (Note 19) ON/OFF VddIO (Note 19) (Note 20) PAD PAD Out/Hiz Out/Hiz ON/OFF ON/OFF Vss Vss Level Shifter Figure 6. Input/Output Circuit www.onsemi.com 41 LC823450 Attribute : 3ISU/3T2 Attribute : 3ISD/3T2(4)(8) VddlO (Note 19) DRVcnt (Note 20) ON/OFF VddlO (Note 19) PAD PAD Out/Hiz Out/Hiz ON/OFF Vss Vss Attribute : 3ISU/3T2(4)(8) Attribute : 3A,1A VddlO (Note 19) ON/OFF DRVcnt (Note 20) AVdd* AVdd* PAD(Output) PAD Out/Hiz PAD(Input) AVss* Vss Attribute : X VddXT1/VddRTC PAD(Output) Vss Level Shifter 19. Vdd2, VddSD0, VddSD1, VddSD2, VddQSPI (IO Pwr Grp of 3−1 Pin Assignment) 20. DRVcnt: 1/2/4 mA, 2/4/8 mA. 4/8/10 mA, etc. Drivability switch control signal Figure 7. Input/Output Circuit (Continued) www.onsemi.com 42 AVss* LC823450 Table 15. PORT STATE TABLE LFBGA240 TQFP128L Default Function (NRES=Low) (Note 22) Port Status NRES=Low(i) (Note 23) Port Status NRES=High(ii) (Note 23) WLP154 PIN NAME GPIO00 Hiz Hiz • • • TCLKA0/ BCK1/ GPIO00/ EXTINT00 • • • TCLKB0/ LRCK1/ GPIO01/ EXTINT01 GPIO01 Hiz Hiz • TIOCB00/ DMDIN0 DIN1/ GPIO02/ EXTINT02/ GPIO02 Hiz Hiz GPIO03 PU PU (Note 24) • • • • • TIOCB01/ DMCKO0/ QSCS/ GPIO03/ EXTINT03 • • • TXD1/ SDAT20/ GPIO04/ EXTINT04 GPIO04 Hiz Hiz • RXD1/ SDAT21/ GPIO05/ EXTINT05 GPIO05 Hiz Hiz • NCS0/ GPIO06/ EXTINT06 GPIO06 Hiz Hiz • • • • • • SCL0/ GPIO07/ EXTINT07 GPIO07 Hiz Hiz • • • SDA0/ GPIO08/ EXTINT08 GPIO08 Hiz Hiz • TIOCA00/ SDCLK2/ PHI0/ GPIO09/ EXTINT09 GPIO09 Hiz Hiz • TIOCA01/ SDCMD2/ PHI1/ GPIO0A/ EXTINT0A GPIO0A Hiz Hiz GPIO0B Hiz Hiz • • • • • • • TXD2/ TIOCA10/ GPIO0B/ EXTINT0B • • • RXD2/ TIOCA11/ GPIO0C/ EXTINT0C GPIO0C Hiz Hiz • • • SCK1/ GPIO0D/ EXTINT0D GPIO0D Hiz Hiz www.onsemi.com 43 LC823450 Table 15. PORT STATE TABLE (continued) LFBGA240 TQFP128L Default Function (NRES=Low) (Note 22) Port Status NRES=Low(i) (Note 23) Port Status NRES=High(ii) (Note 23) WLP154 PIN NAME GPIO0E Hiz Hiz • • • SDI1(QIO0)/ GPIO0E/ EXTINT0E • • • SDO1(QIO1)/ GPIO0F/ EXTINT0F GPIO0F Hiz Hiz • NCS1/ RXD0/ GPIO10/ EXTINT10 GPIO10 Hiz Hiz • • • • SWP1(QIO2)/ GPIO11/ EXTINT11 GPIO11 Hiz Hiz • • • SHOLD1(QIO3)/ GPIO12/ EXTINT12 GPIO12 Hiz Hiz • • BCK1/ GPIO13/ EXTINT13 GPIO13 Hiz Hiz • • LRCK1/ GPIO14/ EXTINT14 GPIO14 Hiz Hiz • DOUT1/ GPIO15/ EXTINT15 GPIO15 Hiz Hiz • • NLBEXA0/ GPIO16/ EXTINT16 GPIO16 Hiz Hiz • • NRD/ GPIO17/ EXTINT17 GPIO17 Hiz Hiz • • • • • MCLK0/ MCLK1/ GPIO18/ EXTINT18 GPIO18 Hiz Hiz • • • BCK0/ DMCKO1/ GPIO19/ EXTINT19 GPIO19 Hiz Hiz • • • LRCK0/ DMDIN1/ GPIO1A/ EXTINT1A GPIO1A Hiz Hiz GPIO1B Hiz Hiz • • • DIN0/ DMDIN0/ GPIO1B/ EXTINT1B • • • DOUT0/ DMCKO0/ GPIO1C/ EXTINT1C GPIO1C Hiz Hiz • • • SCK0/ GPIO1D/ EXTINT1D GPIO1D Hiz Hiz • • • SDI0/ GPIO1E/ EXTINT1E GPIO1E Hiz Hiz www.onsemi.com 44 LC823450 Table 15. PORT STATE TABLE (continued) Default Function (NRES=Low) (Note 22) Port Status NRES=Low(i) (Note 23) Port Status NRES=High(ii) (Note 23) LFBGA240 TQFP128L WLP154 PIN NAME • • • SDO0/ GPIO1F/ EXTINT1F GPIO1F Hiz Hiz • TDI/ SDCD1/ SWO/ GPIO20/ EXTINT20 GPIO20 Hiz Hiz • TDO/ SDWP1/ INS/ GPIO21/ EXTINT21 GPIO21 Hiz Hiz GPIO22 Hiz Hiz • • • • • • • SDCLK1/ SCLK/ GPIO22/ EXTINT22 • • • SDCMD1/ BS/ GPIO23/ EXTINT23 GPIO23 Hiz Hiz GPIO24 Hiz Hiz • • • SDAT10/ DATA0/ GPIO24/ EXTINT24 • • • SDAT11/ DATA1/ GPIO25/ EXTINT25 GPIO25 Hiz Hiz GPIO26 Hiz Hiz • • • SDAT12/ DATA2/ GPIO26/ EXTINT26 • • • SDAT13/ DATA3/ GPIO27/ EXTINT27 GPIO27 Hiz Hiz • • • TMS/ SDWP2/ GPIO28/ EXTINT28 GPIO28 Hiz Hiz • • • TCK/ SDCD2/ GPIO29/ EXTINT29 GPIO29 Hiz Hiz GPIO2A/ EXTINT2A/ SDRADDR12 GPIO2A Hiz Hiz • • • • SCL1/ GPIO2B/ EXTINT2B GPIO2B Hiz Hiz • • • SDA1/ GPIO2C/ EXTINT2C GPIO2C Hiz Hiz • GPIO2D/ EXTINT2D/ DMCKO0/ SDRADDR11 GPIO2D Hiz Hiz • • www.onsemi.com 45 LC823450 Table 15. PORT STATE TABLE (continued) Default Function (NRES=Low) (Note 22) Port Status NRES=Low(i) (Note 23) Port Status NRES=High(ii) (Note 23) LFBGA240 TQFP128L WLP154 PIN NAME • • • GPIO2E/ EXTINT2E GPIO2E Hiz Hiz(Note 25) • • • GPIO2F/ EXTINT2F GPIO2F Hiz Hiz(Note 26) • NWRENWRL/ GPIO30/ EXTINT30 GPIO30 Hiz Hiz • NHBNWRH/ TXD0/ GPIO31/ EXTINT31 GPIO31 Hiz Hiz • EXA1/ GPIO32/ EXTINT32 GPIO32 Hiz Hiz • EXA2/ GPIO33/ EXTINT33 GPIO33 Hiz Hiz • EXA3/ GPIO34/ EXTINT34 GPIO34 Hiz Hiz • EXA4/ GPIO35/ EXTINT35 GPIO35 Hiz Hiz • EXA5/ GPIO36/ EXTINT36 GPIO36 Hiz Hiz • EXA6/ GPIO37/ EXTINT37 GPIO37 Hiz Hiz • EXA7/ GPIO38/ EXTINT38 GPIO38 Hiz Hiz • EXA8/ GPIO39/ EXTINT39 GPIO39 Hiz Hiz • EXA9/ GPIO3A/ EXTINT3A GPIO3A Hiz Hiz • EXA10/ GPIO3B/ EXTINT3B GPIO3B Hiz Hiz • EXA11/ GPIO3C/ EXTINT3C GPIO3C Hiz Hiz • EXA12/ GPIO3D/ EXTINT3D GPIO3D Hiz Hiz • EXA13/ GPIO3E/ EXTINT3E GPIO3E Hiz Hiz • EXA14/ GPIO3F/ EXTINT3F GPIO3F Hiz Hiz • • www.onsemi.com 46 LC823450 Table 15. PORT STATE TABLE (continued) LFBGA240 TQFP128L WLP154 PIN NAME Default Function (NRES=Low) (Note 22) Port Status NRES=Low(i) (Note 23) Port Status NRES=High(ii) (Note 23) • EXA15/ GPIO40/ EXTINT40 GPIO40 Hiz Hiz • EXA16/ GPIO41/ EXTINT41 GPIO41 Hiz Hiz • EXA17/ GPIO42/ EXTINT42 GPIO42 Hiz Hiz • EXA18/ GPIO43/ EXTINT43 GPIO43 Hiz Hiz • EXA19/ GPIO44/ EXTINT44 GPIO44 Hiz Hiz • EXA20/ GPIO45/ EXTINT45 GPIO45 Hiz Hiz • • EXD0/ GPIO46/ EXTINT46 GPIO46 Hiz Hiz • • EXD1/ GPIO47/ EXTINT47 GPIO47 Hiz Hiz • • EXD2/ GPIO48/ EXTINT48 GPIO48 Hiz Hiz • • EXD3/ GPIO49/ EXTINT49 GPIO49 Hiz Hiz • • EXD4/ GPIO4A/ EXTINT4A GPIO4A Hiz Hiz • • EXD5/ GPIO4B/ EXTINT4B GPIO4B Hiz Hiz • • EXD6/ GPIO4C/ EXTINT4C GPIO4C Hiz Hiz • • EXD7/ GPIO4D/ EXTINT4D GPIO4D Hiz Hiz • EXD8/ GPIO4E/ EXTINT4E GPIO4E Hiz Hiz • EXD9/ GPIO4F/ EXTINT4F GPIO4F Hiz Hiz • EXD10/ GPIO50/ EXTINT50 GPIO50 Hiz Hiz • EXD11/ GPIO51/ EXTINT51 GPIO51 Hiz Hiz www.onsemi.com 47 LC823450 Table 15. PORT STATE TABLE (continued) LFBGA240 TQFP128L WLP154 PIN NAME Default Function (NRES=Low) (Note 22) Port Status NRES=Low(i) (Note 23) Port Status NRES=High(ii) (Note 23) • EXD12/ GPIO52/ EXTINT52 GPIO52 Hiz Hiz • EXD13/ GPIO53/ EXTINT53 GPIO53 Hiz Hiz • EXD14/ GPIO54/ EXTINT54 GPIO54 Hiz Hiz • EXD15/ GPIO55/ EXTINT55 GPIO55 Hiz Hiz • • CTS1/ SDAT22/ RXD0/ GPIO56/ EXTINT56 GPIO56 Hiz Hiz GPIO57 Hiz Hiz • • • • RTS1/ SDAT23/ TXD0/ GPIO57/ EXTINT57 • • • SDAT00 SDAT00 Hiz Hiz • • • SDAT01 SDAT01 Hiz Hiz • • • SDAT02 SDAT02 Hiz Hiz • • • SDAT03 SDAT03 Hiz Hiz • • • SDCLK0 SDCLK0 Low Low • • • SDCMD0 SDCMD0 Hiz Hiz • SDRADDR0 SDRADDR0 Low Low • SDRADDR1 SDRADDR1 Low Low • SDRADDR10 SDRADDR10 Low Low • SDRADDR2 SDRADDR2 Low Low • SDRADDR3 SDRADDR3 Low Low • SDRADDR4 SDRADDR4 Low Low • SDRADDR5 SDRADDR5 Low Low • SDRADDR6 SDRADDR6 Low Low • SDRADDR7 SDRADDR7 Low Low • SDRADDR8 SDRADDR8 Low Low • SDRADDR9 SDRADDR9 Low Low • SDRBA0 SDRBA0 Low Low • SDRBA1 SDRBA1 Low Low • SDRCAS SDRCAS High High • SDRCKE SDRCKE High High • SDRCLK SDRCLK Low Low • SDRCS SDRCS High High • SDRDATA0 SDRDATA0 Hiz Hiz • SDRDATA1 SDRDATA1 Hiz Hiz www.onsemi.com 48 LC823450 Table 15. PORT STATE TABLE (continued) Port Status NRES=Low(i) (Note 23) Port Status NRES=High(ii) (Note 23) PIN NAME Default Function (NRES=Low) (Note 22) • SDRDATA10 SDRDATA10 Hiz Hiz • SDRDATA11 SDRDATA11 Hiz Hiz • SDRDATA12 SDRDATA12 Hiz Hiz • SDRDATA13 SDRDATA13 Hiz Hiz • SDRDATA14 SDRDATA14 Hiz Hiz • SDRDATA15 SDRDATA15 Hiz Hiz • SDRDATA2 SDRDATA2 Hiz Hiz • SDRDATA3 SDRDATA3 Hiz Hiz • SDRDATA4 SDRDATA4 Hiz Hiz • SDRDATA5 SDRDATA5 Hiz Hiz • SDRDATA6 SDRDATA6 Hiz Hiz • SDRDATA7 SDRDATA7 Hiz Hiz • SDRDATA8 SDRDATA8 Hiz Hiz • SDRDATA9 SDRDATA9 Hiz Hiz • SDRDQM0 SDRDQM0 High High • SDRDQM1 SDRDQM1 High High • SDRRAS SDRRAS High High • SDRWE SDRWE High High • • • SWDCLK/ GPIO58/ EXTINT58/ DMCKO1 SWDCLK Hiz Hiz • • • SWDIO/ GPIO59/ EXTINT59/ DMDIN1 SWDIO Hiz Hiz • • • NRES NRES Hiz Hiz • • • TEST TEST Hiz Hiz • • XTALINFO0 XTALINFO0 Hiz Hiz • • XTALINFO1 XTALINFO1 Hiz Hiz LFBGA240 TQFP128L WLP154 • • • BMODE0 BMODE0 Hiz Hiz • • • BMODE1 BMODE1 Hiz Hiz • • RTCMODE RTCMODE Hiz Hiz • • KEYINT0 KEYINT0 PD PD • • KEYINT1 KEYINT1 PD PD • KEYINT2 KEYINT2 PD PD • • • BACKUPB BACKUPB Hiz Hiz • • • RTCINT RTCINT (Not Determined) (Not Determined) • • • VDET VDET Hiz Hiz • • • LOUT/ GPLOUT LOUT Hiz Hiz • • • ROUT/ GPROUT ROUT Hiz Hiz • www.onsemi.com 49 LC823450 Table 15. PORT STATE TABLE (continued) Port Status NRES=Low(i) (Note 23) Port Status NRES=High(ii) (Note 23) LFBGA240 TQFP128L WLP154 PIN NAME Default Function (NRES=Low) (Note 22) • • • USBDM USBDM Hiz Hiz • • • USBDP USBDP Hiz Hiz • • • USBEXT12 USBEXT12 (Not Applicable) (Not Applicable) • • • VCNT1 VCNT1 (Not Applicable) (Not Applicable) • • VCNT2 VCNT2 (Not Applicable) (Not Applicable) (Note 27) (Note 27) • VCNT3 VCNT3 (Not Applicable) (Not Applicable) • • • AN0 AN0 (Not Applicable) (Not Applicable) • • • AN1 AN1 (Not Applicable) (Not Applicable) • • • AN2 AN2 (Not Applicable) (Not Applicable) • • • AN3 AN3 (Not Applicable) (Not Applicable) • • • AN4 AN4 (Not Applicable) (Not Applicable) • • • • AN5 AN5 (Not Applicable) (Not Applicable) • VR VR (Not Applicable) (Not Applicable) • VRH VRH (Not Applicable) (Not Applicable) • VRL VRL (Not Applicable) (Not Applicable) • • • XIN1 XIN1 (Not Applicable) (Not Applicable) • • • XIN32K XIN32K (Not Applicable) (Not Applicable) • • • XOUT1 XOUT1 (Not Applicable) (Not Applicable) • • • XOUT32K XOUT32K (Not Applicable) (Not Applicable) 21. Means a port is available for each package. “PD” means pull down 22. Default function is port function set by NRES = Low 23. NRES = High (ii) occurs just after NRES = Low(i) 24. This port is set to output port and PU is disabled to be used as QSCS for SPI I/F chip select during serial flash boot mode. 25. This port is set to output port to be used as external power control during Internal ROM boot. 26. This port is set to output port to be used as boot monitor port during Internal ROM boot. 27. One of VCNT2 or VCNT3 is available www.onsemi.com 50 LC823450 ELECTRICAL SPECIFICATION Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. Table 16. MAXIMUM RATINGS (*Vss* = 0 V) Item Maximum Power Supply Voltage Input Voltage Symbol Condition Ratings Unit Vdd1 VddRTC VddXT1 AVddUSBPHY1 DvddUSBPHY1 AvddPLL1 AVddPLL2 −0.5 to 1.8 V AvddDAMPL AVddDAMPR −0.5 to 2.5 V Vdd2 VddSD0 VddSD1 VddSD2 VddQSPI AvddPLL3 AvddADC AVddUSBPHY2 −0.5 to 4.6 V VI −0.5 to *Vdd* + 0.5 V −0.5 to AVddUSBPHY2 + 0.5 (< 4.6) V VIUSB USBDP, USBDM Terminal Operating Ambient Temperature Topr −20 to +65 _C Ambient Ttemperature of Preservation Tstg −55 to +125 _C Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. www.onsemi.com 51 LC823450 Table 17. RECOMMENDED OPERATING CONDITIONS (Ta = −20_C to +65_C) Low Voltage Operation (Note 28) High Voltage Operation (Note 28) Min Typ Max Min Typ Max Unit 0.93 1.0 1.27 1.1 1.2 1.27 V 0.93 1.0 1.3 0.93 1.2 1.3 V AVddPLL1 0.93 1.0 1.3 1.1 1.2 1.3 V AVddPLL2 0.9 1.0 1.3 0.9 1.2 1.3 V AVddPLL3 2.7 3.3 3.6 Same as left V VddRTC 0.9 1.0 1.1 Same as left V Vdd2 2.7 3.3 3.6 Same as left V 1.7 1.8 1.95 Same as left V 2.7 3.3 3.6 Same as left V 1.7 1.8 1.95 Same as left V 2.7 3.3 3.6 Same as left V 1.7 1.8 1.95 Same as left V 2.7 3.3 3.6 Same as left V 1.7 1.8 1.95 Same as left V 2.7 3.3 3.6 Same as left V 1.7 1.8 1.95 Same as left V 2.7 3.3 3.6 Same as left V (Note 30) 0.93 1.2 1.3 Same as left V (Note 31) 1.08 1.2 1.3 Same as left V (Note 30) 0.93 1.2 1.3 Same as left V (Note 31) 1.08 1.2 1.3 Same as left V (Note 30) 2.7 3.3 3.6 Same as left V (Note 31) 3.0 3.3 3.6 Same as left V 0.93 1.2 1.65 Same as left V 0.93 1.2 1.95 Same as left V 0.93 1.2 1.65 Same as left V 0.93 1.2 1.95 Same as left V *Vdd* Same as left V Item Symbol Power Supply Voltage Vdd1 VddXT1 Condition (Note 29) VddSD0 VddSD1 VddSD2 VddQSPI AVddADC AVddUSBPHY1 DVddUSBPHY1 AVddUSBPHY2 AVddDAMPL (Note 32) AVddDAMPR (Note 32) Input Range VIN 0 Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 28. Follow the operating frequency specifications because the operating frequency ranges are specified according to the operating voltage ranges. 29. Regarding Xtal frequency range, refer to the detailed datasheet. 30. While USB is not used. 31. While USB is used (including USB suspend mode). 32. While used as GPO (general purpose output) the output of which can be controlled by registers. 33. Power domains of Vdd1, AVddUSBPHY1 = DVddUSBPHY1, AVddPLL1, AVddPLL2, AVddPLL3, VddXT1 are divided, and different voltage can be supplied. Power domains of Vdd2, VddSD0, VddSD1, VddSD2, VddQSPI, AVddADC, AVddUSBPHY2, AVddPLL3, AvddDAMPL = AVddDAMPR are divided, and difference voltage can be supplied. If power is supplied to one of the power supply pins above, all of other power supply pins should be supplied. VddRTC can be supplied if BACKUPB is set to low, while other power supply pins are not supplied. www.onsemi.com 52 LC823450 Table 18. RECOMMENDED OPERATING CONDITIONS Item Symbol Xtal Input Frequency Fxin1 FxinRTC Frc Time for Xtal Stable Internal Clock Frequency Function System, Audio clock (XT1 oscillator) Low Voltage Operation 12 MHz or 20 MHz tolerance : ±200 ppm or less Jitter : ±50 ps or less (Note 37) RTC clock (XTRTC oscillator) RC (RC oscillator) High Voltage Operation Unit 12 MHz or 20 MHz or 24 MHz or 48 MHz tolerance : ±200 ppm or less Jitter : ±50 ps or less (Note 37) − 32.768 kHz Jitter : ±500 ps or less 0.4 (Note 38) 1 (Note 38) Same as left 2 (Note 38) Same as left − MHz Txin1 3 (Note 40) Same as left ms TxinRTC 1000 (Note 40) Same as left ms Farm Cortex−M3 0 100 0 160 (Note 39) MHz Fahb AHB 0 100 0 160 (Note 39) MHz Fapb APB 0 100 0 160 (Note 39) MHz Fdsp DSP 0 100 0 160 (Note 39) MHz AUDCLK(768fs) 0 33.8688 147.456 Same as left MHz Fdec DECCLK(Note 35) (MP3 Decoder) 0 16.9344 73.728 Same as left MHz Fenc ENCCLK(Note 36) (MP3 Encoder) 0 8.4672 36.864 Same as left MHz Faud (Note 34) 34. Audio blocks run on 256 * Fs (sampling frequency) clock. However, Class−D AMP, etc run on 384 * Fs (sampling frequency). These clocks are generated from 768 * Fs (Base Clock) divided by 3 and 2 respectively. 35. MP3 Decoder runs on clock of 384 * Fs (sampling frequency of MPEG1 mode). It runs on the clock of the same frequency as MPEG1 mode during MPEG2 / 2.5 mode. For example, even when operating in MPEG 2 / 2.5 mode (Fs = 22.05 / 11.025 KHz as an example), please supplies 16.9344 MHz(= 384 * 44.1 kHz) clock which is the same clock frequency as MPEG1 mode. 36. MP3 Encoder runs on clock of 192 * Fs(sampling frequency of MPEG1 mode). It runs on the clock of the same frequency as MPEG1 mode during MPEG2 / 2.5 mode. For example, even when operating in MPEG2 / 2.5 mode (Fs = 22.05 / 11.025 KHz as an example), please supplies 8.4672 Mhz (= 192 * 44.1 kHz) clock which is the same clock frequency as MPEG1 mode. 37. Refer to the detailed datasheet. If USB function is not used, the specification required may be relaxed. Please contact our representative in detail. 38. Vdd1 = 0.93 V to 1.27 V, Ta = −20_C to 65_C. 39. When Farm, Fdsp are over 100 MHz, 1 * Wait is required for Cortex−M3 and LPDSP32 to access internal ROM by the register described in the ProgrammersModel_SystemController as memory access control register4. 40. These are just reference values under Ta = 25_C, and need to be adjusted to customer board situation. www.onsemi.com 53 LC823450 Table 19. DC CHARACTERISTICS (Vdd2= 2.7 V to 3.6V, VddRTC = 0.9 V to 1.1 V, VddSD0 = 2.7 V to 3.6 V, VddSD1 = 2.7 V to 3.6V, VddSD2 = 2.7 V to 3.6 V, VddQSPI = 2.7 V to 3.6 V, Ta = −20_C to +65_C) Item Input H Voltage Symbol Pin Condition Min VIH (1) CMOS 0.7 × Vdd2 V (2) 0.7 × VddSD0 V (3) 0.7 × VddSD1 V (4) 0.7 × VddSD2 V 0.75 × Vdd2 V (21) 0.75 × VddSD1 V (6) 0.75 × VddSD2 V (7) 0.75 × VddQSPI V (5) Input L Voltage VIL Schmitt Typ Max Unit (8) CMOS 0.7 × VddRTC V (9) Schmitt 0.7 × VddRTC V (1) CMOS 0.3 × Vdd2 V (2) 0.3 × VddSD0 V (3) 0.3 × VddSD1 V (4) 0.3 × VddSD2 V (5) Schmitt 0.25 × Vdd2 V (21) 0.25 × VddSD1 V (6) 0.25 × VddSD2 V (7) 0.25 × VddQSPI V (8) CMOS 0.2 × VddRTC V (9) Schmitt 0.2 × VddRTC V www.onsemi.com 54 LC823450 Table 19. DC CHARACTERISTICS (continued) (Vdd2= 2.7 V to 3.6V, VddRTC = 0.9 V to 1.1 V, VddSD0 = 2.7 V to 3.6 V, VddSD1 = 2.7 V to 3.6V, VddSD2 = 2.7 V to 3.6 V, VddQSPI = 2.7 V to 3.6 V, Ta = −20_C to +65_C) Item Output H Voltage Symbol Pin Condition Min VOH (10)(12) IOH = −1 mA Vdd2 − 0.4 V VddQSPI − 0.4 V (11) (10)(13)(14) IOH = −2 mA Typ Max Unit Vdd2 − 0.4 V (11) VddQSPI − 0.4 V (15) VddSD1 − 0.4 V (12) VddSD2 − 0.4 V Vdd2 − 0.4 V VddQSPI − 0.4 V (10)(13) IOH = −4 mA (11) (12) VddSD2 − 0.4 V VddQSPI − 0.4 V (17) VddSD0 − 0.4 V (18) VddSD1 − 0.4 V (19) VddSD2 − 0.4 V Vdd2 − 0.4 V (16) VddQSPI − 0.4 V (17) VddSD0 − 0.4 V (18) VddSD1 − 0.4 V (19) VddSD2 − 0.4 V VddQSP − 0.4 V (17) VddSD0 − 0.4 V (18) VddSD1 − 0.4 V (19) VddSD2 − 0.4 V (16) (13) (16) IOH = −6 mA IOH = −8 mA IOH = −10 mA www.onsemi.com 55 LC823450 Table 19. DC CHARACTERISTICS (continued) (Vdd2= 2.7 V to 3.6V, VddRTC = 0.9 V to 1.1 V, VddSD0 = 2.7 V to 3.6 V, VddSD1 = 2.7 V to 3.6V, VddSD2 = 2.7 V to 3.6 V, VddQSPI = 2.7 V to 3.6 V, Ta = −20_C to +65_C) Item Output L Voltage Symbol Pin Condition VOL (10)(12) IOL = 1 mA Min (11) (10)(13)(14) IOL = 2 mA V 0.4 V V V (15) 0.4 V (12) 0.4 V 0.4 V 0.4 V 0.4 V 0.4 V (17) 0.4 V (18) 0.4 V (19) 0.4 V 0.4 V (16) 0.4 V (17) 0.4 V (18) 0.4 V (19) 0.4 V 0.4 V (17) 0.4 V (18) 0.4 V 0.4 V 0.3 V (16) (13) (16) IOL = 4 mA IOL = 6 mA IOL = 8 mA IOL = 10 mA (19) (20) Rdn 0.4 0.4 (12) Pull−down Resister Unit 0.4 (11) Rup Max (11) (10)(13) Pull−up Resister Typ IOL = 0.3 mA (28) 25 75 kW (29) 10 100 kW (30) 18 50 kW (25) 25 75 kW (26) 10 100 kW (27) 10 100 kW Input Leak Current IIL (1)(2)(3)(4) (5)(6)(7)(8) (9)(21) VI = Vdd* = Vss −10 10 mA Output Leak Current IOZ (10)(11)(12)(13) (14)(15)(16)(17) (18)(19)(20) HiZ output −10 10 mA Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 56 LC823450 Table 20. DC CHARACTERISTICS (Vdd2 = 1.7 V to 1.95 V, VddSD0 = 1.7 V to 1.95 V, VddSD1 = 1.7 V to 1.95 V, VddSD2 = 1.7 V to 1.95 V, VddQSPI = 1.7 V to 1.95 V, AVddDAMPL = 0.93 V to 1.95 V, AVddDAMPR = 0.93 V to 1.95 V, Ta = −20°C to +65°C) Item Input H Voltage Symbol Pin Condition Min VIH (1) CMOS 0.7 × Vdd2 V (2) 0.7 × VddSD0 V (3) 0.7 × VddSD1 V (4) 0.7 × VddSD2 V 0.75 × Vdd2 V (21) 0.75 × VddSD1 V (6) 0.75 × VddSD2 V (7) 0.75 × VddQSPI V (5) Input L Voltage VIL (1) Schmitt CMOS Typ Max Unit 0.3 × Vdd2 V (2) 0.3 × VddSD0 V (3) 0.3 × VddSD1 V (4) 0.3 × VddSD2 V 0.25 × Vdd2 V 0.25 × VddSD1 V (6) 0.25 × VddSD2 V (7) 0.25 × VddQSPI V (5) Schmitt (21) www.onsemi.com 57 LC823450 Table 20. DC CHARACTERISTICS (continued) (Vdd2 = 1.7 V to 1.95 V, VddSD0 = 1.7 V to 1.95 V, VddSD1 = 1.7 V to 1.95 V, VddSD2 = 1.7 V to 1.95 V, VddQSPI = 1.7 V to 1.95 V, AVddDAMPL = 0.93 V to 1.95 V, AVddDAMPR = 0.93 V to 1.95 V, Ta = −20°C to +65°C) Item Output H Voltage Symbol Pin Condition Min VOH (10)(12) IOH = −0.5 mA Vdd2 − 0.4 V VddQSPI − 0.4 V (11) (10)(13)(14) IOH = −1 mA Typ Max Unit Vdd2 − 0.4 V (11) VddQSPI − 0.4 V (15) VddSD1 − 0.4 V (12) VddSD2 − 0.4 V Vdd2 − 0.4 V VddQSPI − 0.4 V (10)(13) IOH = −2 mA (11) (12) VddSD2 − 0.4 V VddQSPI − 0.4 V (17) VddSD0 − 0.4 V (18) VddSD1 − 0.4 V (19) VddSD2 − 0.4 V Vdd2 − 0.4 V (16) VddQSPI − 0.4 V (17) VddSD0 − 0.4 V (18) VddSD1 − 0.4 V (19) VddSD2 − 0.4 V (16) (13) IOH = −3 mA IOH = −4 mA (23) IOH = −8 mA (Note 46) AvddDAMPL − 0.4 V (24) IOH = −8 mA (Note 46) AvddDAMPR − 0.4 V (16) IOH = −5 mA VddQSPI − 0.4 V (17) VddSD0 − 0.4 V (18) VddSD1 − 0.4 V (19) VddSD2 − 0.4 V www.onsemi.com 58 LC823450 Table 20. DC CHARACTERISTICS (continued) (Vdd2 = 1.7 V to 1.95 V, VddSD0 = 1.7 V to 1.95 V, VddSD1 = 1.7 V to 1.95 V, VddSD2 = 1.7 V to 1.95 V, VddQSPI = 1.7 V to 1.95 V, AVddDAMPL = 0.93 V to 1.95 V, AVddDAMPR = 0.93 V to 1.95 V, Ta = −20°C to +65°C) Item Output L Voltage Symbol Pin Condition VOL (10)(11)(12) (10)(13)(14) Rdn Unit IOL = 0.5 mA 0.4 V IOL = 1 mA 0.4 V 0.4 V 0.4 V (12) 0.4 V 0.4 V (11) 0.4 V (12) 0.4 V IOL = 2 mA IOL = 3 mA 0.4 V (17) 0.4 V (18) 0.4 V (19) 0.4 V 0.4 V (16) 0.4 V (17) 0.4 V (18) 0.4 V (19) 0.4 V (13) Pull−down Resister Max (11) (16) Rup Typ (15) (10)(13) Pull−up Resister Min IOL = 4 mA (23) IOL = 8 mA (Note 41) 0.4 V (24) IOL = 8 mA (Note 41) 0.4 V (16) IOL = 5 mA 0.4 V (17) 0.4 V (18) 0.4 V (19) 0.4 V (28) 25 75 kW (29) 30 200 kW (30) 18 50 kW (25) 25 75 kW (26) 30 200 kW Input Leak Current IIL (1)(2)(3)(4) (5)(6)(7)(8) (9)(21) VI = Vdd* = Vss −10 10 mA Output Leak Current IOZ (10)(11)(12)(13) (14)(15)(16)(17) (18)(19) HiZ output −10 10 mA −10 10 mA (23)(24) Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 41. Set DAMPCTL register as below. − DZCTL: DSLEEP=1. (don’t care DSL value) − G DZINP: DZINP14=1, other DZINPx=0 This DC characteristics can be applied while Class−D AMP used as GPO. www.onsemi.com 59 LC823450 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (23) (24) (25) (26) (27) (28) (29) (30) SDRDATA15, SDRDATA14, SDRDATA13, SDRDATA12, SDRDATA11, SDRDATA10, SDRDATA9, SDRDATA8, SDRDATA7, SDRDATA6, SDRDATA5, SDRDATA4, SDRDATA3, SDRDATA2, SDRDATA1, SDRDATA0 SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00 SDCLK1(GPIO22), SDCMD1(GPIO23), SDAT10(GPIO24), SDAT11(GPIO25), SDAT12(GPIO26), SDAT13(GPIO27) TXD1(GPIO04), RXD1(GPIO05), TIOCA01(GPIO0A), CTS1(GPIO56), RTS1(GPIO57) TEST, NRES, BMODE1, BMODE0, TCLKA0(GPIO00), TCLKB0(GPIO01), TIOCB00(GPIO02), NCS0(GPIO06), SCL0(GPIO07), SDA0(GPIO08), NCS1(GPIO10), BCK1(GPIO13), LRCK1(GPIO14), DOUT1(GPIO15), NLBEXA0(GPIO16), NRD(GPIO17), MCLK0(GPIO18), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C), SCK0(GPIO1D), SDI0(GPIO1E), SDO0(GPIO1F), SDRADDR12(GPIO2A), SCL1(GPIO2B), SDA1(GPIO2C), SDRADDR11(GPIO2D), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), NWRENWRL(GPIO30), NHBNWRH(GPIO31), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45), EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), SWDCLK(GPIO58), SWDIO(GPIO59), XTALINFO1, XTALINFO0 TIOCA00(GPIO09), TMS(GPIO28), TCK(GPIO29) SCK1(GPIO0D), SDI1(GPIO0E), SDO1(GPIO0F), SWP1(GPIO11), SHOLD1(GPIO12), TIOCB01(GPIO03), TXD2(GPIO0B), RXD2(GPIO0C) VDET, RTCMODE BACKUPB, KEYINT2, KEYINT1, KEYINT0 TCLKA0(GPIO00), TCLKB0(GPIO01), TIOCB00(GPIO02), SCL0(GPIO07), SDA0(GPIO08), BCK1(GPIO13), LRCK1(GPIO14), DOUT1(GPIO15), MCLK0(GPIO18), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C), SCK0(GPIO1D), SDI0(GPIO1E), SDO0(GPIO1F), SCL1(GPIO2B), SDA1(GPIO2C), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), SWDCLK(GPIO58) TXD2(GPIO0B), RXD2(GPIO0C) TMS(GPIO28), TCK(GPIO29) SDRWE, SDRRAS, SDRDQM1, SDRDQM0, SDRDATA9, SDRDATA8, SDRDATA7, SDRDATA6, SDRDATA5, SDRDATA4, SDRDATA3, SDRDATA2, SDRDATA15, SDRDATA14, SDRDATA13, SDRDATA12, SDRDATA11, SDRDATA10, SDRDATA1, SDRDATA0, SDRCS, SDRCLK, SDRCKE, SDRCAS, SDRBA1, SDRBA0, SDRADDR9, SDRADDR8, SDRADDR7, SDRADDR6, SDRADDR5, SDRADDR4, SDRADDR3, SDRADDR2, SDRADDR10, SDRADDR1, SDRADDR0, NCS0(GPIO06), NCS1(GPIO10), NLBEXA0(GPIO16), NRD(GPIO17), SDRADDR12(GPIO2A), SDRADDR11(GPIO2D), NWRENWRL(GPIO30), NHBNWRH(GPIO31), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45), EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), XTALINFO1, XTALINFO0 BMODE1, BMODE0, SWDIO(GPIO59) TDI(GPIO20), TDO(GPIO21) TIOCB01(GPIO03), SCK1(GPIO0D), SDI1(GPIO0E), SDO1(GPIO0F), SWP1(GPIO11), SHOLD1(GPIO12) SDCMD0, SDCLK0, SDAT03, SDAT02, SDAT01, SDAT00 SDCLK1(GPIO22), SDCMD1(GPIO23), SDAT10(GPIO24), SDAT11(GPIO25), SDAT12(GPIO26), SDAT13(GPIO27) TXD1(GPIO04), RXD1(GPIO05), TIOCA00(GPIO09), TIOCA01(GPIO0A), CTS1(GPIO56), RTS1(GPIO57) RTCINT TDI(GPIO20), TDO(GPIO21) LOUT(used as GPLOUT) ROUT(used as GPROUT) BMODE1, BMODE0 SDRDATA9, SDRDATA8, SDRDATA7, SDRDATA6, SDRDATA5, SDRDATA4, SDRDATA3, SDRDATA2, SDRDATA15, SDRDATA14, SDRDATA13, SDRDATA12, SDRDATA11, SDRDATA10, SDRDATA1, SDRDATA0, SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00, TCLKA0(GPIO00), TCLKB0(GPIO01), TIOCB00(GPIO02), TIOCB01(GPIO03), TXD1(GPIO04), RXD1(GPIO05), SCL0(GPIO07), SDA0(GPIO08), TIOCA00(GPIO09), TIOCA01(GPIO0A), TXD2(GPIO0B), RXD2(GPIO0C), SCK1(GPIO0D), SDI1(QIO0)(GPIO0E), SDO1(QIO1)(GPIO0F), SWP1(QIO2)(GPIO11), SHOLD1(QIO3)(GPIO12), BCK1(GPIO13), LRCK1(GPIO14), DOUT1(GPIO15), NLBEXA0(GPIO16), NRD(GPIO17), MCLK0(GPIO18), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C), SCK0(GPIO1D), SDI0(GPIO1E), SDO0(GPIO1F), TDI(GPIO20), TDO(GPIO21), SDCLK1(GPIO22), SDCMD1(GPIO23), SDAT10(GPIO24), SDAT11(GPIO25), SDAT12(GPIO26), SDAT13(GPIO27), TMS(GPIO28), TCK(GPIO29), SDRADDR12(GPIO2A), SCL1(GPIO2B), SDA1(GPIO2C), SDRADDR11(GPIO2D), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), NWRENWRL(GPIO30), NHBNWRH(GPIO31), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45), EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), CTS1(GPIO56), RTS1(GPIO57), SWDCLK(GPIO58) KEYINT2, KEYINT1, KEYINT0 SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00, BMODE1, BMODE0, TXD1(GPIO04), RXD1(GPIO05), TIOCA00(GPIO09), TIOCA01(GPIO0A), SDCLK1(GPIO22), SDCMD1(GPIO23), SDAT10(GPIO24), SDAT11(GPIO25), SDAT12(GPIO26), SDAT13(GPIO27), CTS1(GPIO56), RTS1(GPIO57) TCLKA0(GPIO00), TCLKB0(GPIO01), TIOCB00(GPIO02), TIOCB01(GPIO03), NCS0(GPIO06), SCL0(GPIO07), SDA0(GPIO08), TXD2(GPIO0B), RXD2(GPIO0C), SCK1(GPIO0D), SDI1(QIO0)(GPIO0E), SDO1(QIO1)(GPIO0F), NCS1(GPIO10), SWP1(QIO2)(GPIO11), SHOLD1(QIO3)(GPIO12), BCK1(GPIO13), LRCK1(GPIO14), DOUT1(GPIO15), MCLK0(GPIO18), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C), SCK0(GPIO1D), SDI0(GPIO1E), SDO0(GPIO1F), TDI(GPIO20), TDO(GPIO21), TMS(GPIO28), TCK(GPIO29), SDRADDR12(GPIO2A), SCL1(GPIO2B), SDA1(GPIO2C), SDRADDR11(GPIO2D), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), SWDCLK(GPIO58), SWDIO(GPIO59), XTALINFO1, XTALINFO0 SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00 www.onsemi.com 60 LC823450 PLL Characteristics PLL1 (System) Table 21. PLL1 (SYSTEM) (VDD1 (Note 42) = 0.93 to 1.27 V, TA = −20°C to +65°C) AVDDPLL1 = 0.93 to 1.1 V Min Typ AVDDPLL1 = 1.1 to 1.3 V Max Min Typ Max Item Symbol VCO Voltage VCNT1 0 The VCO Highest Oscillation Frequency Fmax 200 The VCO Lowest Oscillation Frequency Fmin 90 Phase Comparison Frequency Fref 48 same as left MHz PLL Lock Time Tlock1 (Note 44) Fref >= 32.768 KHz 38 52 same as left ms Tlock2 (Note 44) Fref >= 1 MHz 3.5 5 same as left ms ±3.19 ±5.42 ±4.28 Jitter (Note 43) Condition Jitter AVDD PLL1 same as left Unit V 360 MHz 180 ±7.28 MHz % 42. Power up and power down timing of AVDDPLL1 and Vdd1 should be as close as possible. 43. Result of simulation 44. PLL lock time and appropriate LPF circuit depend on Phase comparison frequency (Fref). Refer to 5−2 PLL1(System) for appropriate LPF circuit PLL2 (Audio) Table 22. PLL2 (AUDIO) (VDD1 (Note 45) = 0.93 to 1.27 V, TA = −20°C to +65°C) AVDDPLL1 = 0.93 to 1.1 V Min Typ Max Item Symbol VCO voltage VCNT2 0 The VCO Highest Oscillation Frequency Fmax 150 The VCO Lowest Oscillation Frequency Fmin 95 MHz Phase Comparison Frequency Fref 1 MHz PLL Lock Time Tlock1 (Note 47) Fref >= 6.4 KHz 37 50 ms Tlock2 (Note 47) Fref >= 38.4 KHz 14 20 ms ±3.28 ±5.58 % Jitter (Note 46) Condition Jitter AVDDPLL2 61 V MHz 45. Power up and power down timing of AVDDPLL2 and Vdd1 should be as close as possible 46. Result of simulation 47. Phase comparison frequency(Fref) depends on frequency of xtal oscillation as described in the table below. PLL lock time and appropriate LPF circuit depend on Fref. − Tlock1 is derived from the case when XT1 is one of 12, 20, 24, 48 MHz. − Tlock2 is derived from the case when XT1 is 24 MHz. Refer to 5 − 3 PLL2(Audio) for appropriate LPF circuit www.onsemi.com Unit LC823450 Table 23. XT1 Frequency [MHz] VCO Frequency [MHz] (Note 48) 12 20 24 48 Sampling Frequency Fs PLL2 Divide PLL2 Multiply Phase Comparison Frequency Fref [KHz] 147.456 48 KHz 125 1536 96 135.4752 44.1 KHz 625 7056 19.2 98.304 32 KHz 125 1024 96 147.456 48 KHz 625 4608 32 135.4752 44.1 KHz 3125 21168 6.4 98.304 32 KHz 625 3072 32 147.456 48 KHz 125 768 192 135.4752 44.1 KHz 625 3528 38.4 98.304 32 KHz 125 512 192 147.456 48 KHz 125 384 384 135.4752 44.1 KHz 625 1764 76.8 98.304 32 KHz 125 256 384 48. VCO frequency = 768 × Fs × 4 PLL3 (Audio) Table 24. PLL3 (AUDIO) (VDD1 = 0.93 to 1.27 V, TA = −20°C to +65°C) AVDDPLL1 = 0.93 to 1.1 V Min Condition Typ Max Unit AVDDPLL3 V Item Symbol VCO Voltage VCNT3 0 The VCO Highest Oscillation Frequency Fmax 150 The VCO Lowest Oscillation Frequency Fmin 95 MHz Phase Comparison Frequency Fref 1 MHz PLL Lock Time Tlock 32 42 ms Jitter (Note 49) Jitter ±3.37 ±4.38 % MHz 49. Result of simulation. Class−D AMP Table 25. CLASS−D AMP (VDD1 = 0.93 to 1.27 V, TA = −20°C to +65°C) AVDDDAMPL = AVDDDAMPR = 0.93 to 1.65 V Item Symbol Condition Min Typ Max Unit On Resistance Ron On resistance is set to minimum by register. (Note 50) 0.5 1.5 4.0 Ω 50. Set 0x3ff00 to Drivability set register ZINP of ProgrammersModel_DAMPCTL. www.onsemi.com 62 LC823450 XTAL Characteristics Table 26. XTAL CHARACTERISTICS (VDD1 (Note 51) = 0.93 to 1.27 V, TA = −20°C to +65°C) VddXT1 = 0.93 to 1.1V Item Symbol Frequency Fmax Condition Min Typ 1 VddXT1 = 1.1 to 1.3V Max Min 20 1 Typ Max Unit 50 MHz 51. Power up and power down timing of VddXT1 and Vdd1 should be as close as possible. Note that the oscillation frequency of XT1 that can be used with this product depends on the function used. Please refer to the following table. For example, only 48 MHz is available for USB Host function. Table 27. Available Frequency of XT1 (X means available) Function to be Used 12 MHz 20 MHz 24 MHz 48 MHz USB Device x x x x x x x USB Host Other than the Left x ROM boot x (Note 52) 52. During ROM boot, some clock frequencies are determined based on the XTALINFO[1:0] input and the frequency of XT1 other than 12/20/24/48 MHz may cause functional error. However, because there is a possibility that the difference of the frequency is acceptable in some extent, please contact our representative if needed. The requirements of XT1 are below to use USB Host or USB Device function. • Frequency deviation: ±200 ppm or less • Jitter: ±50 ps or less Some products which don’t have XTALINFO[1:0] port, select the appropriate products which set XTALINFO[1:0] internally in accordance with the frequency of XT1. (Regarding the product name, please contact our representative). XTALINFO[1:0] port should be set in accordance with the frequency of XT1. 10bit ADC Converter Characteristic Table 28. 10BIT ADC CONVERTER CHARACTERISTIC (TA = 25°C, VDD1 = 1.2 V, AVDDADC = 3.0 V, FVIN = 1 kHz (Note 53)) Item Symbol ADC Power−supply Voltage AVDH Condition Min Typ Max Unit Pin Applied 2.7 − 3.6 V AVDDADC ADC GND Voltage AVDL 0 − − V AVSSADC ADC Reference Voltage High VRH AVDH × 3/4 − AVDH V VRH ADC Reference Voltage Low VRL AVssADC − AVDH × 1/4 V VRL Decoupling Capacity CREF 0.047 − − μF VR Analog Input Voltage AN VRL − VRH V AN[5:0] ADC Resolution BIT − − 10 Bit AN[5:0] 7.3 9 10.7 kΩ VRH,VRL − − 1000 KS/s (Note 56) 2 − 20 MHz (Note 57) 2 5 MHz Reference Resistance RR ADC Conversion Frequency (Note 60) Fs (Note 55) ADC Operation Clock Frequency (Note 60) Fc Number of ADC Conversion Clocks (Note 60) Nc 12 − − 1/Fc Number of ADC Sample Holding Clocks (Note 60) Ns 2 − − 1/Fc ADC Sample Holding Time (Sampling Time) (Note 60) Tstc 1 − − μs www.onsemi.com 63 LC823450 Table 28. 10BIT ADC CONVERTER CHARACTERISTIC (continued) (TA = 25°C, VDD1 = 1.2 V, AVDDADC = 3.0 V, FVIN = 1 kHz (Note 53)) Item Symbol While it Stabilizes of Ladder (Resumption Time) Tstr 0 Scale Offset Voltage (Transit Voltage from 0 to 1) VZT Full−scale Offset Voltage (Transit Voltage from 1022 to 1023) Unit Pin Applied Typ +20 mV AN[5:0] VRH − (VRH−VRL)/ 1024 Typ +20 mV AN[5:0] −1.5 − +1.5 LSB AN[5:0] −2.0 − +2.0 LSB AN[5:0] Condition Min Typ Max − − (Note 2) (Note 58) Typ−20 VRL + (VRH−VRL)/ 1024 VFST (Note 58) Typ−20 Differential Linearity Error DNL (Note 59) Linearity Error INL (Note 59) *Each electrical specification is the results of simulation. 53. Each electrical characteristic is specified under the condition which VR terminal is connected with analog ground through 0.1 μF decoupling capacitor and the voltage is independently supplied to VRH and VRL. 54. A normal conversion result is not obtained immediately after the power supply turning on and immediately after the return from the state of the power down. The time to get a normal performance depends on the state of the terminal VR as shown in the following table. For example, it takes about 2 ms until a normal conversion result can be obtained when VR terminal is connected with analog ground through 0.1 μF decoupling capacitor. Terminal VR TSTR Decoupled 1.0 ms × CREF / 0.047 μF Not Decoupled (Include no VR Terminal) 1 μs 55. Between VRH and VRL 56. The terminal VR is decoupled. 57. The terminal VR is not decoupled (include no VR terminal) 58. VZT, VFST depend on analog driver output impedance(Rimp) of AN[5:0] VZT VFST Rimp(W) Min Typ Max Min Typ Max 1000 typ − 20 VRL+(VRH−VRL)/1024 typ + 20 typ − 20 VRH−(VRH−VRL)/1024 typ + 20 10000 typ − 32 VRL+(VRH−VRL)/1024 typ + 20 typ − 20 VRH−(VRH−VRL)/1024 typ + 25 100000 typ − 125 VRL+(VRH−VRL)/1024 typ + 20 typ − 35 VRH−(VRH−VRL)/1024 typ + 65 59. 1LSB = (VFST−VZT)/1022 , INLn = ((1LSB x n+VZT)−Vn)/1LSB , DNLn = (Vn+1−Vn)/1LSB−1 INL depends on analog driver output impedance(Rimp) of AN[5:0] INL Rimp(W) Min Typ Max 1000 −2.0 − 2.0 10000 −3.0 − 3.0 100000 −12.0 − 12.0 60. Tstc(ADC sample holding time) must satisfy following formula, too. Tstc > tA ( Tstc = (1/Fc) × Ns ) ♦ Fc: Frequency of reference clock of ADC(AD_CLK). Refer to ADC specifications for the method of generating AD_CLK. ♦ Ns: Fadcsmpl + 1. fADCSMPL can be set by the register. Refer to ADC specifications. ♦ tA: Time decided by output impedance (Rimp) of analog input driver of AN[5:0] (value of tA) − In case of VR terminal is decoupled www.onsemi.com 64 LC823450 Figure 8. − In case of VR terminal is not decoupled(include the products w/o VR terminal) Figure 9. ♦ Fc = Fs × (Ns + Nc) USB2.0 PHY Characteristics Table 29. USB2.0 PHY CHARACTERISTICS (TA = 25°C, VDD1 = 1.2 V, AVDDUSBPHY1 = DVDDUSBPHY1 = 1.2 V, AVDDUSBPHY2 = 3.3 V) Item Symbol Condition Min Max Unit INPUT LEVELS FOR FULL−SPEED: High−level Input Voltage (Drive) VIH 2.0 High−level Input Voltage (Floating) VIHZ 2.7 V 3.6 Low−level Input Voltage VIL Differential Input Sensitivity VDI |(D+) − (D−)| 0.2 0.8 V Differential Common Mode Range VCM Includes VDI range Figure 10 0.8 2.5 V High−level Output Voltage VOH RL of 14.25 kΩ to VSS 2.8 3.6 V Low−level Output Voltage VOL RL of 1.425 kΩ to 3.6 V 0.0 0.3 V V OUTPUT LEVELS FOR FULL−SPEED: SE1 VOSE1 Output Signal Crossover Point Voltage VCRS 0.8 Figure 10 www.onsemi.com 65 1.3 V 2.0 V LC823450 Table 29. USB2.0 PHY CHARACTERISTICS (continued) (TA = 25°C, VDD1 = 1.2 V, AVDDUSBPHY1 = DVDDUSBPHY1 = 1.2 V, AVDDUSBPHY2 = 3.3 V) Item Symbol Condition Min Max Unit INPUT CAPACITANCE FOR FULL−SPEED: Downstream Facing Port (beginning shared with Upstream Facing Port at Device mode, so the less value is selected as the maximum spec) CIND (VINUB) 100 pF Transceiver Edge Rate Control Capacitance CEDGE 75 pF TERMINATION IN FULL−SPEED: Bus Pull−Up Resistor on Upstream Port (Idle Bus) (This is Used only for the Device Mode (RPUENXEN = ‘0’ Setting)) RPUI 0.9 1.575 kΩ Bus Pull−Up Resistor on Upstream Port (Upstream Port Receiving) (This is Used Only for the Device Mode (RPUENXEN = ‘0’ Setting)) RPUA 1.425 3.090 kΩ Input Impedance Exclusive of pullup/pulldown ZINP 300 Termination Voltage on Upstream Port Pull−Up VTERM 3.0 3.6 V Rise Time (10% − 90%) TFR 4 20 ns Fall Time(10% − 90%) TFF 4 20 ns TFRFM 90 111.11 % 11.994 12.006 Mb/s TDJ1 TDJ2 −3.5 −4 3.5 4 ns ns TFDEOP −2 5 ns TJR1 TJR2 −18.5 −9 18.5 9 ns ns Source SE0 Interval of EOP TFEOPT 160 175 ns Receiver SE0 Interval of EOP TFEOPR 82 kΩ DRIVER CHARACTERISTICS IN FULL−SPEED: Difference Rise and Fall Time Matching CLOCK TIMING IN FULL−SPEED(INTERNAL SIGNAL FSSEL=’0’): Full−speed Data Rate for hubs and Devices which are High−speed Capable TFDRATHS FULL−SPEED DATA TIMINGS(INTERNAL SIGNAL FSSEL=’0’): Source Jitter Total (Including Frequency Tolerance): To Next Transition For Paired Transitions Source Jitter for Differential Transition to SE0 Transition Receiver Jitter: To Next Transitions For Paired Transitions Width of SE0 Interval During Differential Transition TFST ns 14 ns INPUT LEVELS FOR HIGH−SPEED: High−speed Squelch Detection Threshold (Differential Signal) VHSSQ 100 200 mV High−speed Disconnect Detection Threshold (Differential Signal) VHSDSC 525 625 mV High−speed Data Signaling Common Mode Voltage Range VHSCM −50 500 mV −10.0 10 mV High−speed Differential Input Signaling Level (This Spec is Based on ‘Template 6’) Figure 11 OUTPUT LEVELS FOR HIGH−SPEED: High−speed Idle State VHSOI High−speed Data Signaling High VHSOH 360 440 mV High−speed Data Signaling Low VHSOL −10.0 10 mV Chirp J Level (Different Signal) VCHIRPJ 700 1100 mV Chirp K Level (Different Signal) VCHIRPK −900 −500 mV www.onsemi.com 66 LC823450 Table 29. USB2.0 PHY CHARACTERISTICS (continued) (TA = 25°C, VDD1 = 1.2 V, AVDDUSBPHY1 = DVDDUSBPHY1 = 1.2 V, AVDDUSBPHY2 = 3.3 V) Item Symbol Condition Min Max Unit VHSTERM −10.0 10 mV Rise Time(10% − 90%) VHSR 500 ps Fall Time(10% − 90%) VHSF 500 ps TERMINATION IN HIGH−SPEED: Termination Voltage in High−speed DRIVER CHARACTERISTICS IN HIGH−SPEED: Driver Waveform Requirement Complying with USB2.0 Specification (section 7.1.2) Driver Output Resistance (which also serves as high−speed termination) ZHSDRV 40.5 49.5 Ω THSDRAT 479.76 480.24 Mb/s CLOCK TIMING IN HIGH−SPEED: High−Speed Data Rate HIGH−SPEED DATA TIMINGS: Complying with USB2.0 Specification (section 7.1.2) Data Source Jitter Receiver Jitter Tolerance INPUT LEVELS FOR LOW−SPEED:SAME AS FULL−SPEED OUTPUT LEVELS FOR LOW−SPEED: SAME AS FULL−SPEED INPUT CAPACITANCE FOR LOW−SPEED: SAME AS FULL−SPEED TERMINATIONS IN LOW−SPEED: SAME AS FULL−SPEED DRIVER CHARACTERISTICS IN LOW−SPEED: Rise Time (10% − 90%) TLR 75 300 ns Fall Time (10% − 90%) TLF 75 300 ns TLRFM 80 125 % 14.25 24.80 kΩ Difference Rise and Fall Time Matching TERMINATIONS USED AS HOST SIDE (INTERNAL SIGNAL RPDPEN = 1, RPDMEN = 1): Bus Pull−down Resistor on Downstream Facing Port RPD *Each electrical specification is the results of simulation. Differential Input Voltage Differential Output Crossover Voltage Range −1.0 ・・・ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 Figure 10. Differential Input Sensitivity Range for Full−speed www.onsemi.com 67 ・・・ 4.6 LC823450 +400 mV Level1 Differential Point4 Point3 Point1 0 Volts Point2 Differential Point5 Point6 Level2 −400 mV Differential 0% Unit Interval Figure 11. Differential Input Sensitivity Range for High−speed www.onsemi.com 68 100% LC823450 AC Characteristics Reset • [condition] VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 to 1.95 V or 2.7 V to 3.6 V External load 15 pF to 40 pF t RESW1 NRES Figure 12. AC Characteristic − Reset Table 30. Item Symbol Condition Min Typ Max Unit Resetting active period tRESW1 Time after Vdd* reaches to recommended operating voltage 10 − − μs *Refer to the interrupt controller (INTC) specification ProgrammersModel_INTC us for more detail in case of using noise filter, etc. External Interrupt • [condition] VDD1 = 0.93 V to 1.27 V, VDD2, VDDSD1, VDDSD2, VDDQSPI = 1.7 to 1.95 V or 2.7 V to 3.6 V External load 15 pF to 40 pF tEXINTW EXTINTxx Figure 13. AC Characteristic − External Interrupt Table 31. Item Symbol Condition Min Typ Max Unit Pulse width of External Interrupt tEXINTW Set of Interruption Factor not Use Noise Filter Function 2 − − T 61. T: BASICCLK clock rate (frequency = Farm) www.onsemi.com 69 LC823450 I 2C • [condition] VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 15 pF to 40 pF tf SDA tLOW SDA tHD;STA tSU;DAT tr tHD;DAT tHIGH tf tBUF tr tHD;STA tSU;STO tSU;STA Figure 14. AC Characteristics − I2C Table 32. Standard Mode Item SCLK Frequency Holding Time START (Repetition) Condition (After this Period, the First Clock Pulse is Generated) Low Period of SCLK High Period of SCLK Symbol Min Max Full Mode Min Max Unit fSCL 0 100 0 400 kHz tHD; STA 4.0 − 0.6 − μs tLOW 4.7 − 1.3 − μs tHIGH 4.0 − 0.6 − μs Setup Time of Repetition START Condition tSU; STA 4.7 − 0.6 − μs Data Holding Time: (for Master in Accordance with CBUS) tHD; DAT 5.0 3.45 0 0.9 μs Data Setup Time tSU; DAT 250 − 100 − ns Tr − 1000 − 300 ns Rise Time SDA and SCLK Fall Time SDA and SCLK Setup Time of STOP Condition Time of Bus Release between STOP and START Condition Tf − 300 − 300 ns tSU; STO 4.0 − 0.6 − μs tBUF 4.7 − 1.3 − μs www.onsemi.com 70 LC823450 SPI Interface • [condition] VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 15 pF to 40 pF tSCK tSCKL tSCKH SCK0 tds tdh SDI0 SDO0 tddo 62. Polarity of SCK is changed, SCK of figure is inversed. Figure 15. AC Characteristics − SPI Interface Table 33. Item Symbol Condition SCLK Rate tSCK SCLK LOW Time tSCKL SCLK HIGH Time Data Setup Time Min Max Unit 8 − T 4 − T tSCKH 4 − T tds 2 − T Data Hold Time tdh 2 − T Data Delay Time tddo − 2 T 63. T : APB CLK rate (frequency = Fapb). Serial Flash Interface • [condition] VDD1 = 0.93 V to 1.27 V, VDDQSPI = 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 10 to 30 pF Clock (from LSI) t ISU t IH Input (to LSI) Out put (from LSI) tODLY tODLY (min) (max) Figure 16. AC Characteristics − Serial Flash Interface www.onsemi.com 71 LC823450 • [applied pin] ♦ ♦ ♦ Clock: SCK1 Output: SDI1, SDO1, SWP1, SHOLD1, QSCS output Input: SDI1, SDO1, SWP1, SHOLD1 input Table 34. I/O voltage (VddQSPI) 2.7 V to 3.6 V 1.7 V to 1.95 V External Load 10 pF to 30 pF 10 pF to 30 pF I/O Drivability Item 8 mA Symbol 6 mA Min Max 10 mA Min Max Min Max Unit SFIFSEL2 = 0 (Note 64) Clock Frequency fclk − 41 − 40 − 40 MHz Input Set−up Time tISU 3.4 − 4.3 − 4.5 − ns Input Hold−up Time tIH 7.5 − 7.1 − 6.9 − ns Output Delay Time tODLY 0.3 5.1 1.2 5.2 0.6 5.4 ns SFIFSEL2 = 1 (Note 64) Clock frequency fclk − 42 − 40 − 40 MHz Input set−up time tISU 4.5 − 5.4 − 5.3 − ns Input hold−up time tIH 3.3 − 2.9 − 3.7 − ns Output Delay time tODLY 0.3 5.1 1.2 5.2 0.6 5.4 ns 64. SFIFSEL2 is the value of S−Flash I/F select register (SFIFSEL) bit2 SFIFSEL2 described in the SystemController ProgrammersModel_SystemController. XMC External Memory Bus Timing • [condition] VDD1 = 0.93 to 1.27 V, VDD2 = 2.7 V to 3.6 V External load 15 pF to 40 pF External Memory Bus Read TEXCYC PHI (BASIC clock) TEXACC1 EXA[20:1] NCS0, NCS1, NHBNWRH, NLBEXA0 NRD TEXACC2 TEXACC3 TEXRSW TEXRDS TEXRDH EXD[15:0] Figure 17. AC Characteristics − External Memory Bus Read Timing www.onsemi.com 72 LC823450 External Memory Bus Write PHI (Arm AHB clock) T T EXWSSA EXWSH EXA[20:1] NCS0, NCS1 NHBNWRH, NLBEXA0 T EXWSSCS T T EXWSW EXWSH NWRENWRL T T EXWDS EXWDH EXD[15:0] Figure 18. AC Characteristics − External Memory Bus Write Timing Table 35. Item Symbol Min Typ Max Unit CPUclock Cycle Time TEXCYC − Read Data Access Time TEXACC1 − 1T − ns − 13 ns TEXACC2 − TEXACC3 − − Tacs + 13 ns − Tacs + Tcos + 12 ns Read Data Setup Time TEXRDS Read Data Hold Time TEXRDH 20 − − ns 0 − − Read Strobe Pulse Width ns TEXRSW Tpgwt +1 Tsub −12 − − ns Write Strobe Pulse Width TEXWSW (Note 65) Tpgwt + 1 Tsub−5 − − ns Write Address Setup Time TEXWSSA Tacs+Tcos + 0.5 Tsub−10 − − ns Write Strobe Setup Time TEXWSSCS Tcos +0.5 Tsub −5 − − ns Write Strobe Hold Time TEXWSH Tcoh + 0.5 Tsub−5 − − ns Write Data Setup Time TEXWDS (Note 65) Tcos+ Tpgwt +1 Tsub −10 − − ns Write Data Hold Time TEXWDH Tcoh + 0.5 Tsub−10 − Tcoh + 0.5 Tsub ns 65. T: BASIC clock rate (frequency = Farm) Regarding Tacs, Tcos, Tpgwt, Tcoh, refer to the external memory controller (XMC) specification Programmers Model_XMC. Even when Tpgwt (programmable wait register) = 1, equivalent to Tpgwt = 0. www.onsemi.com 73 LC823450 SDRAM Interface • [condition] VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 5 to 15 pF Clock tIH tISU Input (to LSI) Output Address (from LSI) tADLY Output Others (from LSI) tODLY Figure 19. AC Characteristics − SDRAM Interface • [applied pin] ♦ ♦ ♦ Clock : SDRCLK Output : SDRCKE, SDRCS, SDRWE, SDRCAS, SDRRAS, SDRDQM[1:0], SDRADDR[10:0], SDRBA[1:0], SDRDATA[15:0] output Input : SDRDATA[15:0] input Table 36. I/O Voltage (VDD2) 2.7 V to 3.6 V 1.7 V to 1.95 V External Load 5 pF to 15 pF I/O Drivability Item 4 mA Symbol 8 mA Min Max Min Max Unit Clock frequency fclk − 65 − 54 MHz Input set−up time tISU 8.3 − 9.9 − ns Input hold−up time tIH −1.9 − −2.7 − ns Address Delay time tADLY 1.0 21.7 0.7 27.3 ns Output Delay time tODLY −2.9 3.2 −3.3 4.9 ns 66. Address becomes valid 1 cycle before the timing when CS becomes active. Address is stable while CS is active. www.onsemi.com 74 LC823450 Memory Stick Interface • [condition] VDD1 = 0.93 V to 1.27 V, VDDSD1 = 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 10 pF to 40 pF Serial Clock Timing tSCLKc tSCLKwh tSCLKwl 90% SCLK 50% 10% tSCLKr tSCLKf Figure 20. Serial Clock Timing Table 37. Item Symbol min max unit Clock Period tSCLKc 50 − ns Clock High Level Width tSCLKwh 15 − ns Clock Low Level Width tSCLKwl 15 − ns Clock Rise Time tSCLKr − 10 ns Clock Fall Time tSCLKf − 10 ns Parallel Clock Timing tSCLKc tSCLKwh tSCLKwl 90% SCLK 50% 10% tSCLKr tSCLKf Figure 21. Parallel Clock Timing Table 38. Item Symbol min max unit Clock Period tSCLKc 25 − ns Clock High Level Width tSCLKwh 5 − ns Clock Low Level Width tSCLKwl 5 − ns Clock Rise Time tSCLKr − 10 ns Clock Fall Time tSCLKf − 10 ns www.onsemi.com 75 LC823450 Serial Interface SCLK tds 0 tdh 0 Input DATA0 ( REI = 0 ) tds 1 tdh 1 Input DATA 0 ( REI = 1) tbsd BS tdd DATA 0 Figure 22. Serial Interface Table 39. I/O Voltage 2.7 V to 3.6 V 1.7 V to 1.95 V External Load 10 pF to 40 pF 10 pF to 30 pF I/O Drivability 8 mA 10 mA 8 mA Item Symbol Min Max Min Max Min Max Unit Input setup time (REI=0) tds0 9.0 − 9.3 − 9.3 − ns Input hold time (REI=0) tdh0 −0.2 − −0.2 − −0.4 − ns Input setup time (REI=1) tds1 1.7 − 1.4 − 1.4 − ns Input hold time (REI=1) tdh1 7.0 − 7.1 − 7.2 − ns BS Output delay time tbsd 1.7 5.1 1.7 5.2 2.2 5.3 ns DATA Output delay time tdd 1.7 5.1 1.7 5.2 2.2 5.3 ns www.onsemi.com 76 LC823450 Parallel Interface SCLK tds0 tdh0 Input DATA[3:0] (REI = 0) BS tbsd0 (REO = 0) Output DATA[3:0] tdd0 (REO = 0) tbsd1 BS (REO = 1) tdd1 Output DATA[3:0] (REO = 1) Figure 23. Parallel Interface Table 40. I/O Voltage 2.7 V to 3.6 V 1.7 V to 1.95 V External Load 10 pF to 40 pF 10 pF to 30 pF I/O Drivability 8 mA 10 mA 8 mA Item Symbol Min Max Min Max Min Max Unit Input setup time (REI=0) tds0 9.3 − 9.7 − 9.7 − ns Input hold time (REI=0) tdh0 −0.1 − −0.4 − −0.4 − ns BS Output delay time (REO=0) tbsd0 1.2 16.4 1.2 16.5 1.2 16.6 ns DATA Output delay time (REO=0) tdd0 1.2 16.4 1.2 16.5 1.2 16.6 ns BS Output delay time (REO=1) tbsd1 2.1 4.2 2.1 4.3 2.6 4.4 ns DATA Output delay time (REO=1) tdd1 2.1 4.2 2.1 4.3 2.6 4.4 ns www.onsemi.com 77 LC823450 PCM Timing • [condition] VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 5 pF to 15 pF Master mode tBCKIH tBCKIL BCK tDINS tDINH DIN tLRCKO LRCK tDOUT DOUT Figure 24. Master Mode • [Applied pin] ♦ ♦ ♦ Clock : BCK0, BCK1 Output : LRCK0, LRCK1, DOUT0, DOUT1 output Input : DIN0, DIN1 input Table 41. I/O Voltage (VDD2) 1.7 V to 1.95 V / 2.7 V to 3.6 V External Load 5 pF to 15 pF I/O Drivability 4 mA 2 mA 1 mA Item Symbol Min Max Min Max Min Mix Unit BCKI Low Period tBCKIL 38 − 38 − 38 − ns BCKI High Period tBCKIH 38 − 38 − 38 − ns DIN setup Time tDINS 8 − 8 − 8 − ns DIN Hold Time tDINH 8 − 8 − 8 − ns LRCK Delay Time tLRCKO −10 10 −10 10 −10 10 ns DOUT Delay Time tDOUT −10 10 −10 10 −10 10 ns www.onsemi.com 78 LC823450 Slave Mode tBCKIH tBCKIL BCK tDINS tDINH DIN tLRCKIH tLRCKIS LRCK tDOUT DOUT Figure 25. Slave Mode • [Applied pin] ♦ ♦ ♦ Clock : BCK0, BCK1 Output : DOUT0, DOUT1 output Input : LRCK0, LRCK1, DIN0, DIN1 input Table 42. I/O Voltage (VDD2) 1.7 V to 1.95 V / 2.7 V to 3.6 V External 5 pF to 15 pF I/O Drivability 4 mA 2 mA 1 mA Item Symbol Min Max Min Max Min Mix Unit BCKI Low Period tBCKIL 30 − 30 − 30 − ns BCKI High Period tBCKIH 30 − 30 − 30 − ns DIN Setup Time tDINS 8 − 8 − 8 − ns DIN Hold Time tDINH 8 − 8 − 8 − ns LRCK Setup Time tLRCKIS 8 − 8 − 8 − ns LRCK Hold Time tLRCKIH 8 − 8 − 8 − ns −10 12.1 −10 14.6 −10 19.7 ns −10 10 −10 11.2 −10 14.7 ns I/O VOLTAGE(VDD2) = 1.7 V TO 1.95 V DOUT Delay Time tDOUT I/O VOLTAGE(VDD2) = 2.7 V TO 3.6 V DOUT Delay Time tDOUT www.onsemi.com 79 LC823450 SD Card Interface Timing • [condition] VDD1 = 0.93 V to 1.27 V, VDDSD0, VDDSD1, VDDSD2 = 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 10 to 40 pF Normal(Default) Mode t PP t WL Clock (from LSI) t WH t THL t TLH t IH t ISU In put (to LSI) Out put (from LSI) t ODLY(min) tODLY(max) Figure 26. Normal (Default) Mode • [Applied pin] ♦ ♦ ♦ Clock : SDCLK0, SDCLK1, SDCLK2 Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input Table 43. I/O Voltage (VDDSD0, VDDSD1, VDDSD2) 2.7 V to 3.6 V External Load 10 pF to 40 pF I/O Drivability 8 mA Item Symbol Min Max Unit Clock Frequency fPP 0 25 MHz Clock Low Time tWL 10 − ns Clock High Time tWH 10 − ns Clock Rise Time tTLH − 10 ns Clock Fall Time tTHL − 10 ns Input Set−up Time (from SD to LSI) tISU 5.9 − ns Input Hold−up Time (from SD to LSI) tIH 0 − ns Output Delay Time During Data Transfer Mode (from LSI to SD) tODLY 5.1 27.8 ns www.onsemi.com 80 LC823450 High−Speed Mode t PP t WL Clock (from LSI) t WH t THL t TLH t IH t ISU In put (to LSI) Out put (from LSI) tODLY tODLY (min) (max) Figure 27. High−Speed Mode • [Applied pin] ♦ ♦ ♦ Clock : SDCLK0, SDCLK1, SDCLK2 Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input Table 44. I/O Voltage (VDDSD0, VDDSD1, VDDSD2) 2.7 V to 3.6 V External Load 10 pF to 40 pF I/O Drivability 8 mA Item Symbol Min Max Unit Clock Frequency fPP 0 45 MHz Clock Low Time tWL 7 − ns Clock High Time tWH 7 − ns Clock Rise Time tTLH − 3 ns Clock Fall Time tTHL − 3 ns Input Set−up Time (from SD to LSI) tISU 5.9 − ns Input Hold−up Time (from SD to LSI) tIH 2.1 − ns Output Delay Time (from LSI to SD) tODLY 2.1 15.9 ns www.onsemi.com 81 LC823450 SDR25 Mode t PP Clock (from LSI) t TLH t THL t IH t ISU In put (to LSI) Out put (from LSI) t ODLY(min) tODLY(max) Figure 28. SDR25 Mode • [Applied pin] ♦ ♦ ♦ Clock : SDCLK0, SDCLK1, SDCLK2 Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input Table 45. I/O Voltage (VDDSD0, VDDSD1, VDDSD2) 1.7 V to 1.95 V External Load 10 pF to 30 pF I/O Drivability Item 10 mA Symbol Min Clock Frequency fPP Clock Rise Time tTLH 10 pF to 23 pF 8 mA Max Min 0 47 − 2.9 6 mA Max Min Mix Unit 0 47 − 2.9 0 44 MHz − 2.9 ns Clock Fall Time tTHL − 2.9 − 2.9 − 2.9 ns Input Set−up Time (from SD to LSI) tISU 6.7 − 6.9 − 8.2 − ns Input Hold−up Time (from SD to LSI) tIH 0.9 − 0.9 − 0.4 − ns Output Delay Time (from LSI to SD) tODLY 0.9 11.4 0.9 12.6 0.9 16.2 ns www.onsemi.com 82 LC823450 SDR50 Mode t PP Clock (from LSI) t THL t TLH t IH t ISU In put (to LSI) Out put (from LSI) t ODLY(min) tODLY(max) Figure 29. SDR50 Mode • [Applied pin] ♦ ♦ ♦ Clock : SDCLK0, SDCLK1, SDCLK2 Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input Table 46. I/O Voltage (VDDSD0, VDDSD1, VDDSD2) 1.7 V to 1.95 V External Load 10 pF to 30 pF I/O Drivability Item 10 mA Symbol Min Clock Frequency fPP Clock Rise time tTLH 10 pF to 23 pF 8 mA Max Min 0 68 − 2.9 6 mA Max Min Mix Unit 0 63 − 2.9 0 52 MHz − 2.9 ns Clock Fall Time tTHL − 2.9 − 2.9 − 2.9 ns Input Set−up Time (from SD to LSI) tISU 6.6 − 6.7 − 8.1 − ns Input Hold−up Time (from SD to LSI) tIH 0.9 − 0.9 − 0.4 − ns Output Delay Time (from LSI to SD) tODLY 0.9 11.2 0.9 12.4 0.9 16.1 ns www.onsemi.com 83 LC823450 DDR50 Mode t PP t TLH Clock (from LSI) t THL t ISU t IH t ISU t IH Input (to LSI) t ODLY(min) t ODLY(min) t ODLY(max) t ODLY(max) Out put (from LSI) Figure 30. DDR50 Mode • [Applied pin] ♦ ♦ ♦ ♦ Clock Output Input Input : SDCLK0, SDCLK1, SDCLK2 : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input Table 47. I/O Voltage (VDDSD0, VDDSD1, VDDSD2) 1.7 V to 1.95 V External Load 10 pF to 30 pF I/O Drivability Item 10 mA Symbol Min Clock Frequency fPP Clock Rise Time tTLH Clock Fall Time 10 pF to 23 pF 8 mA Max Min 0 31 − 2.9 tTHL − Input Set−up Time (from SD to LSI) tISU Input Hold−up Time (from SD to LSI) Output Delay Time (from LSI to SD) 6 mA Max Min Mix Unit 0 29 − 2.9 0 25 MHz − 2.9 2.9 − ns 2.9 − 2.9 ns 7.1 − 7.4 − 9.1 − ns tIH 1.4 − 1.4 − 1.1 − ns tODLY 0.9 11.8 0.9 13.2 0.9 16.6 ns www.onsemi.com 84 LC823450 eMMC Interface Timing • [condition] VDD1 = 0.93 V to 1.27 V, VDDSD0, VDDSD1, VDDSD2 = 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 10 to 40pF Normal(Default) Mode t PP t WL Clock (from LSI) t WH t THL t TLH t IH t ISU In put (to LSI) Out put (from LSI) t ODLY(min) t ODLY(max) Figure 31. Normal (Default) Mode • [Applied pin] ♦ ♦ ♦ Clock : SDCLK0, SDCLK1, SDCLK2 Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input Table 48. I/O Voltage (VDDSD0, VDDSD1, VDDSD2) 2.7 V to 3.6 V External Load 10 pF to 40 pF I/O Drivability 1.7 V to 1.95 V 10 pF to 30 pF 8 mA 10 mA 10 pF to 23 pF 8 mA 6 mA Item Symbol Min Max Min Max Min Max Min Max Unit Clock Frequency fPP 0 26 0 26 0 26 0 26 MHz Clock Low Time tWL 10 − 10 − 10 − 10 − ns Clock High Time tWH 10 − 10 − 10 − 10 − ns Clock Rise Time tTLH − 3 − 3 − 3 − 3 ns Clock Fall Time tTHL − 3 − 3 − 3 − 3 ns Input Set−up Time (from SD to LSI) tISU 6.9 − 8.3 − 8.7 − 10.3 − ns Input Hold−up Time (from SD to LSI) tIH 0.7 − 0 − 0 − 0 − ns Output Delay Time (from LSI to SD) tODLY 3.1 20.1 3.1 20.1 3.1 20.9 3.1 23.2 ns www.onsemi.com 85 LC823450 High−Speed SDR Mode t PP t WH t WL Clock (from LSI) t THL t TLH t IH t ISU In put (to LSI) Out put (from LSI) t ODLY(min) t ODLY(max) Figure 32. High−Speed SDR Mode • [Applied pin] ♦ ♦ ♦ Clock : SDCLK0, SDCLK1, SDCLK2 Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input Table 49. I/O Voltage (VDDSD0, VDDSD1, VDDSD2) 2.7 V to 3.6 V External Load 10 pF to 40 pF I/O Drivability 8 mA 1.7 V to 1.95 V 10 pF to 30 pF 10 mA 10 pF to 23 pF 8 mA 6 mA Item Symbol Min Max Min Max Min Max Min Max Unit Clock Frequency fPP 0 43 0 43 0 43 0 37 MHz Clock Low Time tWL 7 − 7 − 7 − 7 − ns Clock High Time tWH 7 − 7 − 7 − 7 − ns Clock Rise Time tTLH − 3 − 3 − 3 − 3 ns Clock Fall Time tTHL − 3 − 3 − 3 − 3 ns Input Set−up Time (from SD to LSI) tISU 5.5 − 6.2 − 6.7 − 8.6 − ns Input Hold−up Time (from SD to LSI) tIH 2.1 − 1.2 − 1.1 − 0 − ns Output Delay Time (from LSI to SD) tODLY 3.1 19.7 3.1 19.9 3.1 20.2 3.1 23.0 ns www.onsemi.com 86 LC823450 High−Speed DDR Mode t PP t TLH Clock (from LSI) t THL t IH t ISU t IH t ISU Input (to LSI) t ODLY(min) t ODLY(min) t ODLY(max) t ODLY(max) Out put (from LSI) Figure 33. High−Speed DDR Mode • [Applied pin] ♦ ♦ ♦ Clock : SDCLK0, SDCLK1, SDCLK2 Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input Table 50. I/O Voltage (VDDSD0, VDDSD1, VDDSD2) 2.7 V to 3.6 V External Load 10 pF to 40 pF I/O Drivability 8 mA Item 1.7 V to 1.95 V 10 pF to 30 pF 10 mA 10 pF to 23 pF 8 mA 6 mA Symbol Min Max Min Max Min Max Min Max Unit Clock Frequency fPP 0 24 0 24 0 23 0 20 MHz Clock rise time tTLH − 3 − 3 − 3 − 3 ns Clock fall time tTHL − 3 − 3 − 3 − 3 ns Input set−up time (from SD to LSI) tISU 7.0 − 7.4 − 7.7 − 10.2 − ns Input hold−up time (from SD to LSI) tIH 0.7 − 0.6 − 0.8 − 0 − ns tODLY 3.1 20.5 3.1 20.5 3.1 21.1 3.1 24.1 ns Input set−up time (from SD to LSI) tISU 7.1 − 7.4 − 7.7 − 10.7 − ns Input hold−up time (from SD to LSI) tIH 1.3 − 1.4 − 1.4 − 0 − ns tODLY 2.6 17.8 2.6 17.6 2.6 18.5 2.6 22.2 ns INPUT CMD OUTPUT CMD Output Delay time (from LSI to SD) INPUT DAT OUTPUT DAT Output Delay time (from LSI to SD) www.onsemi.com 87 LC823450 Digital Mic Timing • [condition] VDD1 = 0.93 V to 1.27 V, VDD2, VDDQSPI= 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 15 pF to 40 pF tCY DMCKO tSU tHLD tSU tHLD DMDIN Figure 34. Digital Mic Timing • [applied pin] ♦ ♦ Clock Input : DMCKO0, DMCKO1 : DMDIN0, DMDIN1 Table 51. Item Symbol Min Period of clock cycle (Note 67) tCY Clock duty Typ Max Unit − 3.25 MHz 60 : 40 40:60 Data setup time tSU 40 − ns Data hold time tHLD 0 − ns 67. Internal clock and register setting. UART Timing • [condition] VDD1 = 0.93 V to 1.27 V, VDDSD2= 1.7 V to 1.95 V or 2.7 V to 3.6 V External load 10 pF to 30 Pf (VDDSD2 = 1.7 V to 1.95 V), 10 pF to 40 pF (VDDSD2 = 2.7 V to 3.6 V) CTS Timing Endod the last Stop Bit Tsetupcts Tdlycts CTS1 TXD1 Start bit D0 D1 D2 D3 D4 D5 Figure 35. CTS Timing www.onsemi.com 88 D6 Stop Stop D7 Parity bit Bit1 bit2 D5 D6 Stop D7 Parity bit bit LC823450 • [applied pin] ♦ ♦ Input : CTS1 Output : TXD1 Table 52. Item Condition Symbol min max unit Delay Time Completing preparation to transmit the current TXD data by setting registers at CTS1 = high From the negative edge Tdlycts − 6 T + 20 ns Tsetupcts 3 T + 20 − ns CTS Setup Time (not to transmit the next TXD data) From end of the last StopBit 68. T: UART functional clock rate 69. In using hardware flow control by CTS/RTS, if the CTS setup time above is NOT met, the next TXD data will be transmitted at the time of having prepared it regardless of the CTS level. RTS Timing End of the last Stop Bit 1.5 Bit start bit RXD1 D0 D1 D2 D3 D4 D5 D6 D7 parity bit start bit D0 D1 D2 D3 D4 D5 D6 D7 stop bit1 stop bit2 parity bit stop bit Tdlyrts RTS1 RTS timing Figure 36. RTS Timing • [applied pin] ♦ ♦ Input : RXD1 Output : RTS1 Table 53. Condition Item Delay Time Receiving the current RXD data with 15 data existing in Reception FIFO or Receiving the current RXD data without using Reception FIFO From 1.5 Bit before end of the last StopBit 70. T: UART functional clock rate www.onsemi.com 89 Symbol min max unit Tdlyrts − 4 T + 20 ns LC823450 APPLICATION XTAL For Oscillation XIN XOUT R1 R2 C1 C2 Figure 37. For Oscillation Table 54. Value XT1 XIN1/XOUT1 XTRTC XIN32K/XOUT32K Symbol 20 MHz 48 MHz 32.768 KHz R1 1 MΩ 1 MΩ 10 MΩ R2 0Ω 0Ω 0Ω C1 3 pF 3 pF 10 pF C2 3 pF 3 pF 10 pF 71. Optimize the circuit constant for each product when you use this oscillation cell and ask to the manufacturer of the crystal oscillator to investigate (matching investigation) because the best circuit constant changes depending on the specification of the crystal oscillator used and the ambient surrounding (parasitic capacitance etc. of an external substrate). 72. The values of parts are for reference. There is a possibility that the adjustment is needed according to the situation of the set. 73. The following may be needed as the anti−noise measures of oscillation circuit. − Be adjacent as much as possible, and shorten wiring between elements such as this LSI and the crystal oscillator. − GND of the oscillation circuit close to GND (VSS) of this LSI as much as possible. − Do not bring the wiring pattern of the large current drive close around the oscillation circuit. − Take wide pattern to avoid the effect of interference of other signals. www.onsemi.com 90 LC823450 For Input from External Clock Source (XT1) Do as follows when use the external clock signal that is generated outside of LSI by the oscillation module, etc. The specification about XTRTC is not available. XOUT XIN Left open Clock Input Figure 38. For Input from External Clock Source (XT1) • Input the signal of full amplitude to XIN (external clock input) Table 55. (FOR YOUR REFERENCE) Item Symbol Min Max Unit H Level Input Voltage (Note 74) VIH VDDXT1 × 0.7 VDDXT1 + 0.3 V L Level Input Voltage (Note 74) VIL −0.3 VDDXT1 × 0.3 V Hysteresis (Note 74) VHYS VDDXT1 × 0.1 VDDXT1 × 0.4 V 74. No VIH/VIL available to input cell of xtal oscillator. • The xtal oscillator is supposed to be used with quartz The schmitt input of xtal oscillator is compliant with (JEDEC Standard JESD8−12A.01 [Normal Range]). • There is a possibility of influencing the signal quality when there is a long wire pattern on a circuit board of XOUT (The terminal opens). Therefore, recommend to cut the wire pattern on a circuit board or no wire pattern on it. resonator or ceramic resonator, we have no plan to evaluate this LSI in case of external input to xtal oscillator. XTAL not Used Do as follows when not use the oscillation cell. XOUT XIN Left open Input H 75. Supply the voltage of recommended operating range of VDDXT1/VSSXT1 (XIN1/XOUT1) even though XT1 is not used. 76. Supply the voltage of recommended operating range of VDDRTC/VSSRTC (XIN32K/XOUT32K), or recommended operating range of Vdd1 even though XTRTC is not used. Figure 39. XTAL not Used www.onsemi.com 91 LC823450 PLL1 (System) The figure below shows the PLL1 circuit. Place the decoupling capacitor in the terminal neighborhood on the AVSSPLL1 board, and keep low noise by apart from other power supply lines. VCNT1 AVDDPLL1 C4 + R2 C3 R1 C2 C1 AVDDPLL1 AVSSPLL1 Figure 40. PLL1 (System) Table 56. PLL1 (SYSTEM) Symbol Value1 (Note 78) Value2 (Note 79) Serial Number or Accuracy R1 100 Ω 100 Ω ±5% R2 *M Ω *M Ω ±5% C1 4.7 μF 0.1 μF C2 0.047 μF 0.001 μF C3 0.1 μF 0.1 μF Capacitor: ±10% Temperature: ±15% (−20_C to +65_C) C4 33 μF 33 μF 16CV33BS 77. C4: refers to the part of mounting on the catalog of our company (CV−B S Series). 78. appropriate value for Fref ≥ 32.768 kHz. 79. appropriate value for Fref ≥ 1 MHz. 80. Use R2 basically by unmounting. The characteristic of PLL might be improved by mounting R2. Prepare the wire pattern. 81. The values of parts are for reference. There is a possibility that the adjustment is needed according to the situation of the set. 82. Connect with decoupling capacitor in the terminal neighborhood on the board, and keep low noise by apart from other power supply lines. www.onsemi.com 92 LC823450 PLL2(Audio) The figure below shows the PLL2 circuit. Place the decoupling capacitor in the terminal neighborhood on the AVSSPLL2 board, and keep low noise by apart from other power supply lines. VCNT2 AVDDPLL2 C4 + R2 C3 R1 C2 C1 AVDDPLL2 AVSSPLL2 Figure 41. PLL2 (Audio) Table 57. PLL2 (AUDIO) Symbol Value1 (Note 84) Value2 (Note 85) Serial Number or Accuracy R1 120 Ω 560 Ω ±5% R2 *M Ω *M Ω ±5% C1 4.7 μF 0.33 μF C2 0.047 μF 0.015 μF C3 0.1 μF 0.1 μF Capacitor:±10% Temperature:±15% (−20_C to +65_C ) C4 33 μF 33 μF 16CV33BS 83. C4 : refers to the part of mounting on the catalog of our company (CV−B S Series). 84. appropriate value for Fre ≥ 6.4 kHz 85. appropriate value for Fref ≥ 38.4 kHz 86. Use R2 basically by unmounting. The characteristic of PLL might be improved by mounting R2. Prepare the wire pattern. 87. The values of parts are for reference. There is a possibility that the adjustment is needed according to the situation of the set. 88. Connect with decoupling capacitor in the terminal neighborhood on the board, and keep low noise by apart from other power supply lines. www.onsemi.com 93 LC823450 PLL3 (Audio) The figure below shows the PLL3 circuit. Place the decoupling capacitor in the terminal neighborhood on the AVSSPLL2 board, and keep low noise by apart from other power supply lines. VCNT3 AVDDPLL3 C4 + R2 C3 R1 C2 AVDDPLL3 C1 AVSSPLL2 Figure 42. PLL3 (Audio) Table 58. PLL3 (AUDIO) Symbol Value Serial Number or Accuracy R1 120 Ω ±5% R2 *M Ω ±5% C1 4.7 μF C2 0.047 μF C3 0.1 μF Capacitor:±10% Temperature:±15% (−20_C to +65_C ) C4 33 μF 16CV33BS 89. C4 : refers to the part of mounting on the catalog of our company (CV−B S Series). 90. Use R2 basically by unmounting. The characteristic of PLL might be improved by mounting R2. Place the wire pattern. 91. The values of parts are for reference. There is a possibility that the adjustment is needed according to the situation of the set. 92. Connect with decoupling capacitor in the terminal neighborhood on the board, and keep low noise by apart from other power supply lines. www.onsemi.com 94 LC823450 10Bit AD Converter This LSI ADC Analog Power Supply AVDDADC VRH (Note 95) (Note 93) AN5−0 VR (Note 94, 3) (Note 94) VRL (Note 95) AVSSADC ADC Analog Ground 93. It is important to get the correct ADC conversion result that the wiring resistance is accurate. Pay attention to keeping low noise. It is recommended that the ceramic capacitor of the high frequency type to be used as a decoupling capacitor between AVDDADC and AVSSADC. Place the capacitor close to the terminal of LSI as much as possible so that the wiring length may be short as much as possible. 94. When the terminal VR is prepared (Package Code = “RA”, etc), the ADC conversion speed (operation clock frequency) is different depending on the value of the capacitor used. Confirm specs of ADC. 95. VRH and AVddADC, VRL and AVssADC are connected in the package (Package Code = “TA”, “XA”, “XB”, “XC”, “XD”, etc). VR terminal is open in the package. Figure 43. 10Bit AD Converter www.onsemi.com 95 LC823450 USB2.0 PHY Refer to the LC823450−USB20PCB design guideline. USB Device Power IC Power Supply to system Power (USB 3.3 V) This LSI AVDDUSBPHY2 Voltage Driver AVSSUSBPHY GPIOxx Detect attach and detach Interrupt Common Mode Choke Coil Power (USB 1.2 V) USBDM D− USBDP D+ ID AVDDUSBPHY1 DVDDUSBPHY1 AVSSUSBPHY VBUS GND USBRXT12 100 kΩ or more 12 kΩ (1% tolerance) Indicate USB Device 96. DVDDUSBPHY1 Port not Available for some Products Figure 44. USB Device www.onsemi.com 96 LC823450 USB Host Required for USB Host System Power IC Power (USB 3.3 V) Over Current Detect IC This LSI 500 mA Max AVDDUSBPHY2 GPIOxx AVSSUSBPHY GPIOxx Power ON/OFF Control Voltage Driver Over Current Detect Interrupt Common Mode Choke Coil Power (USB 1.2 V) USBDM D− USBDP D+ ID AVDDUSBPHY1 DVDDUSBPHY1 AVSSUSBPHY VBUS GND USBRXT12 12 kΩ (1% tolerance) 97. DVDDUSBPHY1 Port not Available for some Products Figure 45. USB Host www.onsemi.com 97 Indicate USB Host LC823450 Class−D AMP Power + 0.1 μF AVDDDAMPL LOUT 0.1 μF This LSI 220 μF or more Rd 0∼ 10 Ω L 220 μΗ 220 μF + C 0.22 μF AVSSDAMPL Headphone L−ch 16 Ω Ipp(Irms) 10 kΩ Mut e ROUT AVSSDAMPR 0.1 μF AVDDDAMPR Rd 0∼ 10 Ω Nch Power FET L 220 μΗ 220 μF C 0.22 μF Mut e Headphone R−ch 16 Ω 10 kΩ Ipp(Irms) 98. Add the bypass condenser (0.1 mF) between AVDDDAMPL and AVSSDAMPL, AVDDDAMPR and AVSSDAMPR as close as possible to terminals. 99. Add the large electrolyte capacitor (220 mF or more recommended) to AVDDDAMPL, AVDDDAMPR terminal to reject the noise and reduce the pumping phenomenon of Class−D AMP. 100. Check the voltage level of AVDDDAMPL, AVDDDAMPR and make sure not to exceed 1.65 V (recommended operating voltage) by using playback of 20 Hz, 0db (full scale) sin wave. 101. The combination of L = 47 mH and C = 1 mF is acceptable. 102. Large volume of damping resister, Rd causes the drop of output voltage. Besides, Rd has a strong relationship between L and C, and, the “Q” value depending on Rd, L and C determines the frequency characteristics. Therefore the resister value should be decided depending on your real system. Please note that the peripheral constants should be considered including the DC resistance component. 103. When Class−D Amp terminal is used as GPO (General Purpose Output), it is not necessary to add LC filter circuit because of avoidance of overvoltage supply though AVddDAMPL and AVddDAMPR can supply up to 1.95 V. Figure 46. Class−D AMP Prms = Irms ^ 2 × 15 = 7.53 (mW) Output Power Calculation [ condition ] • The DC resistance element of the coil, capacitor is small • Maximum output amplitude = 90% (Theoretical Value of Delta−sigma Circuit) to power supply of PWM • Class−D AMP power supply (AvDDDAMPL, AVDDDAMPR) = 1.2 V • Class−D AMP Turning on resistance of internal transistor(Ron) = 2 Ω • Headphone load resistance(RL) = 15 Ω • Series resistance(Rd) = 0 Ω Power Supply Class−D AMP power supply to (AVDDDAMPL, AVDDDAMPR) must use a transient response and good power supply. When the power supply where the transient response is bad is used and the capacity of the capacitor is small, a peculiar pumping phenomenon to Class−D AMP is generated. The power supply voltage must not exceed the recommended operating range when the pumping phenomenon occurs. Class−D AMP output is PWM. The power supply noise affects the output of Class−D AMP. Power sources which have large internal impedance such as dry cell should not be directly connected to power supply of Class−D AMP, and those which have large switching noise such as switching regulator are not suitable and need to be taken care of. Assume the current that flows to the headphone to be Ipp: Ipp = (1200 / 2) × 0.9 / (15 + 2) = 31.7 (mA) Irms = Ipp / SQRT(2) = 22.4 (mA) www.onsemi.com 98 LC823450 Digital Mic Digital Mic R−ch Config This LSI DMCKO0 (DMCKO1) Digital Mic L−ch Config DMDIN0 (DMDIN1) Figure 47. Digital Mic I2C Power This LSI 2 kΩ 2 kΩ (Appropriate resistor value depends on the communication speed. Refer to the I2C specification for the calculation for the calculation of resistor value) I2C−Device SCL0 (SCL1) SCL SDA0 (SDA1) SDA I2C−Device SCL SDA Figure 48. I2C www.onsemi.com 99 LC823450 S−Flash I/F Power This LSI VDDQSPI Serial flash memory GPIO03(QSCS) power CS SCLK SCK1 SDI1(QIO0) SI(SIO0) SPW1(QIO2) WP(SIO2) HOLD(SIO3) SHOLD1(QIO3) SO(SIO1) SDO1(QIO1) 104. QSCS is pull up internally after hard reset (the state of figure). Pull up can be off by register setting. 105. Signals name in parenthesis is name during 4bit mode. VSS Figure 49. S−Flash I/F RTC (General RTC) VDDRTC Volt age det ect or This LSI VDDRTC Det ect drop of VDDRTC VDET VDD1 Volt age det ect or VDD2 BACKUPB Det ect drop of VDD1 and VDD2 power RTCINT Timer event out put Usage) Release sleep and power on VSSRTC Figure 50. RTC (General RTC) www.onsemi.com 100 LC823450 RTC (KeyInt RTC) VDDRTC This LSI VDDRTC Voltage detector Detect drop of VDDRTC VDET Voltage detector VDD1 VDD2 BACKUPB Detect drop of VDD1 and VDD2 Wakeup event input KEYINT[2:0] power RTCINT(PWRON ) Connet to enable of Regulator VSSRTC Figure 51. RTC (KeyInt RTC) JTAG This LSI TCK JTAG Connector TCK TMS TMS TDI TDI TDO TDO Figure 52. JTAG www.onsemi.com 101 106. LPDSP32 reset is available by reset command using debugger through JTAG. The connection of reset signal between JTAG and LSI is not mandatory. 107. Internal pull down resistor can be used if the pull down resistors are enabled before the reset release of LPDSP32. 108. JTAG signals should be pull up or down for avoiding being left open if JTAG function is not used and JTAG signals are in input state. 109. Regarding JTAG signal connection, refer to the reference circuit from ICE tool vendor also. LC823450 SWD This LSI SWD Connect or SVDCLK SWDCK VDD2 SWDIO SWDIO SWO SDO NRES nSRST VDD2 R C 110. 111. nRESET (Open Drain R, C Value should be determined based on the NRES input timing requirement Pull up and pull down can be implemented by usgin internal registor. Regarding SWD conneter signal, refer to the document about ICE tool Figure 53. SWD BMODE[1:0] POWER This LSI Power or Ground 1 kΩ or 470 kΩ VDD2 BMODE0 BMODE1 1 kΩ or 470 kΩ VSS Power or Ground 112. Don’t put capacitance on BMODE pin Don’t use long pattern on board. Otherwise these factors cause wrong BMODE level decision. Figure 54. BMODE[1:0] www.onsemi.com 102 LC823450 APPLICATION DIAGRAM Figure 55. Application Diagram www.onsemi.com 103 LC823450 INTERNAL POWER DOMAIN CONTROL This LSI has eight power isolated region of internal core for leakage current reduction, these can be power supply OFF separately. Power isolated region ISOLATED−X (X means one of the eight region ISOLATED A to I. ISOLATED F doesn’t exist) described in Figure 37. Power ON / OFF for each power domain is controlled by the appropriate bit of System Controller of power control register (LSISTBY). However, to control the power control register (LSISTBY), also control ISOLATION control register (ISOCNT) as necessary. Please refer to the ProgrammersModel_SystemController for details. Each power isolation region and its contents, the flag of the corresponding power control register (LSISTBY) and power control register (LSISTBY) is as follows. Table 59. Name Content LSISTBY ISOCNT ISOLATED−A Audio Block Bit0 STBYA Bit0 ISOCNTA ISOLATED−B Internal SRAM(seg 3/4/5) Bit0 STBYB Bit0 ISOCNTB ISOLATED−C Internal SRAM(seg 6/7/8) Bit0 STBYC Bit0 ISOCNTC ISOLATED−D Internal SRAM(seg 9) 220KB LPDSP32 ROM Bit0 STBYD Bit0 ISOCNTD ISOLATED−E USB 2.0 Holt Controller SRAM for USB Bit0 STBYE Bit0 ISOCNTE ISOLATED−G Cache for S−Flash I/F Bit0 STBYG Bit0 ISOCNTG ISOLATED−H SD Card I/F Memory Stick I/F Bit0 STBYH Bit0 ISOCNTH ISOLATED−I Internal ROM 256KB Bit0 STBYI Bit0 ISOCNTI POWER SUPPLY SEQUENCE Background Power Supply Group The basic sequence of power on/off of power supply is the following order. (Simultaneous power on/off is acceptable) • Power on Vdd*(Internal) → Vdd*(IO) → Vsig(Signal) • Power off Vsig(Signal) → Vdd*(IO) → Vdd*(Internal) 1. Internal core, analog power supply (1V power supply) Vdd1, VddXT1, AVddPLL1, AVddPLL2, AVddUSBPHY1, DVddUSBPHY1 2. External IO power supply (3V power supply) Vdd2, VddSD0, VddSD1, VddSD2, VddQSPI AVddUSBPHY2, AVddADC, AVddPLL3 AVddDAMPL, AVddDAMPR 3. RTC power supply VddRTC Power on of Vdd*(IO) while Vdd *(Internal) are power off might generate the glitch on IO signals and flow of through current. To avoid it, the sequence mentioned above is recommended as the basic sequence. (Dedicated power supply and sequence is dedicated power on/off sequence is described in the following sections) Recommendation Following sequence is recommended (Simultaneous power on/off is acceptable). • Power on 1 → 2 → Vsig(signal) • Power off Vsig(signal) → 2 → 1 RTC Terminal Control Sequence A power supply sequence and other terminal control sequence of RTC are described as follows. NOTE: The sequence of 1(Internal) → 2(IO) causes LSI hard reset and prevent from making IO glitch 3(RTC) has dedicated power supply and sequence which is described on the following section. www.onsemi.com 104 LC823450 General RTC Mode (RTCMODE = 1) When only RTC operates, it is necessary to detect the drop of the voltage of Vdd1 and Vdd2 power supply, and set BACKUPB to Low which isolates VddRTC Domain from Vdd1 Domain. Moreover, it is necessary to detect the drop of the voltage of VddRTC power supply, and set VDET to Low. (The RTC operation stops). VDD2 2.7 V Min 0 ns 1 NRES 0.25 × VDD2 VDDRTC VDDRTC VDD1 VDD1 0.93 V 2 Min 0 ns BACKUPB VDET XIN32K Min 0 ns 0.2 × VDDRTC 0.2 × VDDRTC 0.7 × VDDRTC … 0.2 × VDDRTC 113. VDD2 1 & 2 is a reset condition of the internal logic circuit. Please refer to a chapter of Power supply sequence during the period when you should meet these 2 conditions. Internal control logic for isolation. Figure 56. ALL OUTPUT ALL INPUT VDDRTC Domain VDD1 Domain ALL INPUT ALL OUTPUT BACKUPB 114. VDD1 can be shut down while BACKUPB = Low Figure 57. www.onsemi.com 105 LC823450 KeyInt RTC Mode (RTCMODE = 0) By the master command from Cortex−M3, internal sequencer of RTC controls BACKUPB signal for isolation and power off. KEYINT input or internal RTCINT signal can generate power on sequence. Power off sequence using BACKUPB is also available for activation of power off by external source. It is necessary to detect the drop of the voltage of VDDRTC power supply, and set VDET to Low. (The RTC operation stops). VDET S0 S1 S2 INIT Wait for Xt al oscillat ion S3 Wait for VDD1 Power ON PWRON NOP (RTCINT − HiZ) S8 S4 Wait for KEYINT or Int ernal RTCINT Sequencer runs on XIN32K and makes st at e t ransit ion ISOLATOR off if S7 S6 RTCMASTER PWROFF (RTCINT = L) ISOLATOR on S5 Release Cort ex−M3 Core0 reset Wait for RTC master command XIN32K STATE (Internal) S0 S1 S2 S3 S4 S5 VDET RTCINT (PWRON) ISOLATOR control (Internal 1: off 0: on) 32 kH clk to VDD1 Power Area (Internal) RESET to VDD1 Power Area (internal 1: release, 0: reset) XIN32K STATE (Internal) Any St at e BACKUPB ISOLATOR control (Internal 1: off 0: on) 32 kH clk to VDD1 Power Area (Int ernal) RESET to VDD1 Power Area (internal 1: release, 0: reset) Figure 58. www.onsemi.com 106 S5 S6 S7 S8 S1 LC823450 THE GUIDANCE OF POWER SUPPLY CONTROL (RECOMMENDATION) The Guidence in Terms of Power on Wave Form Power supply control should keep at least one of the Power on wave form should keep the guidance below. guidances below, and make sure no problem for mass production based on customer side evaluations. Power supply electric potential − 0.1 V 0.6 V or less More than 600 μs 0V No care Figure 59. When the voltage suddenly stands up at the time of power supply injection, please make the voltage to arrive at it less than 0.6 V. Please spend time beyond 600 μs and increase the voltage from the voltage which rose momentarily to the power supply electric potential – 0.1 V. When the voltage does not suddenly rise and stands up to power supply electric potential linearly, please spend time beyond 600 μs and increase the voltage from 0 V to the power supply electric potential. nearest point of power supply pin. Parasitic inductance L1 and L2 should be equal to or below the value described in the table below. In addition, as for the value of L1 of the WLP package, it becomes the value that added 4nH to value of L1 of the table. The inductance can be calculated from the width:W[mm], thickness: H[mm] and length: L[mm] of wiring on board, and affect layour of this LSI and bypass condenser. Refer to “The formula to calculate parasitic inductance” to calculate indactance. The Guidence in Terms of the Placement of Bypass Condenser Place bypass condenser 0.1 μF or more at the nearest point of each power supply pin, and place power circuit at the L1 L2 This LSI Bypass capacitor Figure 60. www.onsemi.com 107 power circuit LC823450 Table 60. FBGA (Ball) TQFP (Pin No) WLP (Ball) D2 69 A2 F2 75 PIN NAME L1 (FBGA/TQFP/WLP) [nH] L2 (FBGA/TQFP, WLP) [nH] Bypass Capacitor (FBGA/TQFP, WLP) [mF] Power Supply Range Vdd2 B4 − / 4/ 8 160 / 50 - / 0.1 under 2 V case − /1.5 / 5.5 160 / 50 − / 0.1 equal 2 V or more case A5 AVddUSBPHY1 −/4/8 160 / 80 − / 0.1 − M2 91 A9 AVddPLL1 −/4/8 160 / 80 − / 0.1 − R13 120 K12 AVddPLL2 −/4/8 160 / 80 − / 0.1 − − − J12 AVddPLL3 − / 6 / 10 - / 80 − / 0.1 − R7 113 G11 AVddDAMPR − / 8 / 12 160 / 160 − / 0.1 − R8 114 G12 AVddDAMPL − / 8 / 12 160 / 160 − / 0.1 − P15 2 N12 Vdd2 B1 40 / 8 / 12 160 / 160 0.01 / 0.01 under 2 V case 40 / 6 / 10 160 / 80 0.01 / 0.1 equal 2 V or more case R14 127 M12 Vdd2 P8 − / 8 / 12 160 / 160 0.01 / 0.01 under 2 V case − / 6 / 10 160 / 80 0.01 / 0.1 equal 2 V or more case Vdd2 P6 − / 16 / 20 160 / 160 0.01 / 0.01 under 2 V case − / 6 / 10 160 / 160 0.01 / 0.01 equal 2 V or more case Vdd2 P6 − / 16 / 20 160 / 160 0.01 / 0.01 under 2 V case − / 6 / 10 160 / 160 0.01 / 0.01 equal 2 V or more case Vdd2 P6 40 / 16 / 20 160 / 160 0.01 / 0.01 under 2 V case 40 / 6 / 10 160 / 160 0.01 / 0.01 equal 2 V or more case − P4 P5 P8 95 99 108 A12 C11 E11 H2 80 D6 AVddUSBPHY2 12 / 12 / 16 160 / 160 0.01 / 0.01 J2 83 C7 AVddUSBPHY2 12 / 12 / 16 160 / 160 0.01 / 0.01 − D14 28 N2 Vdd2 B2 − / 16 / 20 160 / 160 − / 0.01 under 2 V case − / 6 / 10 160 / 160 − / 0.01 equal 2 V or more case C9 49 H1 Vdd2 B3 16 / 16 / 20 160 / 160 0.01 / 0.01 under 2 V case 16 / 16 / 20 160 / 160 0.01 / 0.01 equal 2 V or more case C12 31 N1 VddSD0 32 / 32 / 36 160 / 160 0.01 / 0.01 − D8 50 H2 VddRTC − / 16 / 20 160 / 160 − / 0.01 − A6 57 E2 AVddADC − / 32 / 36 160 / 160 − / 0.01 − L13 5 L9 Vdd1 40 / 40 / 44 160 / 160 0.01 / 0.01 − G14 9 L8 VddQSPI 40 / 40 / 44 160 / 160 0.01 / 0.01 − F14 20 N5 VddSD1 40 / 40 / 44 160 / 160 0.01 / 0.01 − E13 26 L4 Vdd1 40 / 40 / 44 160 / 160 0.01 / 0.01 − D12 40 L1 VddSD2 40 / 40 / 44 160 / 160 0.01 / 0.01 − A9 47 J1 Vdd1 40 / 40 / 44 160 / 160 0.01 / 0.01 − E3 74 B4 Vdd1 40 / 40 / 44 160 / 160 0.01 / 0.01 − H3 84 D7 AVddUSBPHY1 40 / 40 / 44 160 / 160 0.01 / 0.01 − K2 86 B8 VddXT1 40 / 40 / 44 160 / 160 0.01 / 0.01 − L4 90 E8 Vdd1 40 / 40 / 44 160 / 160 0.01 / 0.01 − P9 110 G10 Vdd1 40 / 40 / 44 160 / 160 0.01 / 0.01 − P11 121 G9 Vdd1 40 / 40 / 44 160 / 160 0.01 / 0.01 − L15 − − Vdd2 B1 −/−/- 160 / − −/− under 2 V case −/−/− 160 / − −/− equal 2 V or more case Vdd2 B1 40 / − / − 160 / − 0.01 / − under 2 V case 40 / − / − 160 / − 0.01 / − equal 2 V or more case Vdd2 B2 -/−/− 160 / − −/− under 2 V case -/−/− 160 / − −/− equal 2 V or more case Vdd2 B4 -/−/− 160 / − −/− under 2 V case -/−/− 160 / − −/− equal 2 V or more case Vdd2 B4 40 / − / − 160 / − 0.01 / − under 2 V case 40 / − / − 160 / − 0.01 / − equal 2 V or more case J13 B16 B2 F3 − − − − − − − − www.onsemi.com 108 LC823450 Table 60. (continued) L2 (FBGA/TQFP, WLP) [nH] Bypass Capacitor (FBGA/TQFP, WLP) [mF] FBGA (Ball) TQFP (Pin No) WLP (Ball) PIN NAME L1 (FBGA/TQFP/WLP) [nH] E2 − − DVddUSBPHY1 40 / − / − 160 / - 0.01 / − K3 − − DVddUSBPHY1 40 / − / − 160 / − 0.01 / − P1 − − Vdd2 B6 40 / − / − 160 / − 0.01 / − under 2 V case 40 / − / − 160 / − 0.01 / − equal 2 V or more case Power Supply Range P10 − − Vdd1 40 / − / − 160 / − 0.01 / − − N12 − − Vdd2 B8 40 / − / − 160 / − 0.01 / − under 2 V case 40 / − / − 160 / − 0.01 / − equal 2V or more case ƪ ǒW 2L) HǓ ) 0.2235ǒW )L HǓ ) 0.5ƫ mH The formula to calculate parasitic inductance (for your reference): 0.0002L ln (eq. 1) L W H Figure 61. Rush Current This LSI has the circuits to protect from electrostatic discharge. The rush current flows in accordance with the steepness of rising curve of power supply. ORDERING INFORMATION Package Shipping (Qty / Packing)† LC823450TA−2H TQFP128 14x14 / TQFP128L (Pb−Free / Halogen Free) 450 / Tray JEDEC LC823450XATBG WLCSP154, 5.52x5.33 (Pb−Free / Halogen Free) 1000 / Tape & Reel LC823450XBTBG WLCSP154, 5.52x5.33 (Pb−Free / Halogen Free) 1000 / Tape & Reel LC823450XCTBG WLCSP154, 5.52x5.33 (Pb−Free / Halogen Free) 1000 / Tape & Reel LC823450XDTBG WLCSP154, 5.52x5.33 (Pb−Free / Halogen Free) 1000 / Tape & Reel LC823450RAH−2H LFBGA240 (Pb−Free / Halogen Free) 840 / Tray JEDEC LC823450RBH−2H LFBGA240 (Pb−Free / Halogen Free) 840 / Tray JEDEC Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Arm, the Arm logo, AMBA, and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Bluetooth is a registered trademark of Bluetooth SIG. www.onsemi.com 109 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS LFBGA240, 11x11 CASE 566EY ISSUE O DATE 05 NOV 2014 SCALE 1:1 PIN A1 INDICATOR D ÈÈ ÈÈ NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER PARALLEL TO DATUM C. 4. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS. 5. DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF SOLDER BALLS. A B DIM A A1 A2 A3 b D E e E 2X 0.10 C 0.10 C 2X A2 A 0.10 C NOTE 4 GENERIC MARKING DIAGRAM* TOP VIEW 0.10 C A3 C A1 SIDE VIEW MILLIMETERS MIN MAX 1.31 −−− 0.20 0.30 0.70 REF 0.26 REF 0.30 0.40 11.00 BSC 11.00 BSC 0.65 BSC SEATING PLANE NOTE 5 e/2 XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX AWLYYWWG CCCCC A WL YY WW G CC = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package = Country of Origin e *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. R P N M L K J H G F E D C B A e RECOMMENDED SOLDERING FOOTPRINT* 0.65 PITCH A1 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 BOTTOM VIEW 240X b 0.15 M C A B 0.08 M C NOTE 3 PACKAGE OUTLINE 0.65 PITCH 240X 0.35 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: 98AON92743F Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed STATUS: ON SEMICONDUCTOR STANDARD versions are uncontrolled except when stamped “CONTROLLED COPY” in red. NEW STANDARD: © Semiconductor Components Industries, LLC, 2002 Case Outline Number: http://onsemi.com LFBGA240, 11X11 DESCRIPTION: October, 2002 − Rev. 0 PAGE 1 OFXXX 2 1 DOCUMENT NUMBER: 98AON92743F PAGE 2 OF 2 ISSUE O REVISION RELEASED FOR PRODUCTION. REQ. BY I. CAMBALIZA. DATE 05 NOV 2014 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. © Semiconductor Components Industries, LLC, 2014 November, 2014 − Rev. O Case Outline Number: 566EY MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS WLCSP154, 5.52x5.33 CASE 567LD ISSUE A DATE 28 OCT 2015 SCALE 2:1 ÈÈ ÈÈ PIN A1 REFERENCE E A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF THE SOLDER BALLS. B BACK COAT DIM A A1 A3 b D E e A3 D A 2X 0.03 C 0.03 C 2X DETAIL A TOP VIEW DETAIL A MILLIMETERS MIN MAX −−− 0.73 0.18 0.24 0.04 REF 0.23 0.29 5.52 BSC 5.33 BSC 0.40 BSC A 0.10 C RECOMMENDED SOLDERING FOOTPRINT* 0.05 C NOTE 3 C SIDE VIEW A1 SEATING PLANE A1 PACKAGE OUTLINE e e/2 N M L K J H G F E D C B A 0.40 PITCH e 154X 0.22 0.20 154X 1 3 5 7 9 11 2 4 6 8 10 12 BOTTOM VIEW DOCUMENT NUMBER: 98AON93273F b 0.05 C A B 0.03 C 0.40 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed STATUS: ON SEMICONDUCTOR STANDARD versions are uncontrolled except when stamped “CONTROLLED COPY” in red. NEW STANDARD: © Semiconductor Components Industries, LLC, 2002 Case Outline Number: http://onsemi.com WLCSP154, 5.52X5.33 DESCRIPTION: October, 2002 − Rev. 0 PAGE 1 OFXXX 2 1 DOCUMENT NUMBER: 98AON93273F PAGE 2 OF 2 ISSUE REVISION DATE O RELEASED FOR PRODUCTION. REQ. BY M. MACARAIG. 14 JAN 2015 A ADDED RANGE FOR BALL POST DIAMETER FROM 0.20MM TO 0.22MM ON RECOMMENDED SOLDERING FOOTPRINT. REQ. BY M. MACARAIG. 28 OCT 2015 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. © Semiconductor Components Industries, LLC, 2015 October, 2015 − Rev. A Case Outline Number: 567LD MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TQFP128 14x14 / TQFP128L CASE 932BA ISSUE A DATE 30 APR 2015 GENERIC MARKING DIAGRAM* XXXXXXXXXXX XXXXXXXXXXX AWLYYWWG A WL YY WW G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DOCUMENT NUMBER: STATUS: 98AON67112E ON SEMICONDUCTOR STANDARD NEW STANDARD: © Semiconductor Components Industries, LLC, 2002 October, DESCRIPTION: 2002 − Rev. 0 http://onsemi.com TQFP128 14X14 / TQFP128L 1 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. Case Outline Number: PAGE 1 OFXXX 2 DOCUMENT NUMBER: 98AON67112E PAGE 2 OF 2 ISSUE REVISION DATE O RELEASED FOR PRODUCTION FROM SANYO ENACT# S−508 TO ON SEMICONDUCTOR. REQ. BY D. TRUHITTE. 29 FEB 2012 A REDREW DRAWING TO JEDEC STANDARDS. ADDED SOLDERING FOOTPRINT AND MARKING DIAGRAM. REQ. BY I. CAMBALIZA. 30 APR 2015 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. © Semiconductor Components Industries, LLC, 2015 April, 2015 − Rev. A Case Outline Number: 932BA ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 www.onsemi.com 1 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
LC823450XATBG 价格&库存

很抱歉,暂时无法提供与“LC823450XATBG”相匹配的价格&库存,您可以联系我们找货

免费人工找货