LC823450
Low Power &
High-Resolution Audio
Processing System LSI
for Portable Sound Solution
www.onsemi.com
Description
LC823450 is an ultra−low power, 32−bit, 192 kHz high−resolution
audio−capable signal processing system−on−chip (SoC). It consists of
dual ARM Cortex−M3, 32−bit DSP (LPDSP32) core, hard wired MP3
encoder/decoder, and integrated SRAM. It is also equipped with
analog peripheral functionality, such as PLLs, class−D stereo HP
amplifier, 6−band equalizer and ADCs/DACs. Our proprietary
LPDSP32 supports Noise/Echo cancellation, and playback speed
control capability for MP3, WMA, AAC and PCM with VBR. With
fine−tuned power management and dedicated hard wired audio
blocks, LC823450 provides a significantly longer battery life without
compromising audio quality, for voice recorders and wearable audio
applications.
This document describes features, basic functions, electrical
specifications, characteristics, application diagram and package
dimension of this LSI.
TQFP128 14 x 14/ TQFP128L
CASE 932BA
WLCSP154 5.52 x 5.33
CASE 567LD
Features
•
•
•
•
•
•
•
•
•
Ultra Low Power Consumption
Arm® Cortex®−M3 Dual Core
Proprietary 32−bit DSP Core (LPDSP32)
Internal Large Scale Size SRAM: 1656 kB (1.5 MB + 120 kB)
High−Resolution 32−bit & 192 kHz Audio Processing Capability
Several DSP Codes Available for Audio Functions
Hard Wired Audio Functions Built−in MP3 Decoder, MP3 Encoder
6 Band Equalizer Synchronous SRC, Asynchronous SRC, etc.
Analog Blocks Built−in
System PLL, Audio PLL
16−bit DAC, Class−D amp, etc.
USB2.0 Device and USB2.0 Host with a Integrated PHY
eMMC and SD card I/F
Serial Flash I/F(Quad) with Cache Memory
SPI, UART, I2C, etc.
LFBGA240 11 x 11
CASE 566EY
ORDERING INFORMATION
See detailed ordering and shipping information on page 53 of
this data sheet.
Typical Applications
•
•
•
•
Sound Recorders
Wearable Audio Players
Bluetooth Headsets
Smart Phone Accessories
© Semiconductor Components Industries, LLC, 2017
June, 2018 − Rev. 9
1
Publication Order Number:
LC823450/D
LC823450
ABSTRACT
Features
• Cortex−M3 Dual Core, AMBA® (AHB/APB) System
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
1
2
♦
Internal SRAM (1.5M-byte)
Internal ROM (256k-byte). Boot code, Standard
Functions
SDRAM Controller (1 * CS)
64M to 256Mbit SDRAM / Mobile SDRAM
External Memory Controller (2 * CS)
NOR FLASH, SRAM, ROM supported, 8/16 bit I/F
LCD controller supported
Internal ROM boot and External memory device
boot available
DMA Controller (8ch)
Interrupt Controller (External 90ch, Internal 82ch)
SPI (1ch)
Serial Flash I/F (1ch)
Quad SPI, cache memory (16k-byte, 4way set
associative, 128line) function available
1.8V dedicated power supply
UART (3ch)
UART1: w/flow control (CTS, RTS)
UART0, UART2: w/o flow control
I2C (2ch) Single Master, Full/Standard
GPIO (90ch)
Plain Timer w/ Watch Dog Timer (1ch×3)
Multiple Timer (2ch×4)
10bit ADC (6ch)
SD Card I/F (3ch)
eSD/eMMC, UHS−I, w/o CPRM
− SD0: eSD/eMMC boot supported (Internal ROM
Boot function) 1.8 V dedicated power supply
− SD1: Multiplexed w/ Memory Stick I/F
1.8 V dedicated power supply
− SD2: 1.8 V dedicated power supply
Memory Stick I/F (1ch)
Multiplexed w/ SD1
USB2.0 Host (HS/FS/LS) Controller, Device
(HS/FS) Controller. Integrated PHY
Xtal (XT1) is required for USB function.
48 MHz for Host, and 12,20,24,48 MHz for device
w/o OTG function. Host and Device share an
integrated PHY.
♦
Real Time Clock
2 modes below are available
− General RTC mode: RTC w/o key input
− KeyInt RTC mode: RTC w/ key input which
enables power on function
SWD (Serial Wire Debug) is supported as the debug
interface.
SWV (Serial Wire Viewer) is supported as the trace
interfaceOnly one of Cortex−M3 Dual Core can be
traced.
Availability of features explained here depends on products.
• MP31 Hard Wired Encoder/Decoder
♦ MP3 MPEG1, MPEG2, MPEG2.5
− Sampling rate: 8 kHz,11.025 kHz,12 kHz,16 kHz,
22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz
− Bit rate:8 Kbps to 320 Kbps (Decoder−VBR
supported)
• LPDSP32 System
♦ Internal SRAM (120 kbyte)
♦ Internal ROM (220 kbyte)
♦ WMA2 (Microsoft WMA Decoder Profile Level3)
− Sampling rate: 8 kHz, 11.025 kHz, 16 kHz,
22.05 kHz, 32 kHz, 44.1 kHz, 48 kHz
− Bit rate: 5 Kbps to 320 Kbps (VBR supported)
♦ AAC (MPEG4 LC−AAC)
− Bit rate: 8 Kbps to 320 Kbps (VBR supported)
♦ Variable Speed Control playback
(0.5 to 4.0 times speed)
− While WMA and AAC playback, up to 2.0 time
speed
− While PCM playback, up to 4.0 times speed
− While MP3 playback w/ hard wired decoder,
up to 4.0 times speed
♦ Noise Canceller, etc.
♦ JTAG ICE
MPEG Layer−3 audio coding technology licensed from Fraunhofer IIS and Thomson.
Supply of this product does not convey license nor imply any right to distribute content created with this product in revenue−generating
broadcast systems (terrestrial, satellite, cable and/or other distribution channels), streaming applications (via Internet, intranets and/or
networks), other content distribution systems (pay−audio or audio−on−demand applications and the like) or on physical media (compact
discs, digital versatile discs, semiconductor chips, hard drives, memory cards and the like). For details, please visit http://mp3licensing.com/
Supply of this product does not convey license under the relevant intellectual property of Thomson and/or Fraunhofer Gesellschaft nor
imply any right to use this product in any finished end user or ready−to−use final product. An independent license for such use is required.
For details, please visit http://mp3licensing.com/.
This product contain technology of Microsoft company ownership, and you cannot distribute or use without getting license from Microsoft
Licensing company.
www.onsemi.com
2
LC823450
• Bluetooth Protocol Stack Available3
• Other Audio Functions Available:
• Power Supply
♦
6band Equalizer (EQ3)
Volume, Mute
♦ Level Meter
♦ Audio Timer w/ interrupt generation
♦ 16/24/32bit 192 kHz PCM I/F (2ch×2).
Master/slave, I2S
♦ SSRC (Synchronous Sampling Rate Converter)
0.25 to 64 conversion capable
♦ ASRC (Asynchronous Sampling Rate Converter)
jitter reducing function supporting USB audio class
and Bluetooth streaming
♦ Beep generator
♦ Digital Microphone I/F (2ch×1)
♦ 16bit Audio DAC (2ch)
w/ Class−D Amplifier for Head Phone (2ch).
Need external LC LPF
Audio Clock Generation
♦ Dedicated PLL for audio(PLL2:1 V and PLL3:3 V
operation integrated)
♦ Selectable PLL reference clock
XT1 (1 to 50 MHz Main xtal)
XTRTC (32.768 KHz RTC xtal)
PCM I/F MCLK0 (/MCLK1), BCK0, BCK1
♦
♦
•
3
Typical voltage:
− LOGIC(Vdd1), XT1(VddXT1),
PLL1(AVddPLL1), PLL2(AVddPLL2) = 1.0 V
− PLL3(AVddPLL3) = 3.3 V
− RTC(VddRTC) = 1.0 V
− I/O(Vdd2) = 1.8 V or 3.3 V
− SD0(VddSD0) = 1.8 V or 3.3 V
− SD1(VddSD1) = 1.8 V or 3.3 V
− SD2(VddSD2) = 1.8 V or 3.3 V
− S−Flash I/F(VddQSPI) = 1.8 V or 3.3 V
− ADC(AVddADC) = 3.3 V
− USB PHY1(AVddUSBPHY1, DVddUSBPHY1)
= 1.0 V(w/o USB connection) or
1.2 V (w/ USB connection)
− USB PHY2(AVddUSBPHY2) =
2.8 V (w/o USB connection) or
3.3 V (w/ USB connection)
− Class−D Amplifier(AVddDAMPL,AVddDAMPR)
= 1.2 V
The product name for which Bluetooth Protocol Stack is available is determined. Please contact our representative for license fee for the
Stack.
Copyright 1999−2014 OpenSynergy GmbH
All rights reserved. All unpublished rights reserved.
www.onsemi.com
3
LC823450
Package Code and Functional Difference
Table 1. FUNCTIONAL DIFFERENCE
Function
Package Code
TA
Package
Cortex−M3
Dual Core
XA, XC
TQFP128L
XB, XD
WLP154
Single
Single
LFBGA240
Dual
SDRAM Controller
8bit I/F
(LCD I/F, etc.)
Available
8bit I/F
(LCD I/F, etc.)
Available
Available
Available
10bit ADC
Conversion Speed
MAX 5 MHz
MAX 20 MHz
(Note 3)
10bit ADC
Reference Voltage
VRH = AvddADC
VRL = AVssADC
(Note 2)
VRH = AVddADC
and lower
VRL = AVssADC
and higher
PCM1(PCM I/F ch1)
BCK1/LRCK1
share pins with other function
Available
Available
Available
MP3 Hard Wired Encoder
Available
Available
Available
16bit Audio DAC,
Class−D AMP
Available
Available
Available
PLL2 (1 V PLL)
PLL3 (3 V PLL)
Only PLL2
Available
Available
Only PLL2
XTALINFO[1:0] Input
“00”
(24 MHz)
Available
Available
Available
“1”
(General RTC mode)
Available
Available
Available
Available
Available
Available
RTCMODE Input
KEYINT[2:0] Input
1.
2.
3.
4.
Dual
Available
External Memory
Controller
SD2
RA, RB
External Interrupt
45 ch
61 ch
61 ch
90 ch
GPIO
45 ch
61 ch
61 ch
90 ch
Pin shared for multiple function. Refer to Terminal Functions for details.
VR is open inside.
VRH = AvddADC, VRL = AVssADC inside.
While there is decoupling capacitor. If not, it should be 5 MHz.
www.onsemi.com
4
LC823450
Block Diagram
SWD/SWV
ICE
1Mhz∼
50MHz
JTAG
ICE
XT1
Arm Cortex−M3
Arm Cortex−M3
32.768kHz
XTRTC
DMAC
(8ch)
LPDSP32
Multilayer Bus
EXT4
SDRAM
CTRL
S−Flash I/F
(1ch)
Cache
(16 Kbyte)
BASIC
PHY
XT1
Plain
Timer
(1ch×3)
ROM
(220k byte)
ISOLATED−D
SRAM
(512k byte)
SRAM
(512k byte)
ISOLATED−B
ISOLATED−C
ISOLATED−I
ISOLATED−E
External
Memory
Controller
Main
Module
Manager
SRAM
(120k byte)
ISOLATED−G
Reset
Controller
USB 2.0
APB
Bridge
BUF
(4.5 Kbyte)
SRAM
(512k byte)
USB 2.0
Host
USB 2.0
Device
ROM
(256k byte)
10bit ADC
(6ch)
Multiple
Timer
(2ch×4)
PORT0∼4
(80 I/O)
PORT5
(10 I/O)
UART
(3ch)
I2C
(2ch)
SPI
(1ch)
RTC
EXT1
ISOLATED−H
BUF
(512/512 byte x 3)
SD I/F
(3ch)
OSC
System
PLL
MS I/F
MS PB
XT1
XTRTC
RC
EXT3
XTRTC
OSC
ATM
Audio Buffer
(64 Kbyte)
ISOLATED
Audio PLL
BEEP
VOLUME
MP3
Decoder
PCM
I/F
PCM
I/F
Digital
Mic
16bit Audio
DAC
MP3
Encoder
EQ3
METER
MUTE
SSRC
BCK0/1
MCLK0/1
(PCM I/F)
XT1
XTRTC AHB CLK
(HCLK)
ASRC
ISOLATED−A
Class−D
AMP
Figure 1. Top
www.onsemi.com
5
ISOLATED−F
not used
intenationally
EXT2
not used
intenationally
LC823450
Bus Matrix
Arm Cortex−M3
DMAC
(8ch)
LPDSP32
USB 2.0
Host
OHCI
EHCI
PM
DMB
DMA
DMIO
D−bus
i−bus
System−Bus
D−Bus
I−Bus
System−Bus
System
ROM
LPDSP32
ROM
SRAM
(Seg 0)
.
.
.
Arm Cortex−M3
SRAM
(Seg 8)
SRAM
(Seg 9)
BASIC
Peripheral
EXT1
Peripheral
EXT3
Peripheral
EXT4
Peripheral
APB
Peripheral
Figure 2. Bus Matrix
www.onsemi.com
6
LC823450
Audio
64KB SRAM divided into
A ~ N Audio Buffers
by register settings
Internal Bus
A buffer
8
MP3
Encoder
RAM
B buffer
BIT1−0, MONO
Dredirect
E redirect
Jredirect
L redirect
16
Bit conv
Bit conv
Gredirect
RAM
Nredirect
24
C buffer
0
BIT1−0, MONO
D
E
C
S
E
L
E redirect
Jredirect
Lredirect
8
Bit conv
Bit conv
Gredirect
RAM
Nredirect
MP3
Decoder
16
1
24
METER
(DEC)
MUTE
(DEC)
32
D buffer
32Bit conv
RAM
24
VOLUME
(DEC)
Bit conv
BIT1−0, MONO
SSRC
24
32
E buffer
32
RAM
Bit conv
32
VOLUME
(SP0)
EQ3
BIT1−0, MONO
F buffer
BIT1−0, MONO
S
I
N
S
E
L
0
1
SINGEN
32
Bit conv
Bit conv
Jredirect
RAM
32
0
32
E redirect
L redirect
1
DWNMIX
(PS0)
EQ3
VOLUME
(PS0)
MUTE
(PS0)
S
E
L
Digtal
Mic
DMCKO0
DMDIN0
DMCKO1
DMDIN1
PCMSP
0
PCM input
DIN0
(PCM input)
PCM
PS0
PCM output
DOUT0
(PCM output
METER
(SP0)
Dredirect
Gredirect
P
C
M
S
E
L
BEEP
24
16bit
Audio
DAC
Class−D
AMP
LOUT
ROUT
Nredirect
METER
(SP1)
G buffer
AudioTimer0
32
RAM
MCLK0/
BCK0/
LRCK0
METER
(PS0)
LRCK0
VOLUME
(SP1)
Bit conv
BIT1−0, MONO
H buffer
32
BIT1−0, MONO
Dredirect
Bit conv
Gredirect
Jredirect
L redirect
DWNMIX
(PS1)
VOLUME
(PS1)
32
RAM
Nredirect
BIT1−0, MONO
AudioTimer1
Dredirect
E redirect
L redirect
Nredirect
24
Bit conv
Bit conv
Gredirect
RAM
ASRC
J buffer
32Bit conv
RAM
24
Bit conv
BIT1−0, MONO
K buffer
BIT1−0, MONO
Dredirect
E redirect
Bit conv
Gredirect
Jredirect
Nredirect
L buffer
RAM
RAM
CBIT1−0, CMONO
Bit conv
32Bit conv
BIT1−0, MONO
M buffer
32
BIT1−0, MONO
Dredirect
E redirect
Bit conv
Gredirect
Jredirect
L redirect
RAM
RAM
CBIT1−0, CMONO
N buffer
Bit conv
PCM
PS1
PCM output
DIN1
(PCM input)
32Bit conv
BIT1−0, MONO
Figure 3. Audio
www.onsemi.com
7
DOUT1
(PCM output
MCLK1/
BCK1/
LRCK1
METER
(PS1)
I buffer
PCM input
32
Bit conv
E redirect
PCM
SP1
LRCK1
LC823450
FCLKCNT
・
・
・
・
・
・
Clock Hierarchy
PHI1 pin
1MHz~
50MHz
XT1
SYSTEM PLL
(PLL1)
1/4
1/4
XT1
(XIN1/XOUT1 pin)
1/2
32.768kHz
1/1、 1/2、 1/4、
1/8、 1/16
XTRTC
(XIN32K/XOUT32K pin)
1/4
PHI0 pin
XTRTC
1/1、 1/2、 1/4、
1/8、 1/16
PLL1
XT1
RC
BASIC CLK
ADC
MCLKCNTAPB
M3Core0
CORECNT
M3Core1
1/2、 1/4、 1/8、
1/16、 1/32、 1/64
[Note]
PORT0
INTC
PORT1
DMAC
PORT2
Cache
PORT3
PORT4
S−Flash I/ F
PORT5
SCK1
RTC
External Memory
Controller(XMC)
USB2.0 Host
XTRTC
I2C0
USB PHY
XT1
I2C1
SCL1
1/{ (2~ 65535)×8}
APB CLK(PCLK)
MCLKCNTAPB
UART0
1/(1~ 64)
SCL0
1/{ (2~ 65535)×8}
USB2.0 Device
1/(1~ 64)
SCK0
1/{ (2~ 256)×4}
SRAM/ ROM
1/1、 1/2、
1/4、 1/8
1/{ (1~ 8) + (0~ 63)/64}
SPI
− M3Core0, M3Core1 and LPDSP32 has additional clock gating
switch enabled by the execution of a dedicated operation.
LPDSP32
MCLKCNTBASIC
ADCCLK
(Internal)
1/{ (8~ 16)×
(1~ 65536)}
AHB CLK(HCLK)
UART1
MCLKCNTEXT1
MCLKCNTEXT1
1/{ (8~ 16)×
(1~ 65536)}
Plain Timer0
UART2
Plain Timer1
1/{ (8~ 16)×
(1~ 65536)}
Plain Timer2
CLOCKEN
Multiple Timer0
MP3DEC
Multiple Timer1
Multiple Timer2
MP3ENC
1/2
FS384
DECCLK 1/2、 1/4、
FS192
ENCCLK 1/4、 1/8、
1/8
1/1、 1/2、
1/4
1/16
Multiple Timer3
Audio PLL
FS256
AUDIO Control
XTRTC
System PLL
BEEP
BCK1
XT1
1/4
MCLK0/MCLK1
(input)
1/1、 1/2、
1/4、 1/8
1/1、 1/2、
1/4、 1/8
AHB CLK
(HCLK)
− ENCCLK frequency should be 192 * FS
while FS is Sampling Frequency of MPEG1 mode of MP3.
ex.) ENCCLK should be 8.4672MHz to make all of MP3 data
44.1/22.05/11.025KHz (MPEG1/MPEG2/MPEG2.5).
VOLUME SP1
VOLUME PS1
− DECCLK frequency should be 384 * FS
while FS is Sampling Frequency of MPEG1 mode of MP3.
ex.) DECCLK should be 16.9344MHz to make all of MP3 data
44.1/22.05/11.025KHz (MPEG1/MPEG2/MPEG2.5).
METER DEC
SDCLK2
BCK0
− Regarding the frequency of SSRCFCCLK and ASRCFCCLK,
refer to the SSRC and ASRC Programmer’ s Model documents.
VOLUME PS0
SD1(Card Detect)
(PLL2
or
PLL3)
− Regarding the initial value of switches described in this figure,
refer to the appropriate documents.
VOLUME SP0
1/1、 1/2、 1/4、 1/8、
1/16、 1/32、 1/64、
1/128、 1/256、 1/512
XTRTC
AUDIO
PLL
[Note]
VOLUME DEC
SD1(Main Function)
METER SP0
METER PS0
1/1、 1/2、 1/4、 1/8、
1/16、 1/32、 1/64、
1/128、 1/256、 1/512
METER SP1
METER PS1
SD2(Main Function)
MUTE DEC
SD2(Card Detect)
MS I/ F
MCLKCNTEXT1
ASRCFCLK
EQ3
SDCLK1
MCLKCNTEXT1
SSRCFCLK
ASRC
1/1、 1/2、 1/4、 1/8、
1/16、 1/32、 1/64、
1/128、 1/256、 1/512
SD0(Card Detect)
MCLKCNTEXT1
FS768
FS384
SSRC
SD0(Main Function)
MCLKCNTEXT1
1/1、 1/2、
1/4
1/3
1/2
OSC System
SDCLK0
MCLKCNTEXT1
AUDCLK
1/1、 1/2、 1/4、
1/8、 1/16、 1/32
MUTE PS0
SCLK
PCMPS0
PCMSP0
MS PageBuffer
PCMPS1
PCMSP1
MCLKCNTEXT3
AudioTimer0
AUDIO BUFFER
AudioTimer1
SINGEN
1/(1~ 64)
MCLKCNTEXT4
− Class−D AMP has additional clock source and gating switch
for being used as GPO.
PCKGEN
SDRAM CTRL
SDRCLK
AHB CLK
(EXT4 only)
[Note]
DigitalMIC
1/ 1, 1/ 2,
1/ 4
Damp CTL
FS384
Class−D AMP
FCEDAC
16bit Audio
DAC(Noise Shaping
)
DAC(Main)
1/ 1, 1/ 2, 1/ 4
1/ 8, 1/ 16
Figure 4. Clock Hierarchy
www.onsemi.com
8
1/ 1, 1/ 2, 1/ 4, 1/ 8,
1/ 16, 1/ 32
1/ 1, 1/ 21/ 4, 1/ 8,
1/ 16, 1/ 32
MCLK0/MCLK1
(output)
LC823450
Memory Map
All Area (Cortex−M3)
0x4005 FFFF
0x4004 F000
0x4004 D000
0x4004 C000
0x4004 B000
0x4004 A000
0x4004 9000
0x4004 8000
0x4004 7000
0x4004 6000
reserved
MS
SD2
SD1
SD0
PlainTimer2
PlainTimer1
PlainTimer0
MultipleTimer3
MultipleTimer2
MultipleTimer1
MultipleTimer0
AHB EXT1
peripherals
0xE010 0000
0xE004 0000
0xE000 0000
0x6402 0000
0x6000 0000
AHB EXT4
peripherals
0x6401 FFFF
0x6400 1000
0x6400 0000
0x6200 0000
0x6000 0000
System
Private peripheral bus − External
Private peripheral bus − Internal
reserved
AHB EXT 4 peripherals
reserved
APB peripherals
AHB EXT 3 peripherals
AHB EXT 1 peripherals
BASIC peripherals
SRAM memories
external m emory
reserved
0x4009 FFFF
SD RAM CTRL
reserved
0x4008 F000
0x4006 4000
0x4006 5000
0x4007 FFFF
0x4008 0000
0x4008 1000
0x4008 2000
0x4008 3000
0x4008 4000
0x4008 5000
0x4008 6 000
0x4008 7 000
0x4008 8 000
0x4008 9000
0x4008 A000
0x4008 B000
0x4008 C 000
0x4008 D 000
0x4008 E 000
SD RAM
Memory A rea
APB
peripherals
AHB EXT3
peripherals
0x4006 3000
0x4006 2000
0x4006 1000
0x4006 0000
reserved
RTC
UART 2
UART 1
UART 0
I2 C1
I2 C0
SPI
ADC
PORT 5
PORT 4
PORT 3
PORT 2
PORT 1
PORT 0
System
Controller
reserved
Audio
Controles
MP3 Encoder
MP3 Decoder
Audio
Functions
Audio Buffer
www.onsemi.com
0x4004 5000
0x4004 4000
0x4004 3000
Audio PLL
System PLL
0x400A 0000
0x4008 0000
OSC System
reserved
0x0000 0000
0x4000 0000
0x4006 0000
0x4004 0000
BASIC
peripherals
USB 2.0 device
(DMAC)
USB 2.0 device
(CPU)
reserved
DSP CMDIF
MUTEX REG
DMAC
INTC
USB 2.0 Host
S−Flash I/F
External
MEM RTL
9
0x4004 2000
0x4004 1000
0x4004 0000
0x4003 FFFF
0x4003 0000
0x4002 0000
0x4001 0000
0x4000 7000
0x4000 6000
0x4000 5000
0x4000 4000
0x4000 3000
0x4000 2000
0x4000 1000
0x4000 0000
Figure 5. All Area (Cortex−M3)
LC823450
Code Area (Cortex−M3)
Table 2. CODE AREA (CORTEX−M3) − UNREMAPPED (AFTER RESET)
Cortex−M3−0
System
− Bus
I−Bus
Cortex−M3−1
D−Bus
System
− Bus
I−Bus
USB20HC
D−Bus
Address
Master/Slave
0x1C00
0000
Reserved
0x1A00
0000
External Memory 1
0x1800
0000
External Memory 0
0x0600
0000
Reserved
0x0500
0000
S−Flash I/F
(Memory, Cache)
0x0224
0000
Reserved
0x0220
0000
256 KB Internal
ROM
0x0219
E000
Reserved
0x0218
0000
120 KB Internal
SRAM
(seg 9)
d
d
0x0217
8000
32 KB Internal
SRAM
(seg 8)
d
d
0x0214
0000
224 KB Internal
SRAM
(seg 7)
d
d
0x0210
0000
256 KB Internal
SRAM
(seg 6)
d
d
0x020C
0000
256 KB Internal
SRAM
(seg 5)
d
d
0x020A
0000
128 KB Internal
SRAM
(seg 4)
d
d
0x0208
0000
128KB Internal
SRAM
(seg 3)
d
d
0x0204
0000
256 KB Internal
SRAM
(seg 2)
d
d
0x0202
0000
128 KB Internal
SRAM
(seg 1)
d
d
0x0200
0000
128 KB Internal
SRAM
(seg 0)
d
d
0x0004
0000
Reserved
0x0000
0000
256 KB Internal
ROM
Shadow Area
d
d
d
d
d
d
d
DMAC
d
d
d
www.onsemi.com
10
EHCI
OHCI
LC823450
Table 3. CODE AREA (CORTEX−M3) − REMAPPED (REMAP[1:0] = 2’B01)
Cortex−M3−0
System
− Bus
I−Bus
Cortex−M3−1
D−Bus
System
− Bus
I−Bus
USB20HC
D−Bus
Address
Master/Slave
0x1C00
0000
Reserved
0x1A00
0000
External Memory 1
0x1800
0000
External Memory 0
0x0600
0000
Reserved
0x0500
0000
S−Flash I/F
(Memory, Cache)
0x0224
0000
Reserved
0x0220
0000
256 KB Internal
ROM
0x0219
E000
Reserved
0x0218
0000
120 KB Internal
SRAM
(seg 9)
d
d
0x0217
8000
32 KB Internal
SRAM
(seg 8)
d
d
0x0214
0000
224 KB Internal
SRAM
(seg 7)
d
d
0x0210
0000
256 KB Internal
SRAM
(seg 6)
d
d
0x020C
0000
256 KB Internal
SRAM
(seg 5)
d
d
0x020A
0000
128 KB Internal
SRAM
(seg 4)
d
d
0x0208
0000
128 KB Internal
SRAM
(seg 3)
d
d
0x0204
0000
256 KB Internal
SRAM
(seg 2)
d
d
0x0202
0000
128 KB Internal
SRAM
(seg 1)
d
d
0x0200
0000
128 KB Internal
SRAM
(seg 0)
d
d
0x0002
0000
Reserved
0x0000
0000
128 KB Internal
SRAM
(seg 0) Shadow
Area
d
d
0x1C00
0000
Reserved
d
d
d
d
d
d
d
DMAC
d
www.onsemi.com
11
EHCI
OHCI
LC823450
Table 3. CODE AREA (CORTEX−M3) − REMAPPED (REMAP[1:0] = 2’B01) (continued)
Cortex−M3−0
System
− Bus
I−Bus
Cortex−M3−1
D−Bus
System
− Bus
I−Bus
USB20HC
D−Bus
Address
Master/Slave
0x1A00
0000
External Memory 1
0x1800
0000
External Memory 0
0x0600
0000
Reserved
0x0500
0000
S−Flash I/F
(Memory, Cache)
0x0224
0000
Reserved
0x0220
0000
256 KB Internal
ROM
0x0219
E000
Reserved
0x0218
0000
120 KB Internal
SRAM
(seg 9)
d
d
0x0217
8000
32 KB Internal
SRAM
(seg 8)
d
d
0x0214
0000
224 KB Internal
SRAM
(seg 7)
d
d
0x0210
0000
256 KB Internal
SRAM
(seg 6)
d
d
0x020C
0000
256 KB Internal
SRAM
(seg 5)
d
d
0x020A
0000
128 KB Internal
SRAM
(seg 4)
d
d
0x0208
0000
128 KB Internal
SRAM
(seg 3)
d
d
0x0204
0000
256 KB Internal
SRAM
(seg 2)
d
d
0x0202
0000
128 KB Internal
SRAM
(seg 1)
d
d
0x0200
0000
128 KB Internal
SRAM
(seg 0)
d
d
0x0000
0000
External Memory 0
Shadow Area
d
d
d
d
d
d
d
d
DMAC
d
d
www.onsemi.com
12
EHCI
OHCI
LC823450
SRAM Area (Cortex−M3)
Table 4. SRAM AREA (CORTEX−M3)
Cortex−M3−0
System
− Bus
I−Bus
Cortex−M3−1
D−Bus
System
− Bus
I−Bus
USB20HC
D−Bus
Master/Slave
0x2600
0000
Reserved
0x2500
0000
S−Flash I/F
(Memory, Cache)
d
d
d
0x2400
0000
S−Flash I/F
(Memory, No
Cache)
d
d
d
0x2019
E000
Reserved
0x2018
0000
120 KB Internal
SRAM
(seg 9) Shadow
Area
d
d
d
0x2017
8000
32 KB Internal
SRAM
(seg 8) Shadow
Area
d
d
d
0x2014
0000
224 KB Internal
SRAM
(seg 7) Shadow
Area
d
d
d
0x2010
0000
256 KB Internal
SRAM
(seg 6) Shadow
Area
d
d
d
0x200C
0000
256 KB Internal
SRAM
(seg 5) Shadow
Area
d
d
d
0x200A
0000
128 KB Internal
SRAM
(seg 4) Shadow
Area
d
d
d
0x2008
0000
128 KB Internal
SRAM
(seg 3) Shadow
Area
d
d
d
0x2004
0000
256 KB Internal
SRAM
(seg 2) Shadow
Area
d
d
d
0x2002
0000
128 KB Internal
SRAM
(seg 1) Shadow
Area
d
d
d
0x2000
0000
128 KB Internal
SRAM
(seg 0) Shadow
Area
d
d
d
www.onsemi.com
13
DMAC
EHCI
Address
OHCI
LC823450
Other Area (Cortex−M3)
Table 5. OTHER AREA (CORTEX−M3)
Cortex−M3−0
System
− Bus
I−Bus
Cortex−M3−1
D−Bus
System
− Bus
I−Bus
Address
Master/Slave
0xE010
0000
Reserved
0xE00F
F000
ROM Table
d
(Note 5)
d
(Note 5)
0xE00F
E000
CORE REG
d
(Note 5)
d
(Note 5)
0xE004
1000
Reserved
0xE004
0000
TPIU
d
(Note 5)
d
(Note 5)
0xE000
F000
Reserved
0xE000
E000
NVIC
d
(Note 5)
d
(Note 5)
0xE000
3000
Reserved
0xE000
2000
FPB
d
(Note 5)
d
(Note 5)
0xE000
1000
DWT
d
(Note 5)
d
(Note 5)
0xE000
0000
ITM
d
(Note 5)
d
(Note 5)
0x6400
1000
Reserved
0x6400
0000
SDRAM CTRL
0x6200
0000
Reserved
0x6000
0000
SDRAM Memory
Area
0x4008
F000
Reserved
0x4008
E000
USB20HC
D−Bus
DMAC
d
d
d
d
RTC
d
d
0x4008
D000
UART2
d
d
d
0x4008
C000
UART1
d
d
d
0x4008
B000
UART0
d
d
d
0x4008
A000
I2C1
d
d
0x4008
9000
I2C0
d
d
0x4008
8000
SPI
d
d
d
0x4008
7000
ADC
d
d
d
www.onsemi.com
14
EHCI
d
OHCI
LC823450
Table 5. OTHER AREA (CORTEX−M3) (continued)
Cortex−M3−0
Cortex−M3−1
USB20HC
Address
Master/Slave
System
− Bus
0x4008
6000
PORT5
d
d
0x4008
5000
PORT4
d
d
0x4008
4000
PORT3
d
d
0x4008
3000
PORT2
d
d
0x4008
2000
PORT1
d
d
0x4008
1000
PORT0
d
d
0x4008
0000
System Controller
d
d
0x4006
5000
Reserved
0x4006
4000
Audio Controls
d
d
0x4006
3000
MP3 Encoder
d
d
0x4006
2000
MP3 Decoder
d
d
0x4006
1000
Audio Functions
d
d
0x4006
0000
Audio Buffer
d
d
d
0x4004
D000
MS
d
d
d
0x4004
C000
SD2
d
d
d
0x4004
B000
SD1
d
d
d
0x4004
A000
SD0
d
d
d
0x4004
9000
Plain Timer2
d
d
0x4004
8000
Plain Timer1
d
d
0x4004
7000
Plain Timer0
d
d
0x4004
6000
Multiple Timer3
d
d
0x4004
5000
Multiple Timer2
d
d
0x4004
4000
Multiple Timer1
d
d
0x4004
3000
Multiple Timer0
d
d
0x4004
2000
Audio PLL
d
d
0x4004
1000
System PLL
d
d
I−Bus
D−Bus
System
− Bus
www.onsemi.com
15
I−Bus
D−Bus
DMAC
EHCI
OHCI
LC823450
Table 5. OTHER AREA (CORTEX−M3) (continued)
Cortex−M3−0
Cortex−M3−1
USB20HC
Address
Master/Slave
System
− Bus
0x4004
0000
OSC System
d
d
0x4003
0000
Reserved
0x4002
0000
USB2.0
Device(DMAC)
d
d
d
0x4001
0000
USB2.0
Device(CPU)
d
d
d
0x4000
7000
Reserved
0x4000
6000
DSP CMDIF
d
d
0x4000
5000
MUTEX REG
d
d
0x4000
4000
DMAC
d
d
0x4000
3000
INTC
d
d
0x4000
2000
USB2.0 Host
d
d
0x4000
1000
S−Flash I/F
d
d
0x4000
0000
External MEM CTL
d
d
I−Bus
D−Bus
System
− Bus
I−Bus
D−Bus
EHCI
DMAC
d
5. Access from internal peripheral bus(AHB/APB).
LPDSP32
Table 6. LPDSP32 − DMA
LPDSP32
Address
Master/Slave
DMA
0x23 7000
Reserved
0x20 0000
220 KB LPDSP32 ROM
d
0x18 0000
Reserved
d
0x17 8000
32 KB Internal SRAM (seg 8)
d
0x14 0000
224 KB Internal SRAM (seg 7)
d
0x10 0000
256 KB Internal SRAM (seg 6)
d
0x0C 0000
256 KB Internal SRAM (seg 5)
d
0x0A 0000
128 KB Internal SRAM (seg 4)
d
0x08 0000
128 KB Internal SRAM (seg 3)
d
0x04 0000
256 KB Internal SRAM (seg 2)
d
0x02 0000
128 KB Internal SRAM (seg 1)
d
0x00 0000
128 KB Internal SRAM (seg 0)
d
www.onsemi.com
16
OHCI
LC823450
Table 7. LPDSP32 − DMB
LPDSP32
Address
Master/Slave
DMB
0x98 0000
reserved
0x97 8000
32 KB Internal SRAM
(seg 8) Shadow Area
d
0x94 0000
224 KB Internal SRAM
(seg 7) Shadow Area
d
0x90 0000
256 KB Internal SRAM
(seg 6) Shadow Area
d
0x8C 0000
256 KB Internal SRAM
(seg 5) Shadow Area
d
0x8A 0000
128 KB Internal SRAM
(seg 4) Shadow Area
d
0x88 0000
128 KB Internal SRAM
(seg 3) Shadow Area
d
0x84 0000
256 KB Internal SRAM
(seg 2) Shadow Area
d
0x82 0000
128 KB Internal SRAM
(seg 1) Shadow Area
d
0x80 0000
128 KB Internal SRAM
(seg 0) Shadow Area
d
Table 8. LPDSP32 − DMIO
LPDSP32
Address
Master/Slave
DMIO
0xF0 1000
reserved
0xF0 0000
SDRAM CTRL
d
0xD0 0000
SDRAM Memory Area
d
0xC6 5000
reserved
0xC6 4000
Audio Controls
d
0xC6 3000
MP3 Encoder
d
0xC6 2000
MP3 Decoder
d
0xC6 1000
Audio Functions
d
0xC6 0000
Audio Buffer
d
0xC4 A000
Reserved
0xC4 9000
Plain Timer2
d
0xC4 8000
Plain Timer1
d
0xC4 7000
Plain Timer0
d
0xC4 6000
Multiple Timer3
d
0xC4 5000
Multiple Timer2
d
0xC4 4000
Multiple Timer1
d
0xC4 3000
Multiple Timer0
d
0xC4 2000
Audio PLL
d
0xC4 1000
System PLL
d
0xC4 0000
OSC System
d
0xC0 7000
Reserved
0xC0 6000
DSP CMDIF
www.onsemi.com
17
d
LC823450
Table 8. LPDSP32 − DMIO (continued)
LPDSP32
Address
Master/Slave
DMIO
0xC0 5000
MUTEX REG
d
0xC0 4000
DMAC
d
0xC0 3000
INTC
d
0xC0 0000
Reserved
Table 9. LPDSP32 − PM
LPDSP32
Address
Master/Slave
0x48 3332
Reserved
0x48 0000
32 KB Internal SRAM (seg 8)
0x41 6666
Reserved
0x40 0000
224 KB Internal SRAM (seg 7)
0x39 9998
Reserved
0x38 0000
256 KB Internal SRAM (seg 6)
0x31 9998
Reserved
0x30 0000
256 KB Internal SRAM (seg 5)
0x28 CCCC
Reserved
0x28 0000
128 KB Internal SRAM (seg 4)
0x20 CCCC
Reserved
0x20 0000
128 KB Internal SRAM (seg 3)
0x19 9998
Reserved
0x18 0000
256 KB Internal SRAM (seg 2)
0x10 CCCC
Reserved
0x10 0000
128 KB Internal SRAM (seg 1)
0x08 CCCC
Reserved
0x08 0000
128 KB Internal SRAM (seg 0)
0x00 C000
Reserved
0x00 0000
120 KB Internal SRAM (seg 9)
www.onsemi.com
18
PM
f
f
f
f
f
f
f
f
f
f
LC823450
TERMINAL FUNCTIONS
TA: Package Code = “TA”
XA: Package Code = “XA”
XB: Package Code = “XB”
XC: Package Code = “XC”
XD: Package Code = “XD”
RA: Package Code = “RA”
RB: Package Code = “RB”
Table 10. TERMINAL FUNCTIONS
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
VddSD1
JTAG/SWD
−
O
JTAG test data outputSD
d
d
d
d
SDWP1
Pos
I
SD I/F Ch1 write protect
d
d
d
d
INS
Neg
I
Memory Stick INS
d
d
d
d
GPIO21
−
B
GPIO
d
d
d
d
EXTINT21
−
I
External Interrupt 2−bit1
d
d
d
d
TDI
−
I
JTAG test data input
d
d
d
d
TDO
SDCD1
VddSD1
Neg
I
SD I/F Ch2 write protect
d
d
d
d
SWO
−
O
Serial wire view data
d
d
d
d
GPIO20
−
B
GPIO
d
d
d
d
EXTINT20
−
I
External Interrupt 2−bit0
d
d
d
d
TMS
−
I
JTAG test data select
d
d
d
d
SDWP2
Pos
I
SD I/F Ch2 write protect
d
(Note 6)
d
d
GPIO28
−
B
GPIO
d
d
d
d
d
d
d
d
d
d
d
d
EXTINT28
VddSD2
−
I
External Interrupt 2−bit8
TCK
Pos
I
JTAG test clock
SDCD2
Neg
I
SD I/F Ch2 detect
d
(Note 6)
d
d
GPIO29
−
B
GPIO
d
d
d
d
EXTINT29
−
I
External Interrupt 2−bit9
d
d
d
d
SWDCLK
Pos
I
Serial wire clock
d
d
d
d
DMCKO1
−
O
Digital MicCh1Clock Output
d
d
d
d
GPIO58
−
B
GPIO
d
d
d
d
EXTINT58
−
I
External Interrupt 5−bit8
d
d
d
d
SWDIO
−
B
Serial wire Data
d
d
d
d
DMDIN1
−
I
Digital MicCh1 Data Input
d
d
d
d
GPIO59
−
B
GPIO
d
d
d
d
EXTINT59
−
I
External Interrupt 5−bit9
d
d
d
d
6
6
6
6
d
d
d
d
VddSD2
Vdd2
Vdd2
Sum
RTC
XIN32K
XOUT32K
VDET
VddRTC
Pos
I
32.768 kHz XTAL Input (XTRTC)
−
O
32.768 kHz XTAL Output
(XTRTC)
d
d
d
d
Neg
I
RTC power detect Input
d
d
d
d
www.onsemi.com
19
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
VddRTC
d
d
d
d
d
d
d
d
RTC
RTCINT
Neg
O
RTC Interrupt Output
(Normal:HiZ,
Interrupt enabled: Low Output )
BACKUPB
Neg
I
RTC backup mode input
KEYINT[2:0]
−
I
RTC KEY input can be used when
KeyInt RTC mode
VddRTC
d
d
d
RTCMODE
−
I
RTC mode input (Note 7)
Set General RTC or KeyInt RTC
mode
RTCMODE =
G “0”: KeyInt RTC mode
G “1”: General RTC mode
Bonding internally for “TA” product
VddRTC
d
d
d
VddRTC
−
P
RTC power supply
−
d
d
d
d
VssRTC
−
P
RTC ground
−
d
d
d
d
7
11
11
11
Sum
EXTERNAL INTERRUPT/GPIO
Vdd2
SDRADDR12
−
O
SDRAM address
GPIO2A
−
B
GPIO
d
EXTINT2A
−
I
External Interrupt 2−bit10
d
SCL1
−
O
I2C ch1 Clock (open drain output)
GPIO2B
−
B
EXTINT2B
−
Vdd2
d
d
d
d
d
GPIO
d
d
d
d
I
External Interrupt 2−bit11
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
d
SDA1
−
B
I2C
GPIO2C
−
B
GPIO
EXTINT2C
−
I
External Interrupt 2−bit12
SDRADDR11
−
O
SDRAM address
DMCKO0
−
O
Digital Mic Clock Ch0 Output
d
d
d
d
GPIO2D
−
B
GPIO
d
d
d
d
EXTINT2D
−
I
External Interrupt 2−bit13
d
d
d
d
EXTINT2E
−
I
External Interrupt 2−bit14
d
d
d
d
GPIO2E
−
B
GPIO
*While Internal ROM boot, this
terminal is used as boot monitor
signal.
d
d
d
d
EXTINT2F
−
I
External Interrupt 2−bit14
d
d
d
d
GPIO2F
−
B
GPIO
*While Internal ROM boot, this
terminal is used as boot monitor
signal.
d
d
d
d
5
5
5
6
d
d
d
d
ch1 Clock (open drain output)
Vdd2
Vdd2
Vdd2
Vdd2
Sum
SPI (SERIAL I/F CH0)/S−FLASH I/F (SERIAL I/F CH1)
Vdd2
Neg
B
Serial I/F Ch0 Clock
GPIO1D
−
B
GPIO
d
d
d
d
EXTINT1D
−
I
External Interrupt 1−bit13
d
d
d
d
SCK0
www.onsemi.com
20
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
Vdd2
d
d
d
d
SPI (SERIAL I/F CH0)/S−FLASH I/F (SERIAL I/F CH1)
SDI0
−
I
Serial I/F Ch0 Data Input
GPIO1E
−
B
GPIO
d
d
d
d
EXTINT1E
−
I
External Interrupt 1−bit14
d
d
d
d
SDO0
−
O
Serial I/F Ch0 Data Output
d
d
d
d
GPIO1F
−
B
GPIO
d
d
d
d
EXTINT1F
−
I
External Interrupt 1−bit15
d
d
d
d
Neg
O
Serial I/F Ch1 Clock (QSPI Clock)
GPIO0D
−
B
GPIO
d
d
d
d
EXTINT0D
−
I
External Interrupt 0 bit13
d
d
d
d
SDI1(QIO0)
−
O(B)
Serial I/F Ch1 Data Input
(QSPI Data 1)
d
d
d
d
GPIO0E
−
B
GPIO
d
d
d
d
EXTINT0E
−
I
External Interrupt 0−bit14
d
d
d
d
SDO1(QIO1)
−
I(B)
Serial I/F Ch1 Data Input
(QSPI Data 1)
d
d
d
d
GPIO0F
−
B
GPIO
d
d
d
d
EXTINT0F
−
I
External Interrupt 0−bit15
d
d
d
d
Neg
O(B)
d
d
d
d
GPIO11
−
B
GPIO
d
d
d
d
EXTINT11
−
I
External Interrupt 1−bit1
d
d
d
d
Neg
O(B)
d
d
d
d
GPIO12
−
B
GPIO
d
d
d
d
EXTINT12
−
I
External Interrupt 1−bit2
d
d
d
d
8
8
8
8
SCK1
SWP1(QIO2)
SHOLD1(QIO3)
Vdd2
VddQSPI
VddQSPI
VddQSPI
Serial I/F Ch1 write protect
(QSPI Data 2)
VddQSPI
VddQSPI
Serial I/F Ch1 hold (QSPI
Data 3)
Sum
d
I2C
SCL0
−
O
I2C ch0 Clock (open drain output)
d
d
d
d
GPIO07
−
B
GPIO
d
d
d
d
EXTINT07
−
I
External Interrupt 0−bit7
d
d
d
d
d
d
d
d
Vdd2
SDA0
−
B
I2C
GPIO08
−
B
GPIO
d
d
d
d
EXTINT08
−
I
External Interrupt 0−bit8
d
d
d
d
2
2
2
2
d
d
d
d
ch0 Data (open drain output)
Vdd2
Sum
UART
VddSD2
TXD1
−
O
UART Ch1 transmit Data
SDAT20
−
B
SD I/F Ch2 Data 0
d
(Note 6)
d
d
GPIO04
−
B
GPIO
d
d
d
d
EXTINT04
−
I
External Interrupt 0−bit4
d
d
d
d
www.onsemi.com
21
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
VddSD2
d
d
d
d
UART
RXD1
−
I
UART Ch1 receive Data
SDAT21
−
B
SD I/F Ch2 Data 1
d
(Note 6)
d
d
GPIO05
−
B
GPIO
d
d
d
d
EXTINT05
−
I
External Interrupt 0−bit5
d
d
d
d
Neg
I
UART Ch1 clear to send
d
d
d
d
SDAT22
−
B
SD I/F Ch2 Data 2
d
(Note 6)
d
d
RXD0
−
I
UART Ch0 receive Data
d
d
d
d
GPIO56
−
B
GPIO
d
d
d
d
EXTINT56
−
I
External Interrupt 5−bit6
d
d
d
d
Neg
O
UART Ch1 request to send
d
d
d
d
SDAT23
−
B
SD I/F Ch2 Data 3
d
(Note 6)
d
d
TXD0
−
O
UART Ch0 transmit Data
d
d
d
d
GPIO57
−
B
GPIO
d
d
d
d
EXTINT57
−
I
External Interrupt 5−bit7
d
d
d
d
TXD2
−
O
UART Ch2 transmit Data
d
d
d
d
TIOCA10
−
B
MTM1 Ch0A
− target signal of
pulse−length−reader function
− output of
sentinel−inform−function
− output of PWM output
d
d
d
d
GPIO0B
−
B
GPIO
d
d
d
d
EXTINT0B
−
I
External Interrupt 0−bit11
d
d
d
d
RXD2
−
I
UART ch2 receive Data
d
d
d
d
TIOCA11
−
B
MTM1 Ch1A
− target signal of
pulse−length−reader function
− output of
sentinel−inform−function
− output of PWM output
d
d
d
d
GPIO0C
−
B
GPIO
d
d
d
d
EXTINT0C
−
I
External Interrupt 0−bit12
d
d
d
d
6
6
6
6
d
d
d
d
CTS1
RTS1
VddSD2
VddSD2
VddQSPI
VddQSPI
Sum
TIMER
VddSD2
TIOCA00
−
B
MTM0 Ch0A
− target signal of
pulse−length−reader function
− output of
sentinel−inform−function
− output of PWM output
SDCLK2
−
O
SD I/F Ch2 Clock Output
d
(Note 6)
d
d
PHI0
−
O
System Clock Output 0
d
d
d
d
GPIO09
−
B
GPIO
d
d
d
d
EXTINT09
−
I
External Interrupt 0−bit9
d
d
d
d
www.onsemi.com
22
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
VddSD2
d
d
d
d
TIMER
TIOCA01
−
B
MTM0 Ch1A
− target signal of
pulse−length−reader function
− output of
sentinel−inform−function
− output of PWM output
SDCMD2
−
B
SD I/F Ch2 command line
d
(Note 6)
d
d
PHI1
−
O
System Clock Output 1
d
d
d
d
GPIO0A
−
B
GPIO
d
d
d
d
EXTINT0A
−
I
External Interrupt 0−bit10
d
d
d
d
TIOCB00
−
B
MTM0 Ch0B
− target signal of
pulse−length−reader function
− output of
sentinel−inform−function
d
d
d
d
DIN1
−
I
PCM1 Data Input
d
d
d
d
DMDIN0
−
I
Digital Mic Data Ch0 Input
d
d
d
d
GPIO02
−
B
GPIO
d
d
d
d
EXTINT02
−
I
External Interrupt 0−bit2
d
d
d
d
TIOCB01
−
B
MTM0 Ch1B
− target signal of
pulse−length−reader function
− output of
sentinel−inform−function
d
d
d
d
DMCKO0
−
O
Digital Mic Clock Ch0 Output
d
d
d
d
Neg
O
Serial I/Fch1 QSPI chip select
*While Serial Flash Boot, this is
used as chip select of Serial Flash
d
d
d
d
GPIO03
−
B
GPIO
d
d
d
d
EXTINT03
−
I
External Interrupt 0−bit3
d
d
d
d
TCLKA0
−
I
MTM0 external Clock A
d
d
d
d
BCK1
−
B
PCM1 bit Clock
d
d
d
d
GPIO00
−
B
GPIO
d
d
d
d
EXTINT00
−
I
External Interrupt 0−bit0
d
d
d
d
TCLKB0
−
I
MTM0 external Clock B
d
d
d
d
LRCK1
−
B
PCM1 LR Clock
d
d
d
d
GPIO01
−
B
GPIO
d
d
d
d
EXTINT01
−
I
External Interrupt 0−bit1
d
d
d
d
6
6
6
6
d
d
d
d
QSCS
Vdd2
VddQSPI
Vdd2
Vdd2
Sum
PCM I/F
Vdd2
MCLK0
Pos
B
PCM0 master Clock
MCLK1
Pos
B
PCM1 master Clock
d
d
d
d
GPIO18
−
B
GPIO
d
d
d
d
EXTINT18
−
I
External Interrupt 1−bit8
d
d
d
d
www.onsemi.com
23
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
Vdd2
d
d
d
d
PCM I/F
BCK0
−
B
PCM0 bit Clock
DMCKO1
−
O
Digital Mic Ch1 Clock Output
d
d
d
d
GPIO19
−
B
GPIO
d
d
d
d
EXTINT19
−
I
External Interrupt 1−bit9
d
d
d
d
LRCK0
−
B
PCM0 LR Clock
d
d
d
d
DMDIN1
−
I
Digital Mic ch1 Data Input
d
d
d
d
GPIO1A
−
B
GPIO
d
d
d
d
EXTINT1A
−
I
External Interrupt 1−bit10
d
d
d
d
DIN0
−
I
PCM0 Data Input
d
d
d
d
DMDIN0
−
I
Digital Mic Ch0 Data Input
d
d
d
d
GPIO1B
−
B
GPIO
d
d
d
d
EXTINT1B
−
I
External Interrupt 1−bit11
d
d
d
d
DOUT0
−
O
PCM0 Data Output
d
d
d
d
DMCKO0
−
O
Digital Mic Ch0 Data Input
d
d
d
d
GPIO1C
−
B
GPIO
d
d
d
d
EXTINT1C
−
I
External Interrupt 1−bit12
d
d
d
d
BCK1
−
B
PCM1 bit Clock
d
d
d
GPIO13
−
B
GPIO
d
d
d
EXTINT13
−
I
External Interrupt 1−bit3
d
d
d
LRCK1
−
B
PCM1 LR Clock
d
d
d
GPIO14
−
B
GPIO
d
d
d
EXTINT14
−
I
External Interrupt 1−bit4
d
d
d
DOUT1
−
O
PCM1 Data Output
d
d
d
d
GPIO15
−
B
GPIO
d
d
d
d
EXTINT15
−
I
External Interrupt 1−bit5
d
d
d
d
6
8
8
8
d
d
d
d
Vdd2
Vdd2
Vdd2
Vdd2
Vdd2
Vdd2
Sum
SD IF/MS IF
VddSD0
SDCLK0
−
O
SD I/F Ch0 Clock Output
SDCMD0
−
B
SD I/F Ch0 command line
d
d
d
d
SDAT0[3:0]
−
B
SD I/F Ch0 Data
d
d
d
d
SDCLK1
−
O
SD I/F Ch1 Clock Output
d
d
d
d
SCLK
−
O
Memory Stick Clock Output
d
d
d
d
GPIO22
−
B
GPIO
d
d
d
d
EXTINT22
−
I
External Interrupt 2−bit2
d
d
d
d
SDCMD1
−
B
SD I/F Ch1 command line
d
d
d
d
BS
−
O
Memory Stick BS
d
d
d
d
GPIO23
−
B
GPIO
d
d
d
d
EXTINT23
−
I
External Interrupt 2−bit3
d
d
d
d
VddSD1
www.onsemi.com
24
VddSD1
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
VddSD1
d
d
d
d
SD IF/MS IF
SDAT1[3:0]
−
B
SD I/F Ch1 Data
DATA[3:0]
−
B
Memory Stick Data
d
d
d
d
GPIO2[7:4]
−
B
GPIO
d
d
d
d
EXTINT2[7:4]
−
I
External Interrupt 2−bit7 to bit4
d
d
d
d
12
12
12
12
Sum
SDRAM I/F
Vdd2
Neg
O
SDRAM Clock Output
SDRCKE
Pos
O
SDRAM Clock enable Output
d
SDRCS
Neg
O
SDRAM chip select Output
d
SDRWE
Neg
O
SDRAM write enable Output
SDRCAS
Neg
O
SDRAM CAS Output
d
SDRRAS
Neg
O
SDRAM RAS Output
d
SDRDQM[1:0]
Pos
O
SDRAM Data mask byte lane
select
d
SDRADDR[10:0]
−
O
SDRAM address (Note 8)
SDRBA[1:0]
−
O
SDRAM bank select
d
SDRDATA[15:0]
−
B
SDRAM Data
d
SDRCLK
d
Vdd2
d
Vdd2
Sum
d
0
0
0
37
d
d
d
EXTERNAL MEMORY I/F
Vdd2
Neg
O
Chip select0
GPIO06
−
B
GPIO
d
d
d
EXTINT06
−
I
External Interrupt 0−bit6
d
d
d
NCS1
Neg
O
Chip select1
d
d
d
RXD0
−
I
UART Ch0 receive Data
d
d
d
GPIO10
−
B
GPIO
d
d
d
EXTINT10
−
I
External Interrupt 1−bit0
d
d
d
Neg
O
Read enable
d
d
d
GPIO17
−
B
GPIO
d
d
d
EXTINT17
−
I
External Interrupt 1−bit7
d
d
d
NCS0
NRD
NWRENWRL
Vdd2
Vdd2
Vdd2
Neg
O
Write enable, write enable low
d
d
d
GPIO30
−
B
GPIO
d
d
d
EXTINT30
−
I
External Interrupt 3−bit0
d
d
d
NHBNWRH
−
O
High byte select, write enable high
d
d
d
TXD0
−
O
UART Ch0 transmit Data
d
d
d
GPIO31
−
B
GPIO
d
d
d
EXTINT31
−
I
External Interrupt 3−bit1
d
d
d
NLBEXA0
−
O
Low byte select, address0
d
d
d
GPIO16
−
B
GPIO
d
d
d
EXTINT16
−
I
External Interrupt 1−bit6
d
d
d
www.onsemi.com
25
Vdd2
Vdd2
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
EXTERNAL MEMORY I/F
Vdd2
EXA[20:15]
−
O
Address
GPIO4[5:0]
−
B
GPIO
d
EXTINT4[5:0]
−
I
External Interrupt 4−bit5 to bit0
d
EXA[14:9]
−
O
Address
GPIO3[F:A]
−
B
GPIO
d
EXTINT3[F:A]
−
I
External Interrupt 3−bit15 to bit10
d
EXA[8:1]
−
O
Address
GPIO3[9:2]
−
B
GPIO
d
EXTINT3[9:2]
−
I
External Interrupt 3−bit9 to bit2
d
EXD[7:0]
−
B
Data
GPIO4[D:6]
−
B
EXTINT4[D:6]
−
EXD[15:8]
d
Vdd2
d
Vdd2
d
Vdd2
d
d
d
GPIO
d
d
d
I
External Interrupt 4−bit13 to bit6
d
d
d
−
B
Data
GPIO5[5:0]
GPIO4[F:E]
−
B
GPIO
d
EXTINT5[5:0]
EXTINT4[F:E]
−
I
External Interrupt 5−bit5 to bit0,
External Interrupt 4−bit15 to bit14
d
Vdd2
Sum
d
0
14
14
42
Xtal, PLL
XIN1
−
I
XTAL input (XT1)
VddXT1
d
d
d
d
XOUT1
−
O
XTAL output (XT1)
VddXT1
d
d
d
d
VddXT1
−
P
XTAL power supply (XT1)
−
d
d
d
d
VssXT1
−
P
XTAL ground (XT1)
−
d
d
d
d
XTALINFO[1:0]
−
B
XTAL frequency input (Note 9)
XTALINFO[1:0] =
G “00”: 24 MHz
G “01”: 12 MHz
G “10”: 20 MHz
G “11”: 48 MHz
Used for determining clock
frequency setting while internal
ROM boot.
Bonding internally for “TA” product
d
d
d
VCNT1
−
O
PLL1 VCO control
AvddPLL1
−
P
AvssPLL1
−
VCNT2
Vdd2
AvddPLL1
d
d
d
d
PLL1 analog power supply
−
d
d
d
d
P
PLL1 analog ground
−
d
d
d
d
−
O
PLL2 VCO control
AvddPLL2
d
(Note 10)
d
d
d
(Note 10)
AvddPLL2
−
P
PLL2 analog power supply
−
d
(Note 10)
d
d
d
(Note 10)
VCNT3
−
O
PLL3 VCO control
AvddPLL3
d
(Note 11)
d
d
d
(Note 11)
www.onsemi.com
26
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
Xtal, PLL
AvddPLL3
−
P
PLL3 analog power supply
−
d
(Note 11)
d
d
d
(Note 11)
AvssPLL2
−
P
PLL2/3 analog ground (Note 12)
−
d
d
d
d
10
14
14
12
Sum
USB−PHY
USBDP
−
B
USB D+
AVddUSBPHY2
or
AVddUSBPHY1
d
d
d
d
USBDM
−
B
USB D−
AVddUSBPHY2
or
AVddUSBPHY1
d
d
d
d
USBEXT12
−
O
USB−PHY reference resister
AVddUSBPHY2
d
d
d
d
AvddUSBPHY1
−
P
USB−PHY 1.0V analog power
supply
−
d
2
d
2
d
2
d
2
DVddUSBPHY1
−
P
USB−PHY 1.0V digital power supply. Connected to AVddUSBPHY1
internally in case of no
DVddUSBPHY1 port available
−
AvddUSBPHY2
−
P
USB−PHY 3.3V analog power
supply
−
d
2
d
2
d
2
d
2
AvddUSBPHY
−
P
USB−PHY analog ground
−
d
4
d
4
d
4
d
4
11
11
11
13
d
d
d
d
Sum
d
2
10BIT ADC
AN[5:0]
−
I
ADC Input
AVddADC
VRH
−
I
ADC High reference
AVddADC
d
VRL
−
I
ADC Low reference
AVddADC
d
VR
−
O
ADC reference voltage
AVddADC
AVddADC
−
P
ADC analog power
−
d
d
d
d
AVssADC
−
P
ADC analog ground
−
d
d
d
d
8
8
8
11
d
d
d
d
d
d
Sum
d
CLASS−D AMP
Avdd−DAMPL
LOUT
−
O
Lch Class D AMP Output
GPLOUT
−
O
Genereal purpose Output (GPO)
ROUT
−
O
Rch Class D AMP Output
GPROUT
−
O
Genereal purpose Output (GPO)
AVddDAMPL
−
P
Lch Class D AMP analog power
supply
AVddDAMPR
−
P
AVssDAMPL
−
AVssDAMPR
−
d
d
Avdd−DAMPR
d
d
d
d
d
d
−
d
d
d
d
Rch Class D AMP analog power
supply
−
d
d
d
d
P
Lch Class D AMP analog power
supply
−
d
d
d
d
P
Rch Class D AMP analog power
supply
−
d
d
d
d
6
6
6
6
Sum
www.onsemi.com
27
LC823450
Table 10. TERMINAL FUNCTIONS (continued)
Terminal Name
Polarity
Direction
Function
Available (d)
Multiplexed
Function
IO
POWER
TA
XA,XC
XB,XD
RA, RB
OTHER, POWER
−
B
Bootmodeselect
Vdd2
d
d
d
d
TEST
Pos
I
Test mode (normally connect to
ground)
Vdd2
d
d
d
d
NRES
Neg
I
LSI reset Input
Vdd2
d
d
d
d
Vdd1
−
P
Digital core power
−
d
7
d
7
d
7
d
8
Vdd2
−
P
Digital IO power
−
d
8
d
8
d
8
d
15
VddSD0
−
P
Digital IO power (SDI/F Ch0)
−
d
d
d
d
VddSD1
−
P
Digital IO power (SD(MS)I/F Ch1)
−
d
d
d
d
VddSD2
−
P
Digital IO power (SDI/F Ch2)
−
d
d
d
d
VddQSPI
−
P
Digital IO power (QSPI)
−
d
12
d
14
d
14
d
23
BMODE[1:0]
Sum
35
37
37
54
All Sum
128
154
154
240
6.
7.
8.
9.
This function is not available
Set according to the General RTC mode or KeyInt RTC mode. Bonding internally for “TA” product as described on Page 7.
SDRAM address bit is 13bit including SDRADDR [12:11].
Set according to the frequency of XT1 (12/20/24/48 MHz).
Bonding internally for “TA’’ product as described on Page 5.
10. Audio clock is generated by one of PLL2 (1 V) or PLL3 (3 V).
One of PLL2 or PLL3 is available for “TA”, “RA” and “RB” products. Please refer to Page 5 for more information.
Both of PLL2 and PLL3 are available for “XA”,“XB”, “XC” and “XD” products.
11. Audio clock is generated by one of PLL2 (1 V) or PLL3 (3 V).
One of PLL2 or PLL3 is available for “TA”, “RA” and “RB” products. Please refer to Page 5 for more information.
Both of PLL2 and PLL3 are available for “XA”,“XB”, “XC” and “XD” products.
12. Analog ground is shared by PLL2 and PLL3.
13. Unused Input terminals and input state terminals of bidirectional should be set Pull−up/Down resister ON or connect to digital power supply or ground
(don’t let open).
www.onsemi.com
28
LC823450
Boot Mode
Boot modes available depend on BMODE[1:0] port status.
Table 11. BOOT MODE
IPL Mode
Physical Boot
USB
BMODE1
BMODE0
PD
470 kW
PD
470 kW
Explanation
Internal ROM boot(eMMC Physical Boot with USB download
– SD card I/F Ch0 + USB Device + EXTINT2E + EXTINT2F)
By using Boot operation mode of eMMC, load IPL2(program) from
eMMC connected to SD0 to internal SRAM and jump to IPL2.
IPL2 is written through USB.
Physical Boot
SD
PD
470 kW
PU
470 kW
Internal ROM boot (eMMC Physical Boot with SD Ch1 download
– SD card I/F Ch0 + SD card I/F Ch1 + EXTINT2E + EXTINT2F)
By using Boot operation mode of eMMC, load IPL2(program) from
eMMC connected to SD0 to internal SRAM and jump to IPL2.
IPL2 is written through SD1.
User Area Boot
USB
PD
1 kW
PU or PD
470 kW
Internal ROM boot(User Area Boot with USB download
– SD card I/F Ch0 + USB Device + EXTINT2E + EXTINT2F)
Load IPL2(program) from user area of eMMC connected to SD0 to
internal SRAM and jump to IPL2.
IPL2 is written through USB.
User Area Boot
SD
PU
470 kW
PD
1 kW
Internal ROM boot(User Area Boot with SD Ch1 download
– SD card I/F Ch0 + SD card I/F Ch1 + EXTINT2E + EXTINT2F)
Load IPL2(program) from user area of eMMC connected to SD0 to
internal SRAM and jump to IPL2.
IPL2 is written through SD1.
SPI Boot
USB
PU
470 kW
PU
470 kW
Internal ROM boot(external Serial Flash SPI Boot with USB download
– S−Flash I/F + USB Device + EXTINT2E + EXTINT2F + TIOCB01)
Load IPL2(program) from Serial Flash connected to S−Flash I/F to
internal SRAM and jump to IPL2.
IPL2 is written through USB.
SPI Boot
SD
PD
470 kW
PU
1 kW
Internal ROM boot(external Serial Flash SPI Boot with SD Ch1
download
− S−Flash I/F + SD card I/F Ch1 + EXTINT2E + EXTINT2F +
TIOCB01)
Load IPL2 (program) from Serial Flash connected to S−Flash I/F
to internal SRAM and jump to IPL2.
IPL2 is written through SD1.
QSPI Boot
USB
PU
1 kW
PU
470 kW
Internal ROM boot (external Serial Flash QSPI Boot with USB
download
– S−Flash I/F(QSPI) + USB Device + EXTINT2E + EXTINT2F +
TIOCB01)
Fetch IPL2 (program) from Serial Flash connected to S−Flash I/F.
IPL2 is written by using DO command directly through USB.
QSPI Boot
SD
PU
1 kW
PD
470 kW
Internal ROM boot (external Serial Flash QSPI Boot with SD Ch1
download
– S−Flash I/F(QSPI) + SD card I/F Ch1 + EXTINT2E + EXTINT2F
+ TIOCB01)
Fetch IPL2 (program) from Serial Flash connected to S−Flash I/F.
IPL2 is written through SD1.
User Area Delete
PD
1 kW
PU
1 kW
Internal ROM boot (User Area IPL2 delete
– SD card I/F Ch0 + EXTINT2E + EXTINT2F)
After deleting IPL2 by using this mode, IPL2 can be written again
while User Area Boot mode.
www.onsemi.com
29
LC823450
Table 11. BOOT MODE (continued)
IPL Mode
Partition Delete
BMODE1
BMODE0
PD
470 kW
PD
1 kW
Explanation
Internal ROM boot (Partition Area IPL2 delete
– SD card I/F Ch0 + EXTINT2E + EXTINT2F)
After deleting IPL2 by using this mode, IPL2 can be written again
while eMMC Physical Boot mode.
SPI All Erase
PU
470 kW
PU
1 kW
Internal ROM boot(external Serial Flash SPI all area delete
– S−Flash I/F + EXTINT2E + EXTINT2F + TIOCB01)
Delete all content of Serial Flash. This mode should be used in
case of SPI mode operation of Serial Flash
SDCH0 All Erase
PD
1 kW
PD
1 kW
Internal ROM boot(all area delete
– SD card I/F Ch0 + EXTINT2E + EXTINT2F)
Delete all content of eMMC including Partition area.
Take a lot of time to delete.
Trim also processed in case of eMMC supporting Trim function.
QSPI All Erase
PU
1 kW
PD
1 kW
Internal ROM boot(external Serial Flash QSPI all area delete
– S−Flash I/F(QSPI) + EXTINT2E + EXTINT2F + TIOCB01)
Delete all content of Serial Flash. This mode should be used in
case of QSPI fetch mode operation of Serial Flash
External ROM Boot
Hi−z
PU
470 kW
PD
470 kW
PU
1 kW
PU
1 kW
External memory boot(External−0)
Fetch from external memory(External0) connected to
XMC(external memory controller)
External I/F ports below forced to Hi−z
− EXA[20:1], EXD[15:0], NCS[1:0], NRD, NWRENWRL,
NHBNWRH, NLBEXA0
− SDCLK0, SDCMD0, SDAT0[3:0]
− CK1, SDI1(QIO0), SDO1(QIO1), SWP1(QIO2),
SHOLD1(QIO3), TIOCB01
14. In case of TQFP128L, WLP154, don’t use external memory boot (External−0)
www.onsemi.com
30
LC823450
Boot Port
• QSPI Boot/QSPI All Erase is processed by using
Some ports are used in internal ROM code while booting
as below.
• EXTINT2E(GPIO2E): OUT for power supply control
• EXTINT2F(GPIO2F): OUT for indicating status of
boot, start of USB connection and USB disconnection,
error status by Low/High of this port.
• Use SDCMD1, SDAT1[3:0], SDCLK1 as SD1. SDCD1
and SDWP1 are not used. Port function switch is
processed during write from SD1.
• SPI Boot/SPI All Erase is processed by using 4 ports
SCK1, QSCS, SDO1,SDI1. SHOLD1 and SWP1 are
not used.
SCK1, QSCS, SDO1, SDI1, SHOLD1, SWP1.
• External ROM Boot is processed by using NCS0 and
external memory controller ports. GPIO2E is not used.
• In case of External I/F ports Hi−z mode, external
memory interface ports such as NCS0, NCS1 and
external memory controller ports is used. GPIO2E is
used as input port.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 12. PORTS USED DURING IPL
Ports Used (Note 15)
IPL Mode
Physical Boot USB
Physical Boot SD
User Area Boot USB
User Area Boot SD
SPI Boot USB
P2E(power supply control), P2F(status monitoring)
P2E(power supply control), P2F(status monitoring)
P22(SDCLK1) P23(SDCMD1) P24(SDDATA10) P25(SDDATA11) P26(SDDATA12)
P27(SDDATA13)
P2E(power supply control), P2F(status monitoring)
P2E(power supply control), P2F(status monitoring)
P22(SDCLK1) P23(SDCMD1) P24(SDDATA10) P25(SDDATA11) P26(SDDATA12)
P27(SDDATA13)
P2E(power supply control), P2F(status monitoring)
P0D(SCK1) P03(QSCS) P0F(SDO1) P0E(SDI1)
SPI Boot SD
P2E(power supply control), P2F(status monitoring)
P0D(SCK1) P03(QSCS) P0F(SDO1) P0E(SDI1)
P22(SDCLK1) P23(SDCMD1) P24(SDDATA10) P25(SDDATA11) P26(SDDATA12)
P27(SDDATA13)
QSPI Boot USB
P2E(power supply control), P2F(status monitoring)
P0D(SCK1) P03(QSCS) P0F(SDO1) P0E(SDI1) P011(SWP1) P12(SHOLD1)
P22(SDCLK1) P23(SDCMD1) P24(SDDATA10) P25(SDDATA11) P26(SDDATA12)
P27(SDDATA13)
User Area Delete
P2E(power supply control), P2F(status monitoring)
Partition Delete
P2E(power supply control), P2F(status monitoring)
SPI Erase
P2E(power supply control), P2F(status monitoring)
P0D(SCK1) P03(QSCS) P0F(SPIOUT) P0E(SDI1)
SDCH0 All Erase
P2E(power supply control), P2F(status monitoring)
QSPI All Erase
External ROM Boot
HI-z
P2E(power supply control), P2F(status monitoring)
P0D(SCK1) P03(QSCS) P0F(SDO1) P0E(SDI1) P11(SWP1) P12(SHOLD1)
P06(NCS0) P17(NRD) P30(NWRENWRL) P31(NHBNWRH) P16(NLBEXA0)
P32(EXA01) P33(EXA02) P34(EXA03) P35(EXA06) P36(EXA05) P37(EXA06) P38(EXA07)
P39(EXA08) P3A(EXA09) P3B(EXA10) P3C(EXA11) P3D(EXA12) P3E(EXA13) P3F(EXA14)
P40(EXA15) P41(EXA16) P42(EXA17) P43(EXA18) P44(EXA19) P45(EXA20) P46(EXD00)
P47(EXD01) P48(EXD02) P49(EXD03) P4A(EXD04) P4B(EXD05) P4C(EXD06) P4D(EXD07)
P4E(EXD08) P4F(EXD09) P50(EXD10) P51(EXD11) P52(EXD12) P53(EXD13) P54(EXD14)
P55(EXD15)
SDCLK0 Hi-z state
15. In this table “Pxx” means “GPIOxx”. For example “P2E” means “GPIO2E”.
www.onsemi.com
31
LC823450
GPIO2F
During boot, GPIO2F is used as GPIO and indicates boot
status and error occurrence by output of Low/High.
When errors occur during boot sequences, for example
writing of IPL2, GPIO2F reports the sort of error. GPIO0F
can indicate the status of USB connection and the
completion of USB file transfer. And Delete Mode,
completion of Erase, and status of Erase can be reported by
sequence of Low/High.
For more detail about the behavior of ports used during
boot, refer to the document LC823450 Series IPL
specification.
SDIF PullUp
In case of boot mode using SDIF port, internal PullUp
resistor is used (SDCMD0, SDAT0[3:0] / SDCMD1,
SDAT1[3:0]). So, external PullUp resistor is not required on
board.
QSCS PullUp
In case of boot mode using QSCS, PullUp of
GPIO03(QSCS) is active by the hard reset. After GPIO2E
is set to high, GPIO03 set to QSCS and PullUp set to
inactive.
In case of Hi−z boot, PullUp is forced to inactive.
PIN ASSIGNMENT
Table 13. PIN ASSIGNMENT
I/O
Input Type
Output Type
I
Input
CMOS
CMOS Input
3−State
Tristate Output
O
Output
schmitt
schmitt Input
OD
Open Drain Output
B
Bidirectional
X
Xtal
X
Xtal
P
Power
3A
3.3 V analog
3A
3.3 V analog
NC
Non Connect
1A
1.0 V analog
1A
1.0/1.2 V analog
Drive (example)
PU/PD
IO Circuit Type
4 mA
3.3 V 4 mA Output
PU
Pull−up resister
4/8 mA
3.3 V with
4 mA, 8 mA output
drivability switch
PD
Pull−down resister
0.3 mA−OD
1.0 V 0.3 mA
open drain
Output
PU/PD
Pull−up,
pull−down resister
Refer to Page 30 for circuit diagram
Table 14.
LFBGA240
TQFP128L
WLP154
I/O
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
SDRDATA2
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
M11
Vss
G
N12
Vdd2
P
H8
TCLKA0/
BCK1/
GPIO00/
EXTINT00
I/
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
SDRDATA3
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
L10
TCLKB0/
LRCK1/
GPIO01/
EXTINT01
I/
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
5
K9
NHBNWRH/
TXD0/
GPIO31/
EXTINT31
O/
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
6
N11
NCS1/
RXD0/
GPIO10/
EXTINT10
O/
I/
B/
I
Schmitt
3−State
2/4/8 mA
PU
Vdd2
3ISU/3T2
(4)(8)
No.
Ball
No.
No
1
R16
−
−
2
N14
1
1
3
P15
2
2
4
P16
3
3
5
N15
−
−
6
N16
4
4
7
M16
−
8
M15
−
Ball
Pin Name
www.onsemi.com
32
LC823450
Table 14.
LFBGA240
TQFP128L
WLP154
I/O
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
SDRDATA4
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
NCS0/
GPIO06/
EXTINT06
O/
B/
I
Schmitt
3−State
2/4/8 mA
PU
Vdd2
3ISU/3T2
(4)(8)
GPIO2A/
EXTINT2A/
B/
I/
Schmitt
3−State
2/4/8 mA
PU/PD
Vdd2
3ISUD/3T2
(4)(8)
SDRADDR12
O
PD
Vdd2
3ISD/3T2
(4)(8)
No.
Ball
No.
No
9
M14
−
−
10
M13
−
7
11
L16
−
−
12
L15
−
−
Vdd2
P
13
L14
−
−
Vss
G
14
L13
5
8
L9
15
L12
−
9
N10
16
K16
−
17
K15
−
18
K14
−
10
19
K13
−
11
20
K12
−
21
H13
−
22
J14
23
Ball
M10
Pin Name
Vdd1
P
NRD/
GPIO17/
EXTINT17
O/
B/
I
Schmitt
3−State
2/4/8 mA
−
SDRADDR5
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
−
SDRADDR6
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
M9
NWRENWRL/
GPIO30/
EXTINT30
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
N9
EXD0/
GPIO46/
EXTINT46
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
−
SDRADDR7
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
−
SDRDATA5
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
−
−
SDRDATA6
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
J13
−
−
Vdd2
P
24
H10
−
−
Vss
G
25
J12
−
−
SDRDATA7
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
26
J11
−
−
SDRDATA8
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
27
H11
−
−
SDRDATA9
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
28
H16
6
12
J8
SCK1/
GPIO0D/
EXTINT0D
O/
B/
I
Schmitt
3−State
6/8/10 mA
PU/PD
VddQSPI
3ISUD/3T6
(8)(10)
29
H14
7
13
N8
TIOCB01/
DMCKO0/
QSCS/
GPIO03/
EXTINT03
B/
O/
Schmitt
3−State
6/8/10 mA
PU/PD
VddQSPI
3ISUD/3T6
(8)(10)
Schmitt
3−State
6/8/10 mA
PU/PD
VddQSPI
3ISUD/3T6
(8)(10)
Schmitt
3−State
6/8/10 mA
PU/PD
VddQSPI
3ISUD/3T6
(8)(10)
30
J16
8
14
M8
SDO1(QIO1)/
GPIO0F/
EXTINT0F
31
G14
9
15
L8
VddQSPI
32
H15
10
16
K8
SDI1(QIO0)/
GPIO0E/
EXTINT0E
O/
B/
I
I(B)/
B/
I
P
O(B)
/
B/
I
33
J15
11
17
N7
Vss
34
G16
12
18
M7
SWP1(QIO2)/
GPIO11/
EXTINT11
O(B)
/
B/
I
G
Schmitt
3−State
6/8/10 mA
PU/PD
VddQSPI
3ISUD/3T6
(8)(10)
35
G15
13
19
L7
SHOLD1(QIO3)/
GPIO12/
EXTINT12
O(B)
/
B/
I
Schmitt
3−State
6/8/10 mA
PU/PD
VddQSPI
3ISUD/3T6
(8)(10)
36
H12
14
20
K7
TXD2/
TIOCA10/
GPIO0B/
EXTINT0B
O/
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
VddQSPI
3ISUD/3T1
(2)(4)
www.onsemi.com
33
LC823450
Table 14.
LFBGA240
TQFP128L
WLP154
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
I/
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
VddQSPI
3ISUD/3T1
(2)(4)
TDI/
SDCD1/
SWO/
GPIO20/
EXTINT20
I/
I/
O/
B/
I
Schmitt
3−State
2 mA
PU/PD
VddSD1
3ISUD/3T2
M6
TDO/
SDWP1/
INS/
GPIO21/
EXTINT21
O/
I/
I/
B/
I
Schmitt
3−State
2 mA
PU/PD
VddSD1
3ISUD/3T2
24
L6
SDCMD1/
BS/
GPIO23/
EXTINT23
B/
O/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD1
3ICUD/3T6
(8)(10)
19
25
K6
SDAT10/
DATA0/
GPIO24/
EXTINT24
B/
B/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD1
3ICUD/3T6
(8)(10)
F14
20
26
N5
VddSD1
P
E14
21
27
M5
SDAT11/
DATA1/
GPIO25/
EXTINT25
B/
B/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD1
3ICUD/3T6
(8)(10)
44
F13
22
28
L5
Vss
G
45
E16
23
29
J6
SDAT12/
DATA2/
GPIO26/
EXTINT26
B/
B/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD1
3ICUD/3T6
(8)(10)
46
E15
24
30
N4
SDAT13/
DATA3/
GPIO27/
EXTINT27
B/
B/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD1
3ICUD/3T6
(8)(10)
47
D16
25
31
M4
SDCLK1/
SCLK/
GPIO22/
EXTINT22
O/
O/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD1
3ICUD/3T6
(8)(10)
48
F12
−
−
SDRADDR8
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
49
E12
−
−
SDRADDR9
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
50
F11
−
−
SDRADDR10
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
51
E13
26
32
L4
Vdd1
P
52
D13
27
33
N3
Vss
G
53
D14
28
34
N2
Vdd2
P
54
D15
−
−
SDRBA0
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
55
C16
−
−
SDRBA1
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
56
C15
−
−
SDRCAS
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
57
C14
−
−
SDRRAS
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
58
B16
−
−
Vdd2
P
59
B15
−
−
Vss
G
60
A16
−
−
SDRCKE
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
61
A15
−
−
SDRCLK
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
62
A14
29
35
M3
SDCLK0
O
CMOS
3−State
6/8/10 mA
VddSD0
3IC/3T6
(8)(10)
63
B14
30
36
K5
SDCMD0
B
CMOS
3−State
6/8/10 mA
PU/PD
VddSD0
3ICUD/3T6
(8)(10)
64
C12
31
37
N1
VddSD0
P
65
B13
32
38
L3
SDAT00
B
CMOS
3−State
6/8/10 mA
PU/PD
VddSD0
3ICUD/3T6
(8)(10)
66
C13
33
39
M2
Vss
G
No.
Ball
No.
No
Ball
37
G13
15
21
J7
RXD2/
TIOCA11/
GPIO0C/
EXTINT0C
38
G12
16
22
N6
39
G11
17
23
40
F16
18
41
F15
42
43
Pin Name
I/O
www.onsemi.com
34
LC823450
Table 14.
LFBGA240
TQFP128L
WLP154
I/O
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
SDAT01
B
CMOS
3−State
6/8/10 mA
PU/PD
VddSD0
3ICUD/3T6
(8)(10)
M1
SDAT02
B
CMOS
3−State
6/8/10 mA
PU/PD
VddSD0
3ICUD/3T6
(8)(10)
42
J5
SDAT03
B
CMOS
3−State
6/8/10 mA
PU/PD
VddSD0
3ICUD/3T6
(8)(10)
37
43
K3
TIOCA01/
SDCMD2/
PHI1/
GPIO0A/
EXTINT0A
B/
B/
O/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD2
3ICUD/3T6
(8)(10)
A11
38
44
L2
TXD1/
SDAT20/
GPIO04/
EXTINT04
O/
B/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD2
3ICUD/3T6
(8)(10)
72
B11
39
45
J4
RXD1/
SDAT21/
GPIO05/
EXTINT05
I/
B/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD2
3ICUD/3T6
(8)(10)
73
D12
40
46
L1
VddSD2
P
74
C10
41
47
H6
CTS1/
SDAT22/
I/
B/
CMOS
3−State
6/8/10 mA
PU/PD
VddSD2
3ICUD/3T6
(8)(10)
RXD0/
GPIO56/
EXTINT56
I/
B/
I
No.
Ball
No.
No
Ball
67
A13
34
40
K4
68
A12
35
41
69
B12
36
70
C11
71
Pin Name
75
E11
42
48
K2
Vss
G
76
B10
43
49
K1
RTS1/
SDAT23/
TXD0/
GPIO57/
EXTINT57
O/
B/
O/
B/
I
CMOS
3−State
6/8/10 mA
PU/PD
VddSD2
3ICUD/3T6
(8)(10)
77
D11
44
50
J3
TCK/
SDCD2/
GPIO29/
EXTINT29
I/
I/
B/
I
Schmitt
3−State
1/2/4mA
PU/PD
VddSD2
3ISUD/3T1
(2)(4)
78
D10
45
51
H5
TMS/
SDWP2/
GPIO28/
EXTINT28
I/
I/
B/
I
Schmitt
3−State
1/2/4mA
PU/PD
VddSD2
3ISUD/3T1
(2)(4)
79
A10
46
52
J2
TIOCA00/
SDCLK2/
PHI0/
GPIO09/
EXTINT09
B/
O/
O/
B/
I
Schmitt
3−State
6/8/10 mA
PU/PD
VddSD2
3ISUD/3T6
(8)(10)
80
E10
−
−
SDRCS
O
−
3−State
2/4/8mA
Vdd2
3T2 (4)(8)
81
F10
−
−
SDRWE
O
−
3−State
2/4/8mA
Vdd2
3T2 (4)(8)
82
G10
−
−
SDRDQM0
O
−
3−State
2/4/8mA
Vdd2
3T2 (4)(8)
83
D9
−
−
SDRDQM1
O
−
3−State
2/4/8mA
Vdd2
3T2 (4)(8)
84
E9
−
−
SDRDATA10
B
CMOS
3−State
2/4/8mA
PD
Vdd2
3ICD/3T2
(4)(8)
85
F9
−
−
SDRDATA11
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
86
A9
47
53
J1
Vdd1
P
87
B9
48
54
H4
Vss
G
88
G9
−
55
G5
XTALINFO0
B
Schmitt
3−State
2/4/8 mA
PU
Vdd2
3ISU/3T2
(4)(8)
89
C9
49
56
H1
Vdd2
P
90
H9
−
−
SDRDATA12
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
91
G8
−
−
SDRDATA13
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
92
F8
−
−
SDRDATA14
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
93
E8
−
−
SDRDATA15
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
www.onsemi.com
35
LC823450
Table 14.
LFBGA240
TQFP128L
WLP154
No.
Ball
No.
No
Ball
94
D8
50
57
H2
VddRTC
P
95
A7
−
58
H3
RTCMODE
I
96
B8
51
59
G2
VssRTC
G
97
A8
52
60
G1
XIN32K
I
98
C8
53
61
G3
XOUT32K
O
Pin Name
I/O
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
CMOS
−
−
−
VddRTC
1IC
X
−
−
−
VddRTC
X
−
X
−
−
VddRTC
X
99
B7
54
62
F1
VDET
I
CMOS
−
−
−
VddRTC
1IC
100
C7
55
63
G4
RTCINT(Note
16)
O
−
OD
0.3
mA−OD
−
VddRTC
OD3
101
D7
56
64
F2
BACKUPB
I
Schmitt
−
−
−
VddRTC
1IS
102
E7
−
65
F3
KEYINT0
I
Schmitt
−
−
PD
VddRTC
1ISD
103
F7
−
66
F4
KEYINT1
I
Schmitt
−
−
PD
VddRTC
1ISD
104
G7
−
67
E1
KEYINT2
I
Schmitt
−
−
PD
VddRTC
1ISD
105
A6
57
68
E2
AVddADC
P
106
B6
−
−
VRH
I
3A
−
−
−
AVddADC
3A
107
C6
−
−
VR
O
−
3A
−
−
AVddADC
3A
108
D6
−
−
VRL
I
3A
−
−
−
AVddADC
3A
109
E6
58
69
D1
AVssADC
G
110
C5
59
70
E3
AN5
I
3A
−
−
−
AVddADC
3A
111
B5
60
71
D2
AN4
I
3A
−
−
−
AVddADC
3A
112
A5
61
72
D3
AN3
I
3A
−
−
−
AVddADC
3A
113
C4
62
73
C1
AN2
I
3A
−
−
−
AVddADC
3A
114
B4
63
74
C2
AN1
I
3A
−
−
−
AVddADC
3A
115
A4
64
75
B1
AN0
I
3A
−
−
−
AVddADC
3A
116
D5
−
76
F5
NLBEXA0/
GPIO16/
EXTINT16
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
117
F6
−
77
E4
EXD1/
GPIO47/
EXTINT47
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
118
A3
−
−
EXA1/
GPIO32/
EXTINT32
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
119
B3
−
−
EXA2/
GPIO33/
EXTINT33
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
120
A2
−
−
EXA3/
GPIO34/
EXTINT34
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
121
A1
−
−
Vss
G
122
B2
−
−
Vdd2
P
123
B1
−
−
EXA4/
GPIO35/
EXTINT35
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
124
C1
−
−
EXA5/
GPIO36/
EXTINT36
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
125
C2
−
−
EXA6/
GPIO37/
EXTINT37
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
126
C3
65
78
SCL0/
GPIO07/
EXTINT07
O/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
127
D3
−
−
EXA7/
GPIO38/
EXTINT38
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
128
D4
66
79
SDA0/
GPIO08/
EXTINT08
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
A1
B2
www.onsemi.com
36
LC823450
Table 14.
LFBGA240
TQFP128L
WLP154
No.
Ball
No.
No
129
E4
−
−
130
E5
67
80
131
D1
68
132
D2
133
F4
134
Ball
Pin Name
I/O
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
EXA8/
GPIO39/
EXTINT39
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
C3
SDO0/
GPIO1F/
EXTINT1F
O/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
81
D4
Vss
G
69
82
A2
Vdd2
P
−
−
EXA9/
GPIO3A/
EXTINT3A
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
F5
−
−
EXA10/
GPIO3B/
EXTINT3B
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
135
G5
−
−
EXA11/
GPIO3C/
EXTINT3C
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
136
G4
70
83
SCK0/
GPIO1D/
EXTINT1D
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
137
G6
−
−
EXA12/
GPIO3D/
EXTINT3D
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
138
H4
71
84
SWDCLK/
GPIO58/
EXTINT58/
I/
B/
I/
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
DMCKO1
O
EXA13/
GPIO3E/
EXTINT3E
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
SDI0/
GPIO1E/
EXTINT1E
I/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
EXA14/
GPIO3F/
EXTINT3F
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
SWDIO/
GPIO59/
EXTINT59/
B/
B/
I/
Schmitt
3−State
2 mA
PU
Vdd2
3ISU/3T2
139
H5
−
−
140
H6
72
85
141
J4
−
−
142
J5
73
86
B3
A3
F6
C4
DMDIN1
I
143
H7
−
87
E5
EXD2/
GPIO48/
EXTINT48
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
144
J6
−
88
A4
EXD3/
GPIO49/
EXTINT49
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
145
E3
74
89
B4
Vdd1
P
146
F3
−
−
147
G3
−
90
148
K6
−
149
K5
150
Vdd2
P
Vss
G
−
EXA15/
GPIO40/
EXTINT40
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
−
−
EXA16/
GPIO41/
EXTINT41
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
L5
−
−
EXA17/
GPIO42/
EXTINT42
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
151
M4
−
−
EXA18/
GPIO43/
EXTINT43
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
152
K4
−
−
Vss
G
153
E2
−
−
DVddUSBPHY1
P
154
F2
75
91
A5
AVddUSBPHY1
P
155
G2
76
92
C5
AVssUSBPHY
G
D5
www.onsemi.com
37
LC823450
Table 14.
LFBGA240
TQFP128L
WLP154
I/O
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
USBDM
B
3A
3A
−
−
AVddUSB
PHY2
3A
B6
USBDP
B
3A
3A
−
−
AVddUSB
PHY2
3A
95
C6
AVssUSBPHY
G
96
D6
AVddUSBPHY2
P
81
97
E6
AVssUSBPHY
G
82
98
B7
USBEXT12
O
−
3A
−
−
AVddUSB
PHY2
3A
83
99
C7
AVddUSBPHY2
P
84
100
D7
AVddUSBPHY1
P
J3
85
101
E7
AVssUSBPHY
G
K3
−
−
DVddUSBPHY1
P
L1
−
−
Vss
G
167
K2
86
102
B8
VddXT1
P
168
K1
87
103
A8
XIN1
I
X
−
−
−
VddXT1
X
169
L2
88
104
D8
VssXT1
G
170
L3
89
105
C8
XOUT1
O
171
L4
90
106
E8
Vdd1
P
−
X
−
−
VddXT1
X
172
M3
−
−
Vss
G
173
M2
91
107
A9
AVddPLL1
P
174
M1
92
108
B9
VCNT1
O
−
1A
−
−
AVddPLL1
1A
175
N1
93
109
C9
AVssPLL1
G
176
N3
−
110
A10
EXD4/
GPIO4A/
EXTINT4A
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
177
N2
−
−
Vss
G
178
P1
−
−
Vdd2
P
179
P2
−
111
B10
EXD5/
GPIO4B/
EXTINT4B
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
180
R1
−
112
D9
EXD6/
GPIO4C/
EXTINT4C
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
181
R2
−
−
EXA19/
GPIO44/
EXTINT44
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
182
R3
−
−
EXA20/
GPIO45/
EXTINT45
O/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
183
P3
−
113
A11
EXD7/
GPIO4D/
EXTINT4D
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
184
N4
94
114
F7
TIOCB00/
DMDIN0/
B/
I/
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
DIN1/
GPIO02/
EXTINT02
I/
B/
I
G
No.
Ball
No.
No
Ball
156
E1
77
93
B5
157
F1
78
94
158
G1
79
159
H2
80
160
J1
161
H1
162
J2
163
H3
164
165
166
Pin Name
185
R4
−
115
B11
Vss
186
P4
95
116
A12
Vdd2
P
187
M6
96
117
C10
DOUT1/
GPIO15/
EXTINT15
O/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
188
N5
−
−
EXD8/
GPIO4E/
EXTINT4E
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
189
M5
−
−
EXD9/
GPIO4F/
EXTINT4F
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
www.onsemi.com
38
LC823450
Table 14.
LFBGA240
TQFP128L
WLP154
No.
Ball
No.
No
Ball
190
L6
−
118
G6
191
M7
−
−
192
N7
−
119
193
N6
97
120
194
L7
−
−
195
M8
98
121
Pin Name
I/O
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
BCK1/
GPIO13/
EXTINT13
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
EXD10/
GPIO50/
EXTINT50
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
G7
LRCK1/
GPIO14/
EXTINT14
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
B12
MCLK0/
MCLK1/
GPIO18/
EXTINT18
B/
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
EXD11/
GPIO51/
EXTINT51
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
BCK0/
DMCKO1/
GPIO19/
EXTINT19
B/
O/
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
EXD12/
GPIO52/
EXTINT52
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
Schmitt
3−State
2/4/8 mA
PU
Vdd2
3ISU/3T2
(4)(8)
H7
B/
I
196
K7
−
−
197
P5
99
122
C11
Vdd2
P
198
J7
−
123
D10
XTALINFO1
B
199
P6
100
124
C12
Vss
G
200
L8
−
−
EXD13/
GPIO53/
EXTINT53
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
201
K8
101
125
LRCK0/
DMDIN1/
GPIO1A/
EXTINT1A
B/
I/
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
EXD14/
GPIO54/
EXTINT54
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
DIN0/
DMDIN0/
GPIO1B/
EXTINT1B
I/
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
I/
B/
I
3ISUD/3T1
(2)(4)
EXD15/
GPIO55/
EXTINT55
B/
B/
I
Schmitt
3−State
2/4/8 mA
PD
Vdd2
3ISD/3T2
(4)(8)
DOUT0/
DMCKO0/
GPIO1C/
EXTINT1C
O/
O/
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
202
J8
−
−
203
N9
102
126
204
M9
−
−
205
N8
103
127
206
E9
F8
E10
B/
I
B/
I
P7
104
128
D11
NRES
I
Schmitt
−
−
−
Vdd2
3IS
207
L9
105
129
D12
BMODE0
B
Schmitt
3−State
2 mA
PU/PD
Vdd2
3ISUD/3T2
208
K9
106
130
F9
BMODE1
B
Schmitt
3−State
2 mA
PU/PD
Vdd2
3ISUD/3T2
209
J9
107
131
F10
TEST
I
Schmitt
−
−
Vdd2
3IS
210
P8
108
132
E11
Vdd2
P
211
H8
109
133
E12
Vss
G
212
P9
110
134
G10
Vdd1
P
213
R5
111
135
F11
AVssDAMPR
G
214
R6
112
136
F12
ROUT/
GPROUT
O/
O
−
1A
−
−
AVddDAM
PR
1A
215
R7
113
137
G11
AVddDAMPR
P
216
R8
114
138
G12
AVddDAMPL
P
217
R9
115
139
H12
LOUT/
GPLOUT
O/
O
−
1A
−
−
AVddDAM
PL
1A
218
R10
116
140
H11
AVssDAMPL
G
www.onsemi.com
39
LC823450
Table 14.
LFBGA240
TQFP128L
WLP154
No.
Ball
219
P10
−
−
Vdd1
P
220
N11
117
141
H10
Vss
G
(Note 17)
142
J12
AVddPLL3
P
143
J11
VCNT3
O
118
144
J10
AVssPLL2
G
(Note 18)
No.
No
Ball
Pin Name
I/O
221
P12
222
R12
119
145
K11
VCNT2
O
223
R13
120
146
K12
AVddPLL2
P
224
P11
121
147
G9
Vdd1
P
225
R11
−
−
Vss
G
226
N12
−
−
Vdd2
P
227
M10
122
148
GPIO2D/
EXTINT2D/
DMCKO0/
SDRADDR11
B/
I/
O/
O
228
L10
−
−
229
K10
123
149
230
J10
−
−
231
N10
−
−
232
M11
124
150
233
P13
125
234
L11
126
235
R14
236
K11
237
H9
G8
Input
Type
Output
Type
Drive
PU/PD
IO
Pwr Grp
IO
Circuit Type
−
3A
−
−
AVddPLL3
3A
−
1A
−
−
AVddPLL2
1A
Schmitt
3−State
2/4/8 mA
PU/PD
Vdd2
3ISUD/3T
(4)(8)
SDRADDR0
O
−
3−State
2/4/8 mA
GPIO2E/
EXTINT2E
B/
I
Schmitt
3−State
1/2/4 mA
SDRADDR1
O
−
3−State
2/4/8 mA
PU/PD
Vdd2
3T2(4)(8)
Vdd2
3ISUD/3T1
(2)(4)
Vdd2
3T2 (4)(8)
SDRADDR2
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
L12
GPIO2F/
EXTINT2F
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
151
L11
Vss
G
152
K10
SCL1/
GPIO2B/
EXTINT2B
O/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
127
153
M12
Vdd2
P
128
154
J9
SDA1/
GPIO2C/
EXTINT2C
B/
B/
I
Schmitt
3−State
1/2/4 mA
PU/PD
Vdd2
3ISUD/3T1
(2)(4)
M12
−
−
SDRDATA0
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
238
N13
−
−
SDRDATA1
B
CMOS
3−State
2/4/8 mA
PD
Vdd2
3ICD/3T2
(4)(8)
239
P14
−
−
SDRADDR3
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
240
R15
−
−
SDRADDR4
O
−
3−State
2/4/8 mA
Vdd2
3T2 (4)(8)
16. RTCINT (open drain Output) 3.6 V tolerant.
17. Pin assignment of TQFP128L which can use PLL3 is as below.
PLL3
118
AvddPLL3
119
VCNT3
120
AVssPLL2
18. Pin assignment of LFBGA240 which can use PLL3 is as below.
PLL3
221
AvddPLL3
222
VCNT3
223
AVssPLL2
www.onsemi.com
40
LC823450
Input/Output Circuit
Attribute : 1IS
Attribute : 3IS
VddIO (Note 19)
VddIO (Note 19)
PAD
PAD
Vss
Vss
Attribute : 1IC
Attribute : 1ISD
VddIO (Note 19)
VddIO (Note 19)
PAD
PAD
Vss
Vss
Attribute : 3T2(4)(8)
Attribute : OD3
2/4/8mA
PAD
PAD
Out/Hiz
Vss
Vss
Attribute : 3ICUD/3T6(8)(10)
ON/OFF
DRVcnt
Attribute : 3ICD/3T2(4)(8)
VddIO (Note 19)
VddIO (Note 19)
DRVcnt
(Note 20)
(Note 20)
PAD
PAD
Out/Hiz
Out/Hiz
ON/OFF
ON/OFF
Vss
Vss
Attribute : 3ISUD/3T2
Attribute : 3ISUD/3T1(2)(4), /3T2(4)(8), /3T6(8)(10)
ON/OFF
DRVcnt
VddIO (Note 19)
ON/OFF
VddIO (Note 19)
(Note 20)
PAD
PAD
Out/Hiz
Out/Hiz
ON/OFF
ON/OFF
Vss
Vss
Level Shifter
Figure 6. Input/Output Circuit
www.onsemi.com
41
LC823450
Attribute : 3ISU/3T2
Attribute : 3ISD/3T2(4)(8)
VddlO (Note 19)
DRVcnt
(Note 20)
ON/OFF
VddlO (Note 19)
PAD
PAD
Out/Hiz
Out/Hiz
ON/OFF
Vss
Vss
Attribute : 3ISU/3T2(4)(8)
Attribute : 3A,1A
VddlO (Note 19)
ON/OFF
DRVcnt
(Note 20)
AVdd*
AVdd*
PAD(Output)
PAD
Out/Hiz
PAD(Input)
AVss*
Vss
Attribute : X
VddXT1/VddRTC
PAD(Output)
Vss
Level Shifter
19. Vdd2, VddSD0, VddSD1, VddSD2, VddQSPI (IO Pwr Grp of 3−1 Pin Assignment)
20. DRVcnt: 1/2/4 mA, 2/4/8 mA. 4/8/10 mA, etc. Drivability switch control signal
Figure 7. Input/Output Circuit (Continued)
www.onsemi.com
42
AVss*
LC823450
Table 15. PORT STATE TABLE
LFBGA240
TQFP128L
Default Function
(NRES=Low)
(Note 22)
Port Status
NRES=Low(i)
(Note 23)
Port Status
NRES=High(ii)
(Note 23)
WLP154
PIN NAME
GPIO00
Hiz
Hiz
•
•
•
TCLKA0/
BCK1/
GPIO00/
EXTINT00
•
•
•
TCLKB0/
LRCK1/
GPIO01/
EXTINT01
GPIO01
Hiz
Hiz
•
TIOCB00/
DMDIN0
DIN1/
GPIO02/
EXTINT02/
GPIO02
Hiz
Hiz
GPIO03
PU
PU (Note 24)
•
•
•
•
•
TIOCB01/
DMCKO0/
QSCS/
GPIO03/
EXTINT03
•
•
•
TXD1/
SDAT20/
GPIO04/
EXTINT04
GPIO04
Hiz
Hiz
•
RXD1/
SDAT21/
GPIO05/
EXTINT05
GPIO05
Hiz
Hiz
•
NCS0/
GPIO06/
EXTINT06
GPIO06
Hiz
Hiz
•
•
•
•
•
•
SCL0/
GPIO07/
EXTINT07
GPIO07
Hiz
Hiz
•
•
•
SDA0/
GPIO08/
EXTINT08
GPIO08
Hiz
Hiz
•
TIOCA00/
SDCLK2/
PHI0/
GPIO09/
EXTINT09
GPIO09
Hiz
Hiz
•
TIOCA01/
SDCMD2/
PHI1/
GPIO0A/
EXTINT0A
GPIO0A
Hiz
Hiz
GPIO0B
Hiz
Hiz
•
•
•
•
•
•
•
TXD2/
TIOCA10/
GPIO0B/
EXTINT0B
•
•
•
RXD2/
TIOCA11/
GPIO0C/
EXTINT0C
GPIO0C
Hiz
Hiz
•
•
•
SCK1/
GPIO0D/
EXTINT0D
GPIO0D
Hiz
Hiz
www.onsemi.com
43
LC823450
Table 15. PORT STATE TABLE (continued)
LFBGA240
TQFP128L
Default Function
(NRES=Low)
(Note 22)
Port Status
NRES=Low(i)
(Note 23)
Port Status
NRES=High(ii)
(Note 23)
WLP154
PIN NAME
GPIO0E
Hiz
Hiz
•
•
•
SDI1(QIO0)/
GPIO0E/
EXTINT0E
•
•
•
SDO1(QIO1)/
GPIO0F/
EXTINT0F
GPIO0F
Hiz
Hiz
•
NCS1/
RXD0/
GPIO10/
EXTINT10
GPIO10
Hiz
Hiz
•
•
•
•
SWP1(QIO2)/
GPIO11/
EXTINT11
GPIO11
Hiz
Hiz
•
•
•
SHOLD1(QIO3)/
GPIO12/
EXTINT12
GPIO12
Hiz
Hiz
•
•
BCK1/
GPIO13/
EXTINT13
GPIO13
Hiz
Hiz
•
•
LRCK1/
GPIO14/
EXTINT14
GPIO14
Hiz
Hiz
•
DOUT1/
GPIO15/
EXTINT15
GPIO15
Hiz
Hiz
•
•
NLBEXA0/
GPIO16/
EXTINT16
GPIO16
Hiz
Hiz
•
•
NRD/
GPIO17/
EXTINT17
GPIO17
Hiz
Hiz
•
•
•
•
•
MCLK0/
MCLK1/
GPIO18/
EXTINT18
GPIO18
Hiz
Hiz
•
•
•
BCK0/
DMCKO1/
GPIO19/
EXTINT19
GPIO19
Hiz
Hiz
•
•
•
LRCK0/
DMDIN1/
GPIO1A/
EXTINT1A
GPIO1A
Hiz
Hiz
GPIO1B
Hiz
Hiz
•
•
•
DIN0/
DMDIN0/
GPIO1B/
EXTINT1B
•
•
•
DOUT0/
DMCKO0/
GPIO1C/
EXTINT1C
GPIO1C
Hiz
Hiz
•
•
•
SCK0/
GPIO1D/
EXTINT1D
GPIO1D
Hiz
Hiz
•
•
•
SDI0/
GPIO1E/
EXTINT1E
GPIO1E
Hiz
Hiz
www.onsemi.com
44
LC823450
Table 15. PORT STATE TABLE (continued)
Default Function
(NRES=Low)
(Note 22)
Port Status
NRES=Low(i)
(Note 23)
Port Status
NRES=High(ii)
(Note 23)
LFBGA240
TQFP128L
WLP154
PIN NAME
•
•
•
SDO0/
GPIO1F/
EXTINT1F
GPIO1F
Hiz
Hiz
•
TDI/
SDCD1/
SWO/
GPIO20/
EXTINT20
GPIO20
Hiz
Hiz
•
TDO/
SDWP1/
INS/
GPIO21/
EXTINT21
GPIO21
Hiz
Hiz
GPIO22
Hiz
Hiz
•
•
•
•
•
•
•
SDCLK1/
SCLK/
GPIO22/
EXTINT22
•
•
•
SDCMD1/
BS/
GPIO23/
EXTINT23
GPIO23
Hiz
Hiz
GPIO24
Hiz
Hiz
•
•
•
SDAT10/
DATA0/
GPIO24/
EXTINT24
•
•
•
SDAT11/
DATA1/
GPIO25/
EXTINT25
GPIO25
Hiz
Hiz
GPIO26
Hiz
Hiz
•
•
•
SDAT12/
DATA2/
GPIO26/
EXTINT26
•
•
•
SDAT13/
DATA3/
GPIO27/
EXTINT27
GPIO27
Hiz
Hiz
•
•
•
TMS/
SDWP2/
GPIO28/
EXTINT28
GPIO28
Hiz
Hiz
•
•
•
TCK/
SDCD2/
GPIO29/
EXTINT29
GPIO29
Hiz
Hiz
GPIO2A/
EXTINT2A/
SDRADDR12
GPIO2A
Hiz
Hiz
•
•
•
•
SCL1/
GPIO2B/
EXTINT2B
GPIO2B
Hiz
Hiz
•
•
•
SDA1/
GPIO2C/
EXTINT2C
GPIO2C
Hiz
Hiz
•
GPIO2D/
EXTINT2D/
DMCKO0/
SDRADDR11
GPIO2D
Hiz
Hiz
•
•
www.onsemi.com
45
LC823450
Table 15. PORT STATE TABLE (continued)
Default Function
(NRES=Low)
(Note 22)
Port Status
NRES=Low(i)
(Note 23)
Port Status
NRES=High(ii)
(Note 23)
LFBGA240
TQFP128L
WLP154
PIN NAME
•
•
•
GPIO2E/
EXTINT2E
GPIO2E
Hiz
Hiz(Note 25)
•
•
•
GPIO2F/
EXTINT2F
GPIO2F
Hiz
Hiz(Note 26)
•
NWRENWRL/
GPIO30/
EXTINT30
GPIO30
Hiz
Hiz
•
NHBNWRH/
TXD0/
GPIO31/
EXTINT31
GPIO31
Hiz
Hiz
•
EXA1/
GPIO32/
EXTINT32
GPIO32
Hiz
Hiz
•
EXA2/
GPIO33/
EXTINT33
GPIO33
Hiz
Hiz
•
EXA3/
GPIO34/
EXTINT34
GPIO34
Hiz
Hiz
•
EXA4/
GPIO35/
EXTINT35
GPIO35
Hiz
Hiz
•
EXA5/
GPIO36/
EXTINT36
GPIO36
Hiz
Hiz
•
EXA6/
GPIO37/
EXTINT37
GPIO37
Hiz
Hiz
•
EXA7/
GPIO38/
EXTINT38
GPIO38
Hiz
Hiz
•
EXA8/
GPIO39/
EXTINT39
GPIO39
Hiz
Hiz
•
EXA9/
GPIO3A/
EXTINT3A
GPIO3A
Hiz
Hiz
•
EXA10/
GPIO3B/
EXTINT3B
GPIO3B
Hiz
Hiz
•
EXA11/
GPIO3C/
EXTINT3C
GPIO3C
Hiz
Hiz
•
EXA12/
GPIO3D/
EXTINT3D
GPIO3D
Hiz
Hiz
•
EXA13/
GPIO3E/
EXTINT3E
GPIO3E
Hiz
Hiz
•
EXA14/
GPIO3F/
EXTINT3F
GPIO3F
Hiz
Hiz
•
•
www.onsemi.com
46
LC823450
Table 15. PORT STATE TABLE (continued)
LFBGA240
TQFP128L
WLP154
PIN NAME
Default Function
(NRES=Low)
(Note 22)
Port Status
NRES=Low(i)
(Note 23)
Port Status
NRES=High(ii)
(Note 23)
•
EXA15/
GPIO40/
EXTINT40
GPIO40
Hiz
Hiz
•
EXA16/
GPIO41/
EXTINT41
GPIO41
Hiz
Hiz
•
EXA17/
GPIO42/
EXTINT42
GPIO42
Hiz
Hiz
•
EXA18/
GPIO43/
EXTINT43
GPIO43
Hiz
Hiz
•
EXA19/
GPIO44/
EXTINT44
GPIO44
Hiz
Hiz
•
EXA20/
GPIO45/
EXTINT45
GPIO45
Hiz
Hiz
•
•
EXD0/
GPIO46/
EXTINT46
GPIO46
Hiz
Hiz
•
•
EXD1/
GPIO47/
EXTINT47
GPIO47
Hiz
Hiz
•
•
EXD2/
GPIO48/
EXTINT48
GPIO48
Hiz
Hiz
•
•
EXD3/
GPIO49/
EXTINT49
GPIO49
Hiz
Hiz
•
•
EXD4/
GPIO4A/
EXTINT4A
GPIO4A
Hiz
Hiz
•
•
EXD5/
GPIO4B/
EXTINT4B
GPIO4B
Hiz
Hiz
•
•
EXD6/
GPIO4C/
EXTINT4C
GPIO4C
Hiz
Hiz
•
•
EXD7/
GPIO4D/
EXTINT4D
GPIO4D
Hiz
Hiz
•
EXD8/
GPIO4E/
EXTINT4E
GPIO4E
Hiz
Hiz
•
EXD9/
GPIO4F/
EXTINT4F
GPIO4F
Hiz
Hiz
•
EXD10/
GPIO50/
EXTINT50
GPIO50
Hiz
Hiz
•
EXD11/
GPIO51/
EXTINT51
GPIO51
Hiz
Hiz
www.onsemi.com
47
LC823450
Table 15. PORT STATE TABLE (continued)
LFBGA240
TQFP128L
WLP154
PIN NAME
Default Function
(NRES=Low)
(Note 22)
Port Status
NRES=Low(i)
(Note 23)
Port Status
NRES=High(ii)
(Note 23)
•
EXD12/
GPIO52/
EXTINT52
GPIO52
Hiz
Hiz
•
EXD13/
GPIO53/
EXTINT53
GPIO53
Hiz
Hiz
•
EXD14/
GPIO54/
EXTINT54
GPIO54
Hiz
Hiz
•
EXD15/
GPIO55/
EXTINT55
GPIO55
Hiz
Hiz
•
•
CTS1/
SDAT22/
RXD0/
GPIO56/
EXTINT56
GPIO56
Hiz
Hiz
GPIO57
Hiz
Hiz
•
•
•
•
RTS1/
SDAT23/
TXD0/
GPIO57/
EXTINT57
•
•
•
SDAT00
SDAT00
Hiz
Hiz
•
•
•
SDAT01
SDAT01
Hiz
Hiz
•
•
•
SDAT02
SDAT02
Hiz
Hiz
•
•
•
SDAT03
SDAT03
Hiz
Hiz
•
•
•
SDCLK0
SDCLK0
Low
Low
•
•
•
SDCMD0
SDCMD0
Hiz
Hiz
•
SDRADDR0
SDRADDR0
Low
Low
•
SDRADDR1
SDRADDR1
Low
Low
•
SDRADDR10
SDRADDR10
Low
Low
•
SDRADDR2
SDRADDR2
Low
Low
•
SDRADDR3
SDRADDR3
Low
Low
•
SDRADDR4
SDRADDR4
Low
Low
•
SDRADDR5
SDRADDR5
Low
Low
•
SDRADDR6
SDRADDR6
Low
Low
•
SDRADDR7
SDRADDR7
Low
Low
•
SDRADDR8
SDRADDR8
Low
Low
•
SDRADDR9
SDRADDR9
Low
Low
•
SDRBA0
SDRBA0
Low
Low
•
SDRBA1
SDRBA1
Low
Low
•
SDRCAS
SDRCAS
High
High
•
SDRCKE
SDRCKE
High
High
•
SDRCLK
SDRCLK
Low
Low
•
SDRCS
SDRCS
High
High
•
SDRDATA0
SDRDATA0
Hiz
Hiz
•
SDRDATA1
SDRDATA1
Hiz
Hiz
www.onsemi.com
48
LC823450
Table 15. PORT STATE TABLE (continued)
Port Status
NRES=Low(i)
(Note 23)
Port Status
NRES=High(ii)
(Note 23)
PIN NAME
Default Function
(NRES=Low)
(Note 22)
•
SDRDATA10
SDRDATA10
Hiz
Hiz
•
SDRDATA11
SDRDATA11
Hiz
Hiz
•
SDRDATA12
SDRDATA12
Hiz
Hiz
•
SDRDATA13
SDRDATA13
Hiz
Hiz
•
SDRDATA14
SDRDATA14
Hiz
Hiz
•
SDRDATA15
SDRDATA15
Hiz
Hiz
•
SDRDATA2
SDRDATA2
Hiz
Hiz
•
SDRDATA3
SDRDATA3
Hiz
Hiz
•
SDRDATA4
SDRDATA4
Hiz
Hiz
•
SDRDATA5
SDRDATA5
Hiz
Hiz
•
SDRDATA6
SDRDATA6
Hiz
Hiz
•
SDRDATA7
SDRDATA7
Hiz
Hiz
•
SDRDATA8
SDRDATA8
Hiz
Hiz
•
SDRDATA9
SDRDATA9
Hiz
Hiz
•
SDRDQM0
SDRDQM0
High
High
•
SDRDQM1
SDRDQM1
High
High
•
SDRRAS
SDRRAS
High
High
•
SDRWE
SDRWE
High
High
•
•
•
SWDCLK/
GPIO58/
EXTINT58/
DMCKO1
SWDCLK
Hiz
Hiz
•
•
•
SWDIO/
GPIO59/
EXTINT59/
DMDIN1
SWDIO
Hiz
Hiz
•
•
•
NRES
NRES
Hiz
Hiz
•
•
•
TEST
TEST
Hiz
Hiz
•
•
XTALINFO0
XTALINFO0
Hiz
Hiz
•
•
XTALINFO1
XTALINFO1
Hiz
Hiz
LFBGA240
TQFP128L
WLP154
•
•
•
BMODE0
BMODE0
Hiz
Hiz
•
•
•
BMODE1
BMODE1
Hiz
Hiz
•
•
RTCMODE
RTCMODE
Hiz
Hiz
•
•
KEYINT0
KEYINT0
PD
PD
•
•
KEYINT1
KEYINT1
PD
PD
•
KEYINT2
KEYINT2
PD
PD
•
•
•
BACKUPB
BACKUPB
Hiz
Hiz
•
•
•
RTCINT
RTCINT
(Not Determined)
(Not Determined)
•
•
•
VDET
VDET
Hiz
Hiz
•
•
•
LOUT/
GPLOUT
LOUT
Hiz
Hiz
•
•
•
ROUT/
GPROUT
ROUT
Hiz
Hiz
•
www.onsemi.com
49
LC823450
Table 15. PORT STATE TABLE (continued)
Port Status
NRES=Low(i)
(Note 23)
Port Status
NRES=High(ii)
(Note 23)
LFBGA240
TQFP128L
WLP154
PIN NAME
Default Function
(NRES=Low)
(Note 22)
•
•
•
USBDM
USBDM
Hiz
Hiz
•
•
•
USBDP
USBDP
Hiz
Hiz
•
•
•
USBEXT12
USBEXT12
(Not Applicable)
(Not Applicable)
•
•
•
VCNT1
VCNT1
(Not Applicable)
(Not Applicable)
•
•
VCNT2
VCNT2
(Not Applicable)
(Not Applicable)
(Note 27)
(Note 27)
•
VCNT3
VCNT3
(Not Applicable)
(Not Applicable)
•
•
•
AN0
AN0
(Not Applicable)
(Not Applicable)
•
•
•
AN1
AN1
(Not Applicable)
(Not Applicable)
•
•
•
AN2
AN2
(Not Applicable)
(Not Applicable)
•
•
•
AN3
AN3
(Not Applicable)
(Not Applicable)
•
•
•
AN4
AN4
(Not Applicable)
(Not Applicable)
•
•
•
•
AN5
AN5
(Not Applicable)
(Not Applicable)
•
VR
VR
(Not Applicable)
(Not Applicable)
•
VRH
VRH
(Not Applicable)
(Not Applicable)
•
VRL
VRL
(Not Applicable)
(Not Applicable)
•
•
•
XIN1
XIN1
(Not Applicable)
(Not Applicable)
•
•
•
XIN32K
XIN32K
(Not Applicable)
(Not Applicable)
•
•
•
XOUT1
XOUT1
(Not Applicable)
(Not Applicable)
•
•
•
XOUT32K
XOUT32K
(Not Applicable)
(Not Applicable)
21. Means a port is available for each package. “PD” means pull down
22. Default function is port function set by NRES = Low
23. NRES = High (ii) occurs just after NRES = Low(i)
24. This port is set to output port and PU is disabled to be used as QSCS for SPI I/F chip select during serial flash boot mode.
25. This port is set to output port to be used as external power control during Internal ROM boot.
26. This port is set to output port to be used as boot monitor port during Internal ROM boot.
27. One of VCNT2 or VCNT3 is available
www.onsemi.com
50
LC823450
ELECTRICAL SPECIFICATION
Product parametric performance is indicated in the
Electrical Characteristics for the listed test conditions,
unless otherwise noted. Product performance may not be
indicated by the Electrical Characteristics if operated under
different conditions.
Table 16. MAXIMUM RATINGS (*Vss* = 0 V)
Item
Maximum Power Supply Voltage
Input Voltage
Symbol
Condition
Ratings
Unit
Vdd1
VddRTC
VddXT1
AVddUSBPHY1
DvddUSBPHY1
AvddPLL1
AVddPLL2
−0.5 to 1.8
V
AvddDAMPL
AVddDAMPR
−0.5 to 2.5
V
Vdd2
VddSD0
VddSD1
VddSD2
VddQSPI
AvddPLL3
AvddADC
AVddUSBPHY2
−0.5 to 4.6
V
VI
−0.5 to *Vdd* + 0.5
V
−0.5 to
AVddUSBPHY2 + 0.5 (< 4.6)
V
VIUSB
USBDP,
USBDM Terminal
Operating Ambient Temperature
Topr
−20 to +65
_C
Ambient Ttemperature of Preservation
Tstg
−55 to +125
_C
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
www.onsemi.com
51
LC823450
Table 17. RECOMMENDED OPERATING CONDITIONS (Ta = −20_C to +65_C)
Low Voltage Operation
(Note 28)
High Voltage Operation
(Note 28)
Min
Typ
Max
Min
Typ
Max
Unit
0.93
1.0
1.27
1.1
1.2
1.27
V
0.93
1.0
1.3
0.93
1.2
1.3
V
AVddPLL1
0.93
1.0
1.3
1.1
1.2
1.3
V
AVddPLL2
0.9
1.0
1.3
0.9
1.2
1.3
V
AVddPLL3
2.7
3.3
3.6
Same as left
V
VddRTC
0.9
1.0
1.1
Same as left
V
Vdd2
2.7
3.3
3.6
Same as left
V
1.7
1.8
1.95
Same as left
V
2.7
3.3
3.6
Same as left
V
1.7
1.8
1.95
Same as left
V
2.7
3.3
3.6
Same as left
V
1.7
1.8
1.95
Same as left
V
2.7
3.3
3.6
Same as left
V
1.7
1.8
1.95
Same as left
V
2.7
3.3
3.6
Same as left
V
1.7
1.8
1.95
Same as left
V
2.7
3.3
3.6
Same as left
V
(Note 30)
0.93
1.2
1.3
Same as left
V
(Note 31)
1.08
1.2
1.3
Same as left
V
(Note 30)
0.93
1.2
1.3
Same as left
V
(Note 31)
1.08
1.2
1.3
Same as left
V
(Note 30)
2.7
3.3
3.6
Same as left
V
(Note 31)
3.0
3.3
3.6
Same as left
V
0.93
1.2
1.65
Same as left
V
0.93
1.2
1.95
Same as left
V
0.93
1.2
1.65
Same as left
V
0.93
1.2
1.95
Same as left
V
*Vdd*
Same as left
V
Item
Symbol
Power Supply
Voltage
Vdd1
VddXT1
Condition
(Note 29)
VddSD0
VddSD1
VddSD2
VddQSPI
AVddADC
AVddUSBPHY1
DVddUSBPHY1
AVddUSBPHY2
AVddDAMPL
(Note 32)
AVddDAMPR
(Note 32)
Input Range
VIN
0
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
28. Follow the operating frequency specifications because the operating frequency ranges are specified according to the operating voltage
ranges.
29. Regarding Xtal frequency range, refer to the detailed datasheet.
30. While USB is not used.
31. While USB is used (including USB suspend mode).
32. While used as GPO (general purpose output) the output of which can be controlled by registers.
33. Power domains of Vdd1, AVddUSBPHY1 = DVddUSBPHY1, AVddPLL1, AVddPLL2, AVddPLL3, VddXT1 are divided, and different voltage
can be supplied.
Power domains of Vdd2, VddSD0, VddSD1, VddSD2, VddQSPI, AVddADC, AVddUSBPHY2, AVddPLL3, AvddDAMPL = AVddDAMPR are
divided, and difference voltage can be supplied.
If power is supplied to one of the power supply pins above, all of other power supply pins should be supplied.
VddRTC can be supplied if BACKUPB is set to low, while other power supply pins are not supplied.
www.onsemi.com
52
LC823450
Table 18. RECOMMENDED OPERATING CONDITIONS
Item
Symbol
Xtal Input
Frequency
Fxin1
FxinRTC
Frc
Time for
Xtal Stable
Internal Clock
Frequency
Function
System,
Audio clock
(XT1 oscillator)
Low Voltage Operation
12 MHz or 20 MHz
tolerance : ±200 ppm or less
Jitter : ±50 ps or less
(Note 37)
RTC clock
(XTRTC oscillator)
RC
(RC oscillator)
High Voltage Operation
Unit
12 MHz or 20 MHz or
24 MHz or 48 MHz
tolerance : ±200 ppm or
less
Jitter : ±50 ps or less
(Note 37)
−
32.768 kHz
Jitter : ±500 ps or less
0.4
(Note 38)
1
(Note 38)
Same as left
2
(Note 38)
Same as left
−
MHz
Txin1
3
(Note 40)
Same as left
ms
TxinRTC
1000
(Note 40)
Same as left
ms
Farm
Cortex−M3
0
100
0
160
(Note 39)
MHz
Fahb
AHB
0
100
0
160
(Note 39)
MHz
Fapb
APB
0
100
0
160
(Note 39)
MHz
Fdsp
DSP
0
100
0
160
(Note 39)
MHz
AUDCLK(768fs)
0
33.8688
147.456
Same as left
MHz
Fdec
DECCLK(Note 35)
(MP3 Decoder)
0
16.9344
73.728
Same as left
MHz
Fenc
ENCCLK(Note 36)
(MP3 Encoder)
0
8.4672
36.864
Same as left
MHz
Faud
(Note 34)
34. Audio blocks run on 256 * Fs (sampling frequency) clock.
However, Class−D AMP, etc run on 384 * Fs (sampling frequency).
These clocks are generated from 768 * Fs (Base Clock) divided by 3 and 2 respectively.
35. MP3 Decoder runs on clock of 384 * Fs (sampling frequency of MPEG1 mode).
It runs on the clock of the same frequency as MPEG1 mode during MPEG2 / 2.5 mode. For example, even when operating in MPEG 2 / 2.5
mode (Fs = 22.05 / 11.025 KHz as an example), please supplies 16.9344 MHz(= 384 * 44.1 kHz) clock which is the same clock frequency
as MPEG1 mode.
36. MP3 Encoder runs on clock of 192 * Fs(sampling frequency of MPEG1 mode).
It runs on the clock of the same frequency as MPEG1 mode during MPEG2 / 2.5 mode. For example, even when operating in MPEG2 / 2.5
mode (Fs = 22.05 / 11.025 KHz as an example), please supplies 8.4672 Mhz (= 192 * 44.1 kHz) clock which is the same clock frequency
as MPEG1 mode.
37. Refer to the detailed datasheet. If USB function is not used, the specification required may be relaxed. Please contact our representative
in detail.
38. Vdd1 = 0.93 V to 1.27 V, Ta = −20_C to 65_C.
39. When Farm, Fdsp are over 100 MHz, 1 * Wait is required for Cortex−M3 and LPDSP32 to access internal ROM by the register described
in the ProgrammersModel_SystemController as memory access control register4.
40. These are just reference values under Ta = 25_C, and need to be adjusted to customer board situation.
www.onsemi.com
53
LC823450
Table 19. DC CHARACTERISTICS
(Vdd2= 2.7 V to 3.6V, VddRTC = 0.9 V to 1.1 V, VddSD0 = 2.7 V to 3.6 V, VddSD1 = 2.7 V to 3.6V, VddSD2 = 2.7 V to 3.6 V,
VddQSPI = 2.7 V to 3.6 V, Ta = −20_C to +65_C)
Item
Input H Voltage
Symbol
Pin
Condition
Min
VIH
(1)
CMOS
0.7 × Vdd2
V
(2)
0.7 × VddSD0
V
(3)
0.7 × VddSD1
V
(4)
0.7 × VddSD2
V
0.75 × Vdd2
V
(21)
0.75 × VddSD1
V
(6)
0.75 × VddSD2
V
(7)
0.75 × VddQSPI
V
(5)
Input L Voltage
VIL
Schmitt
Typ
Max
Unit
(8)
CMOS
0.7 × VddRTC
V
(9)
Schmitt
0.7 × VddRTC
V
(1)
CMOS
0.3 × Vdd2
V
(2)
0.3 × VddSD0
V
(3)
0.3 × VddSD1
V
(4)
0.3 × VddSD2
V
(5)
Schmitt
0.25 × Vdd2
V
(21)
0.25 × VddSD1
V
(6)
0.25 × VddSD2
V
(7)
0.25 × VddQSPI
V
(8)
CMOS
0.2 × VddRTC
V
(9)
Schmitt
0.2 × VddRTC
V
www.onsemi.com
54
LC823450
Table 19. DC CHARACTERISTICS (continued)
(Vdd2= 2.7 V to 3.6V, VddRTC = 0.9 V to 1.1 V, VddSD0 = 2.7 V to 3.6 V, VddSD1 = 2.7 V to 3.6V, VddSD2 = 2.7 V to 3.6 V,
VddQSPI = 2.7 V to 3.6 V, Ta = −20_C to +65_C)
Item
Output H Voltage
Symbol
Pin
Condition
Min
VOH
(10)(12)
IOH = −1 mA
Vdd2 − 0.4
V
VddQSPI − 0.4
V
(11)
(10)(13)(14)
IOH = −2 mA
Typ
Max
Unit
Vdd2 − 0.4
V
(11)
VddQSPI − 0.4
V
(15)
VddSD1 − 0.4
V
(12)
VddSD2 − 0.4
V
Vdd2 − 0.4
V
VddQSPI − 0.4
V
(10)(13)
IOH = −4 mA
(11)
(12)
VddSD2 − 0.4
V
VddQSPI − 0.4
V
(17)
VddSD0 − 0.4
V
(18)
VddSD1 − 0.4
V
(19)
VddSD2 − 0.4
V
Vdd2 − 0.4
V
(16)
VddQSPI − 0.4
V
(17)
VddSD0 − 0.4
V
(18)
VddSD1 − 0.4
V
(19)
VddSD2 − 0.4
V
VddQSP − 0.4
V
(17)
VddSD0 − 0.4
V
(18)
VddSD1 − 0.4
V
(19)
VddSD2 − 0.4
V
(16)
(13)
(16)
IOH = −6 mA
IOH = −8 mA
IOH = −10 mA
www.onsemi.com
55
LC823450
Table 19. DC CHARACTERISTICS (continued)
(Vdd2= 2.7 V to 3.6V, VddRTC = 0.9 V to 1.1 V, VddSD0 = 2.7 V to 3.6 V, VddSD1 = 2.7 V to 3.6V, VddSD2 = 2.7 V to 3.6 V,
VddQSPI = 2.7 V to 3.6 V, Ta = −20_C to +65_C)
Item
Output L Voltage
Symbol
Pin
Condition
VOL
(10)(12)
IOL = 1 mA
Min
(11)
(10)(13)(14)
IOL = 2 mA
V
0.4
V
V
V
(15)
0.4
V
(12)
0.4
V
0.4
V
0.4
V
0.4
V
0.4
V
(17)
0.4
V
(18)
0.4
V
(19)
0.4
V
0.4
V
(16)
0.4
V
(17)
0.4
V
(18)
0.4
V
(19)
0.4
V
0.4
V
(17)
0.4
V
(18)
0.4
V
0.4
V
0.3
V
(16)
(13)
(16)
IOL = 4 mA
IOL = 6 mA
IOL = 8 mA
IOL = 10 mA
(19)
(20)
Rdn
0.4
0.4
(12)
Pull−down Resister
Unit
0.4
(11)
Rup
Max
(11)
(10)(13)
Pull−up Resister
Typ
IOL = 0.3 mA
(28)
25
75
kW
(29)
10
100
kW
(30)
18
50
kW
(25)
25
75
kW
(26)
10
100
kW
(27)
10
100
kW
Input Leak Current
IIL
(1)(2)(3)(4)
(5)(6)(7)(8)
(9)(21)
VI = Vdd*
= Vss
−10
10
mA
Output Leak
Current
IOZ
(10)(11)(12)(13)
(14)(15)(16)(17)
(18)(19)(20)
HiZ output
−10
10
mA
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
www.onsemi.com
56
LC823450
Table 20. DC CHARACTERISTICS
(Vdd2 = 1.7 V to 1.95 V, VddSD0 = 1.7 V to 1.95 V, VddSD1 = 1.7 V to 1.95 V, VddSD2 = 1.7 V to 1.95 V, VddQSPI = 1.7 V to 1.95 V,
AVddDAMPL = 0.93 V to 1.95 V, AVddDAMPR = 0.93 V to 1.95 V, Ta = −20°C to +65°C)
Item
Input H Voltage
Symbol
Pin
Condition
Min
VIH
(1)
CMOS
0.7 × Vdd2
V
(2)
0.7 × VddSD0
V
(3)
0.7 × VddSD1
V
(4)
0.7 × VddSD2
V
0.75 × Vdd2
V
(21)
0.75 × VddSD1
V
(6)
0.75 × VddSD2
V
(7)
0.75 × VddQSPI
V
(5)
Input L Voltage
VIL
(1)
Schmitt
CMOS
Typ
Max
Unit
0.3 × Vdd2
V
(2)
0.3 × VddSD0
V
(3)
0.3 × VddSD1
V
(4)
0.3 × VddSD2
V
0.25 × Vdd2
V
0.25 × VddSD1
V
(6)
0.25 × VddSD2
V
(7)
0.25 × VddQSPI
V
(5)
Schmitt
(21)
www.onsemi.com
57
LC823450
Table 20. DC CHARACTERISTICS (continued)
(Vdd2 = 1.7 V to 1.95 V, VddSD0 = 1.7 V to 1.95 V, VddSD1 = 1.7 V to 1.95 V, VddSD2 = 1.7 V to 1.95 V, VddQSPI = 1.7 V to 1.95 V,
AVddDAMPL = 0.93 V to 1.95 V, AVddDAMPR = 0.93 V to 1.95 V, Ta = −20°C to +65°C)
Item
Output H Voltage
Symbol
Pin
Condition
Min
VOH
(10)(12)
IOH = −0.5 mA
Vdd2 − 0.4
V
VddQSPI − 0.4
V
(11)
(10)(13)(14)
IOH = −1 mA
Typ
Max
Unit
Vdd2 − 0.4
V
(11)
VddQSPI − 0.4
V
(15)
VddSD1 − 0.4
V
(12)
VddSD2 − 0.4
V
Vdd2 − 0.4
V
VddQSPI − 0.4
V
(10)(13)
IOH = −2 mA
(11)
(12)
VddSD2 − 0.4
V
VddQSPI − 0.4
V
(17)
VddSD0 − 0.4
V
(18)
VddSD1 − 0.4
V
(19)
VddSD2 − 0.4
V
Vdd2 − 0.4
V
(16)
VddQSPI − 0.4
V
(17)
VddSD0 − 0.4
V
(18)
VddSD1 − 0.4
V
(19)
VddSD2 − 0.4
V
(16)
(13)
IOH = −3 mA
IOH = −4 mA
(23)
IOH = −8 mA
(Note 46)
AvddDAMPL − 0.4
V
(24)
IOH = −8 mA
(Note 46)
AvddDAMPR − 0.4
V
(16)
IOH = −5 mA
VddQSPI − 0.4
V
(17)
VddSD0 − 0.4
V
(18)
VddSD1 − 0.4
V
(19)
VddSD2 − 0.4
V
www.onsemi.com
58
LC823450
Table 20. DC CHARACTERISTICS (continued)
(Vdd2 = 1.7 V to 1.95 V, VddSD0 = 1.7 V to 1.95 V, VddSD1 = 1.7 V to 1.95 V, VddSD2 = 1.7 V to 1.95 V, VddQSPI = 1.7 V to 1.95 V,
AVddDAMPL = 0.93 V to 1.95 V, AVddDAMPR = 0.93 V to 1.95 V, Ta = −20°C to +65°C)
Item
Output L Voltage
Symbol
Pin
Condition
VOL
(10)(11)(12)
(10)(13)(14)
Rdn
Unit
IOL = 0.5 mA
0.4
V
IOL = 1 mA
0.4
V
0.4
V
0.4
V
(12)
0.4
V
0.4
V
(11)
0.4
V
(12)
0.4
V
IOL = 2 mA
IOL = 3 mA
0.4
V
(17)
0.4
V
(18)
0.4
V
(19)
0.4
V
0.4
V
(16)
0.4
V
(17)
0.4
V
(18)
0.4
V
(19)
0.4
V
(13)
Pull−down Resister
Max
(11)
(16)
Rup
Typ
(15)
(10)(13)
Pull−up Resister
Min
IOL = 4 mA
(23)
IOL = 8 mA
(Note 41)
0.4
V
(24)
IOL = 8 mA
(Note 41)
0.4
V
(16)
IOL = 5 mA
0.4
V
(17)
0.4
V
(18)
0.4
V
(19)
0.4
V
(28)
25
75
kW
(29)
30
200
kW
(30)
18
50
kW
(25)
25
75
kW
(26)
30
200
kW
Input Leak Current
IIL
(1)(2)(3)(4)
(5)(6)(7)(8)
(9)(21)
VI = Vdd*
= Vss
−10
10
mA
Output Leak
Current
IOZ
(10)(11)(12)(13)
(14)(15)(16)(17)
(18)(19)
HiZ output
−10
10
mA
−10
10
mA
(23)(24)
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
41. Set DAMPCTL register as below.
− DZCTL: DSLEEP=1. (don’t care DSL value)
− G DZINP: DZINP14=1, other DZINPx=0
This DC characteristics can be applied while Class−D AMP used as GPO.
www.onsemi.com
59
LC823450
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
SDRDATA15, SDRDATA14, SDRDATA13, SDRDATA12, SDRDATA11, SDRDATA10, SDRDATA9, SDRDATA8, SDRDATA7,
SDRDATA6, SDRDATA5, SDRDATA4, SDRDATA3, SDRDATA2, SDRDATA1, SDRDATA0
SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00
SDCLK1(GPIO22), SDCMD1(GPIO23), SDAT10(GPIO24), SDAT11(GPIO25), SDAT12(GPIO26), SDAT13(GPIO27)
TXD1(GPIO04), RXD1(GPIO05), TIOCA01(GPIO0A), CTS1(GPIO56), RTS1(GPIO57)
TEST, NRES, BMODE1, BMODE0, TCLKA0(GPIO00), TCLKB0(GPIO01), TIOCB00(GPIO02), NCS0(GPIO06), SCL0(GPIO07),
SDA0(GPIO08), NCS1(GPIO10), BCK1(GPIO13), LRCK1(GPIO14), DOUT1(GPIO15), NLBEXA0(GPIO16), NRD(GPIO17),
MCLK0(GPIO18), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C), SCK0(GPIO1D), SDI0(GPIO1E),
SDO0(GPIO1F), SDRADDR12(GPIO2A), SCL1(GPIO2B), SDA1(GPIO2C), SDRADDR11(GPIO2D), EXTINT2E(GPIO2E),
EXTINT2F(GPIO2F), NWRENWRL(GPIO30), NHBNWRH(GPIO31), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35),
EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C),
EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43),
EXA19(GPIO44), EXA20(GPIO45), EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A),
EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51),
EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), SWDCLK(GPIO58), SWDIO(GPIO59), XTALINFO1,
XTALINFO0
TIOCA00(GPIO09), TMS(GPIO28), TCK(GPIO29)
SCK1(GPIO0D), SDI1(GPIO0E), SDO1(GPIO0F), SWP1(GPIO11), SHOLD1(GPIO12), TIOCB01(GPIO03), TXD2(GPIO0B),
RXD2(GPIO0C)
VDET, RTCMODE
BACKUPB, KEYINT2, KEYINT1, KEYINT0
TCLKA0(GPIO00), TCLKB0(GPIO01), TIOCB00(GPIO02), SCL0(GPIO07), SDA0(GPIO08), BCK1(GPIO13), LRCK1(GPIO14),
DOUT1(GPIO15), MCLK0(GPIO18), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C), SCK0(GPIO1D),
SDI0(GPIO1E), SDO0(GPIO1F), SCL1(GPIO2B), SDA1(GPIO2C), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), SWDCLK(GPIO58)
TXD2(GPIO0B), RXD2(GPIO0C)
TMS(GPIO28), TCK(GPIO29)
SDRWE, SDRRAS, SDRDQM1, SDRDQM0, SDRDATA9, SDRDATA8, SDRDATA7, SDRDATA6, SDRDATA5, SDRDATA4,
SDRDATA3, SDRDATA2, SDRDATA15, SDRDATA14, SDRDATA13, SDRDATA12, SDRDATA11, SDRDATA10, SDRDATA1,
SDRDATA0, SDRCS, SDRCLK, SDRCKE, SDRCAS, SDRBA1, SDRBA0, SDRADDR9, SDRADDR8, SDRADDR7, SDRADDR6,
SDRADDR5, SDRADDR4, SDRADDR3, SDRADDR2, SDRADDR10, SDRADDR1, SDRADDR0, NCS0(GPIO06), NCS1(GPIO10),
NLBEXA0(GPIO16), NRD(GPIO17), SDRADDR12(GPIO2A), SDRADDR11(GPIO2D), NWRENWRL(GPIO30), NHBNWRH(GPIO31),
EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37), EXA7(GPIO38), EXA8(GPIO39),
EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E), EXA14(GPIO3F), EXA15(GPIO40),
EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45), EXD0(GPIO46), EXD1(GPIO47),
EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D), EXD8(GPIO4E), EXD9(GPIO4F),
EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54), EXD15(GPIO55), XTALINFO1, XTALINFO0
BMODE1, BMODE0, SWDIO(GPIO59)
TDI(GPIO20), TDO(GPIO21)
TIOCB01(GPIO03), SCK1(GPIO0D), SDI1(GPIO0E), SDO1(GPIO0F), SWP1(GPIO11), SHOLD1(GPIO12)
SDCMD0, SDCLK0, SDAT03, SDAT02, SDAT01, SDAT00
SDCLK1(GPIO22), SDCMD1(GPIO23), SDAT10(GPIO24), SDAT11(GPIO25), SDAT12(GPIO26), SDAT13(GPIO27)
TXD1(GPIO04), RXD1(GPIO05), TIOCA00(GPIO09), TIOCA01(GPIO0A), CTS1(GPIO56), RTS1(GPIO57)
RTCINT
TDI(GPIO20), TDO(GPIO21)
LOUT(used as GPLOUT)
ROUT(used as GPROUT)
BMODE1, BMODE0
SDRDATA9, SDRDATA8, SDRDATA7, SDRDATA6, SDRDATA5, SDRDATA4, SDRDATA3, SDRDATA2, SDRDATA15, SDRDATA14,
SDRDATA13, SDRDATA12, SDRDATA11, SDRDATA10, SDRDATA1, SDRDATA0, SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00,
TCLKA0(GPIO00), TCLKB0(GPIO01), TIOCB00(GPIO02), TIOCB01(GPIO03), TXD1(GPIO04), RXD1(GPIO05), SCL0(GPIO07),
SDA0(GPIO08), TIOCA00(GPIO09), TIOCA01(GPIO0A), TXD2(GPIO0B), RXD2(GPIO0C), SCK1(GPIO0D), SDI1(QIO0)(GPIO0E),
SDO1(QIO1)(GPIO0F), SWP1(QIO2)(GPIO11), SHOLD1(QIO3)(GPIO12), BCK1(GPIO13), LRCK1(GPIO14), DOUT1(GPIO15),
NLBEXA0(GPIO16), NRD(GPIO17), MCLK0(GPIO18), BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C),
SCK0(GPIO1D), SDI0(GPIO1E), SDO0(GPIO1F), TDI(GPIO20), TDO(GPIO21), SDCLK1(GPIO22), SDCMD1(GPIO23),
SDAT10(GPIO24), SDAT11(GPIO25), SDAT12(GPIO26), SDAT13(GPIO27), TMS(GPIO28), TCK(GPIO29), SDRADDR12(GPIO2A),
SCL1(GPIO2B), SDA1(GPIO2C), SDRADDR11(GPIO2D), EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), NWRENWRL(GPIO30),
NHBNWRH(GPIO31), EXA1(GPIO32), EXA2(GPIO33), EXA3(GPIO34), EXA4(GPIO35), EXA5(GPIO36), EXA6(GPIO37),
EXA7(GPIO38), EXA8(GPIO39), EXA9(GPIO3A), EXA10(GPIO3B), EXA11(GPIO3C), EXA12(GPIO3D), EXA13(GPIO3E),
EXA14(GPIO3F), EXA15(GPIO40), EXA16(GPIO41), EXA17(GPIO42), EXA18(GPIO43), EXA19(GPIO44), EXA20(GPIO45),
EXD0(GPIO46), EXD1(GPIO47), EXD2(GPIO48), EXD3(GPIO49), EXD4(GPIO4A), EXD5(GPIO4B), EXD6(GPIO4C), EXD7(GPIO4D),
EXD8(GPIO4E), EXD9(GPIO4F), EXD10(GPIO50), EXD11(GPIO51), EXD12(GPIO52), EXD13(GPIO53), EXD14(GPIO54),
EXD15(GPIO55), CTS1(GPIO56), RTS1(GPIO57), SWDCLK(GPIO58)
KEYINT2, KEYINT1, KEYINT0
SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00, BMODE1, BMODE0, TXD1(GPIO04), RXD1(GPIO05), TIOCA00(GPIO09),
TIOCA01(GPIO0A), SDCLK1(GPIO22), SDCMD1(GPIO23), SDAT10(GPIO24), SDAT11(GPIO25), SDAT12(GPIO26),
SDAT13(GPIO27), CTS1(GPIO56), RTS1(GPIO57)
TCLKA0(GPIO00), TCLKB0(GPIO01), TIOCB00(GPIO02), TIOCB01(GPIO03), NCS0(GPIO06), SCL0(GPIO07), SDA0(GPIO08),
TXD2(GPIO0B), RXD2(GPIO0C), SCK1(GPIO0D), SDI1(QIO0)(GPIO0E), SDO1(QIO1)(GPIO0F), NCS1(GPIO10),
SWP1(QIO2)(GPIO11), SHOLD1(QIO3)(GPIO12), BCK1(GPIO13), LRCK1(GPIO14), DOUT1(GPIO15), MCLK0(GPIO18),
BCK0(GPIO19), LRCK0(GPIO1A), DIN0(GPIO1B), DOUT0(GPIO1C), SCK0(GPIO1D), SDI0(GPIO1E), SDO0(GPIO1F), TDI(GPIO20),
TDO(GPIO21), TMS(GPIO28), TCK(GPIO29), SDRADDR12(GPIO2A), SCL1(GPIO2B), SDA1(GPIO2C), SDRADDR11(GPIO2D),
EXTINT2E(GPIO2E), EXTINT2F(GPIO2F), SWDCLK(GPIO58), SWDIO(GPIO59), XTALINFO1, XTALINFO0
SDCMD0, SDAT03, SDAT02, SDAT01, SDAT00
www.onsemi.com
60
LC823450
PLL Characteristics
PLL1 (System)
Table 21. PLL1 (SYSTEM) (VDD1 (Note 42) = 0.93 to 1.27 V, TA = −20°C to +65°C)
AVDDPLL1 = 0.93 to 1.1 V
Min
Typ
AVDDPLL1 = 1.1 to 1.3 V
Max
Min
Typ
Max
Item
Symbol
VCO Voltage
VCNT1
0
The VCO
Highest Oscillation
Frequency
Fmax
200
The VCO
Lowest Oscillation
Frequency
Fmin
90
Phase Comparison
Frequency
Fref
48
same as left
MHz
PLL Lock Time
Tlock1
(Note 44)
Fref >=
32.768
KHz
38
52
same as left
ms
Tlock2
(Note 44)
Fref >= 1
MHz
3.5
5
same as left
ms
±3.19
±5.42
±4.28
Jitter (Note 43)
Condition
Jitter
AVDD
PLL1
same as left
Unit
V
360
MHz
180
±7.28
MHz
%
42. Power up and power down timing of AVDDPLL1 and Vdd1 should be as close as possible.
43. Result of simulation
44. PLL lock time and appropriate LPF circuit depend on Phase comparison frequency (Fref).
Refer to 5−2 PLL1(System) for appropriate LPF circuit
PLL2 (Audio)
Table 22. PLL2 (AUDIO) (VDD1 (Note 45) = 0.93 to 1.27 V, TA = −20°C to +65°C)
AVDDPLL1 = 0.93 to 1.1 V
Min
Typ
Max
Item
Symbol
VCO voltage
VCNT2
0
The VCO
Highest Oscillation Frequency
Fmax
150
The VCO
Lowest Oscillation Frequency
Fmin
95
MHz
Phase Comparison
Frequency
Fref
1
MHz
PLL Lock Time
Tlock1 (Note
47)
Fref >=
6.4 KHz
37
50
ms
Tlock2 (Note
47)
Fref >=
38.4 KHz
14
20
ms
±3.28
±5.58
%
Jitter (Note 46)
Condition
Jitter
AVDDPLL2
61
V
MHz
45. Power up and power down timing of AVDDPLL2 and Vdd1 should be as close as possible
46. Result of simulation
47. Phase comparison frequency(Fref) depends on frequency of xtal oscillation as described in the table below.
PLL lock time and appropriate LPF circuit depend on Fref.
− Tlock1 is derived from the case when XT1 is one of 12, 20, 24, 48 MHz.
− Tlock2 is derived from the case when XT1 is 24 MHz.
Refer to 5 − 3 PLL2(Audio) for appropriate LPF circuit
www.onsemi.com
Unit
LC823450
Table 23.
XT1 Frequency
[MHz]
VCO Frequency
[MHz] (Note 48)
12
20
24
48
Sampling
Frequency Fs
PLL2 Divide
PLL2 Multiply
Phase
Comparison
Frequency
Fref [KHz]
147.456
48 KHz
125
1536
96
135.4752
44.1 KHz
625
7056
19.2
98.304
32 KHz
125
1024
96
147.456
48 KHz
625
4608
32
135.4752
44.1 KHz
3125
21168
6.4
98.304
32 KHz
625
3072
32
147.456
48 KHz
125
768
192
135.4752
44.1 KHz
625
3528
38.4
98.304
32 KHz
125
512
192
147.456
48 KHz
125
384
384
135.4752
44.1 KHz
625
1764
76.8
98.304
32 KHz
125
256
384
48. VCO frequency = 768 × Fs × 4
PLL3 (Audio)
Table 24. PLL3 (AUDIO) (VDD1 = 0.93 to 1.27 V, TA = −20°C to +65°C)
AVDDPLL1 = 0.93 to 1.1 V
Min
Condition
Typ
Max
Unit
AVDDPLL3
V
Item
Symbol
VCO Voltage
VCNT3
0
The VCO
Highest Oscillation Frequency
Fmax
150
The VCO
Lowest Oscillation Frequency
Fmin
95
MHz
Phase Comparison
Frequency
Fref
1
MHz
PLL Lock Time
Tlock
32
42
ms
Jitter (Note 49)
Jitter
±3.37
±4.38
%
MHz
49. Result of simulation.
Class−D AMP
Table 25. CLASS−D AMP (VDD1 = 0.93 to 1.27 V, TA = −20°C to +65°C)
AVDDDAMPL = AVDDDAMPR =
0.93 to 1.65 V
Item
Symbol
Condition
Min
Typ
Max
Unit
On Resistance
Ron
On resistance is set to
minimum by register.
(Note 50)
0.5
1.5
4.0
Ω
50. Set 0x3ff00 to Drivability set register ZINP of ProgrammersModel_DAMPCTL.
www.onsemi.com
62
LC823450
XTAL Characteristics
Table 26. XTAL CHARACTERISTICS (VDD1 (Note 51) = 0.93 to 1.27 V, TA = −20°C to +65°C)
VddXT1 = 0.93 to 1.1V
Item
Symbol
Frequency
Fmax
Condition
Min
Typ
1
VddXT1 = 1.1 to 1.3V
Max
Min
20
1
Typ
Max
Unit
50
MHz
51. Power up and power down timing of VddXT1 and Vdd1 should be as close as possible.
Note that the oscillation frequency of XT1 that can be used with this product depends on the function used. Please refer to the following table.
For example, only 48 MHz is available for USB Host function.
Table 27.
Available Frequency of XT1 (X means available)
Function to be
Used
12 MHz
20 MHz
24 MHz
48 MHz
USB Device
x
x
x
x
x
x
x
USB Host
Other than the Left
x
ROM boot
x
(Note 52)
52. During ROM boot, some clock frequencies are determined based on the XTALINFO[1:0] input and the frequency of XT1 other than
12/20/24/48 MHz may cause functional error.
However, because there is a possibility that the difference of the frequency is acceptable in some extent, please contact our representative
if needed.
The requirements of XT1 are below to use USB Host or
USB Device function.
• Frequency deviation: ±200 ppm or less
• Jitter: ±50 ps or less
Some products which don’t have XTALINFO[1:0] port,
select the appropriate products which set XTALINFO[1:0]
internally in accordance with the frequency of XT1.
(Regarding the product name, please contact our
representative).
XTALINFO[1:0] port should be set in accordance with
the frequency of XT1.
10bit ADC Converter Characteristic
Table 28. 10BIT ADC CONVERTER CHARACTERISTIC
(TA = 25°C, VDD1 = 1.2 V, AVDDADC = 3.0 V, FVIN = 1 kHz (Note 53))
Item
Symbol
ADC Power−supply Voltage
AVDH
Condition
Min
Typ
Max
Unit
Pin
Applied
2.7
−
3.6
V
AVDDADC
ADC GND Voltage
AVDL
0
−
−
V
AVSSADC
ADC Reference Voltage High
VRH
AVDH ×
3/4
−
AVDH
V
VRH
ADC Reference Voltage Low
VRL
AVssADC
−
AVDH ×
1/4
V
VRL
Decoupling Capacity
CREF
0.047
−
−
μF
VR
Analog Input Voltage
AN
VRL
−
VRH
V
AN[5:0]
ADC Resolution
BIT
−
−
10
Bit
AN[5:0]
7.3
9
10.7
kΩ
VRH,VRL
−
−
1000
KS/s
(Note 56)
2
−
20
MHz
(Note 57)
2
5
MHz
Reference Resistance
RR
ADC Conversion Frequency
(Note 60)
Fs
(Note 55)
ADC Operation Clock Frequency
(Note 60)
Fc
Number of ADC Conversion
Clocks (Note 60)
Nc
12
−
−
1/Fc
Number of ADC Sample Holding
Clocks (Note 60)
Ns
2
−
−
1/Fc
ADC Sample Holding Time
(Sampling Time) (Note 60)
Tstc
1
−
−
μs
www.onsemi.com
63
LC823450
Table 28. 10BIT ADC CONVERTER CHARACTERISTIC (continued)
(TA = 25°C, VDD1 = 1.2 V, AVDDADC = 3.0 V, FVIN = 1 kHz (Note 53))
Item
Symbol
While it Stabilizes of Ladder
(Resumption Time)
Tstr
0 Scale Offset Voltage (Transit
Voltage from 0 to 1)
VZT
Full−scale Offset Voltage (Transit
Voltage from 1022 to 1023)
Unit
Pin
Applied
Typ +20
mV
AN[5:0]
VRH −
(VRH−VRL)/
1024
Typ +20
mV
AN[5:0]
−1.5
−
+1.5
LSB
AN[5:0]
−2.0
−
+2.0
LSB
AN[5:0]
Condition
Min
Typ
Max
−
−
(Note 2)
(Note 58)
Typ−20
VRL +
(VRH−VRL)/
1024
VFST
(Note 58)
Typ−20
Differential Linearity Error
DNL
(Note 59)
Linearity Error
INL
(Note 59)
*Each electrical specification is the results of simulation.
53. Each electrical characteristic is specified under the condition which VR terminal is connected with analog ground through 0.1 μF decoupling
capacitor and the voltage is independently supplied to VRH and VRL.
54. A normal conversion result is not obtained immediately after the power supply turning on and immediately after the return from the state of
the power down. The time to get a normal performance depends on the state of the terminal VR as shown in the following table.
For example, it takes about 2 ms until a normal conversion result can be obtained when VR terminal is connected with analog ground through
0.1 μF decoupling capacitor.
Terminal VR
TSTR
Decoupled
1.0 ms × CREF / 0.047 μF
Not Decoupled
(Include no VR Terminal)
1 μs
55. Between VRH and VRL
56. The terminal VR is decoupled.
57. The terminal VR is not decoupled (include no VR terminal)
58. VZT, VFST depend on analog driver output impedance(Rimp) of AN[5:0]
VZT
VFST
Rimp(W)
Min
Typ
Max
Min
Typ
Max
1000
typ − 20
VRL+(VRH−VRL)/1024
typ + 20
typ − 20
VRH−(VRH−VRL)/1024
typ + 20
10000
typ − 32
VRL+(VRH−VRL)/1024
typ + 20
typ − 20
VRH−(VRH−VRL)/1024
typ + 25
100000
typ − 125
VRL+(VRH−VRL)/1024
typ + 20
typ − 35
VRH−(VRH−VRL)/1024
typ + 65
59. 1LSB = (VFST−VZT)/1022 , INLn = ((1LSB x n+VZT)−Vn)/1LSB , DNLn = (Vn+1−Vn)/1LSB−1
INL depends on analog driver output impedance(Rimp) of AN[5:0]
INL
Rimp(W)
Min
Typ
Max
1000
−2.0
−
2.0
10000
−3.0
−
3.0
100000
−12.0
−
12.0
60. Tstc(ADC sample holding time) must satisfy following formula, too.
Tstc > tA ( Tstc = (1/Fc) × Ns )
♦ Fc: Frequency of reference clock of ADC(AD_CLK).
Refer to ADC specifications for the method of generating AD_CLK.
♦ Ns: Fadcsmpl + 1.
fADCSMPL can be set by the register. Refer to ADC specifications.
♦ tA: Time decided by output impedance (Rimp) of analog input driver of AN[5:0] (value of tA)
− In case of VR terminal is decoupled
www.onsemi.com
64
LC823450
Figure 8.
− In case of VR terminal is not decoupled(include the products w/o VR terminal)
Figure 9.
♦
Fc = Fs × (Ns + Nc)
USB2.0 PHY Characteristics
Table 29. USB2.0 PHY CHARACTERISTICS
(TA = 25°C, VDD1 = 1.2 V, AVDDUSBPHY1 = DVDDUSBPHY1 = 1.2 V, AVDDUSBPHY2 = 3.3 V)
Item
Symbol
Condition
Min
Max
Unit
INPUT LEVELS FOR FULL−SPEED:
High−level Input Voltage (Drive)
VIH
2.0
High−level Input Voltage (Floating)
VIHZ
2.7
V
3.6
Low−level Input Voltage
VIL
Differential Input Sensitivity
VDI
|(D+) − (D−)|
0.2
0.8
V
Differential Common Mode Range
VCM
Includes VDI range
Figure 10
0.8
2.5
V
High−level Output Voltage
VOH
RL of 14.25 kΩ to
VSS
2.8
3.6
V
Low−level Output Voltage
VOL
RL of 1.425 kΩ to
3.6 V
0.0
0.3
V
V
OUTPUT LEVELS FOR FULL−SPEED:
SE1
VOSE1
Output Signal Crossover Point Voltage
VCRS
0.8
Figure 10
www.onsemi.com
65
1.3
V
2.0
V
LC823450
Table 29. USB2.0 PHY CHARACTERISTICS (continued)
(TA = 25°C, VDD1 = 1.2 V, AVDDUSBPHY1 = DVDDUSBPHY1 = 1.2 V, AVDDUSBPHY2 = 3.3 V)
Item
Symbol
Condition
Min
Max
Unit
INPUT CAPACITANCE FOR FULL−SPEED:
Downstream Facing Port (beginning shared with
Upstream Facing Port at Device mode, so the less
value is selected as the maximum spec)
CIND
(VINUB)
100
pF
Transceiver Edge Rate Control Capacitance
CEDGE
75
pF
TERMINATION IN FULL−SPEED:
Bus Pull−Up Resistor on Upstream Port (Idle Bus)
(This is Used only for the Device Mode
(RPUENXEN = ‘0’ Setting))
RPUI
0.9
1.575
kΩ
Bus Pull−Up Resistor on Upstream Port
(Upstream Port Receiving)
(This is Used Only for the Device Mode
(RPUENXEN = ‘0’ Setting))
RPUA
1.425
3.090
kΩ
Input Impedance Exclusive of pullup/pulldown
ZINP
300
Termination Voltage on Upstream Port Pull−Up
VTERM
3.0
3.6
V
Rise Time (10% − 90%)
TFR
4
20
ns
Fall Time(10% − 90%)
TFF
4
20
ns
TFRFM
90
111.11
%
11.994
12.006
Mb/s
TDJ1
TDJ2
−3.5
−4
3.5
4
ns
ns
TFDEOP
−2
5
ns
TJR1
TJR2
−18.5
−9
18.5
9
ns
ns
Source SE0 Interval of EOP
TFEOPT
160
175
ns
Receiver SE0 Interval of EOP
TFEOPR
82
kΩ
DRIVER CHARACTERISTICS IN FULL−SPEED:
Difference Rise and Fall Time Matching
CLOCK TIMING IN FULL−SPEED(INTERNAL SIGNAL FSSEL=’0’):
Full−speed Data Rate for hubs and Devices which
are High−speed Capable
TFDRATHS
FULL−SPEED DATA TIMINGS(INTERNAL SIGNAL FSSEL=’0’):
Source Jitter Total
(Including Frequency Tolerance):
To Next Transition
For Paired Transitions
Source Jitter for Differential Transition to SE0
Transition
Receiver Jitter:
To Next Transitions
For Paired Transitions
Width of SE0 Interval During Differential Transition
TFST
ns
14
ns
INPUT LEVELS FOR HIGH−SPEED:
High−speed Squelch Detection Threshold
(Differential Signal)
VHSSQ
100
200
mV
High−speed Disconnect Detection Threshold
(Differential Signal)
VHSDSC
525
625
mV
High−speed Data Signaling Common
Mode Voltage Range
VHSCM
−50
500
mV
−10.0
10
mV
High−speed Differential Input Signaling Level
(This Spec is Based on ‘Template 6’)
Figure 11
OUTPUT LEVELS FOR HIGH−SPEED:
High−speed Idle State
VHSOI
High−speed Data Signaling High
VHSOH
360
440
mV
High−speed Data Signaling Low
VHSOL
−10.0
10
mV
Chirp J Level (Different Signal)
VCHIRPJ
700
1100
mV
Chirp K Level (Different Signal)
VCHIRPK
−900
−500
mV
www.onsemi.com
66
LC823450
Table 29. USB2.0 PHY CHARACTERISTICS (continued)
(TA = 25°C, VDD1 = 1.2 V, AVDDUSBPHY1 = DVDDUSBPHY1 = 1.2 V, AVDDUSBPHY2 = 3.3 V)
Item
Symbol
Condition
Min
Max
Unit
VHSTERM
−10.0
10
mV
Rise Time(10% − 90%)
VHSR
500
ps
Fall Time(10% − 90%)
VHSF
500
ps
TERMINATION IN HIGH−SPEED:
Termination Voltage in High−speed
DRIVER CHARACTERISTICS IN HIGH−SPEED:
Driver Waveform Requirement
Complying with USB2.0 Specification (section 7.1.2)
Driver Output Resistance
(which also serves as high−speed termination)
ZHSDRV
40.5
49.5
Ω
THSDRAT
479.76
480.24
Mb/s
CLOCK TIMING IN HIGH−SPEED:
High−Speed Data Rate
HIGH−SPEED DATA TIMINGS:
Complying with USB2.0 Specification (section 7.1.2)
Data Source Jitter
Receiver Jitter Tolerance
INPUT LEVELS FOR LOW−SPEED:SAME AS FULL−SPEED
OUTPUT LEVELS FOR LOW−SPEED: SAME AS FULL−SPEED
INPUT CAPACITANCE FOR LOW−SPEED: SAME AS FULL−SPEED
TERMINATIONS IN LOW−SPEED: SAME AS FULL−SPEED
DRIVER CHARACTERISTICS IN LOW−SPEED:
Rise Time (10% − 90%)
TLR
75
300
ns
Fall Time (10% − 90%)
TLF
75
300
ns
TLRFM
80
125
%
14.25
24.80
kΩ
Difference Rise and Fall Time Matching
TERMINATIONS USED AS HOST SIDE (INTERNAL SIGNAL RPDPEN = 1, RPDMEN = 1):
Bus Pull−down Resistor on Downstream Facing
Port
RPD
*Each electrical specification is the results of simulation.
Differential Input Voltage
Differential Output
Crossover
Voltage Range
−1.0
・・・
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
Figure 10. Differential Input Sensitivity Range for Full−speed
www.onsemi.com
67
・・・
4.6
LC823450
+400 mV
Level1
Differential
Point4
Point3
Point1
0 Volts
Point2
Differential
Point5
Point6
Level2
−400 mV
Differential
0%
Unit Interval
Figure 11. Differential Input Sensitivity Range for High−speed
www.onsemi.com
68
100%
LC823450
AC Characteristics
Reset
• [condition]
VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 to 1.95 V or 2.7
V to 3.6 V
External load 15 pF to 40 pF
t RESW1
NRES
Figure 12. AC Characteristic − Reset
Table 30.
Item
Symbol
Condition
Min
Typ
Max
Unit
Resetting active period
tRESW1
Time after Vdd* reaches to recommended operating voltage
10
−
−
μs
*Refer to the interrupt controller (INTC) specification ProgrammersModel_INTC us for more detail in case of using noise filter, etc.
External Interrupt
• [condition]
VDD1 = 0.93 V to 1.27 V, VDD2, VDDSD1, VDDSD2,
VDDQSPI = 1.7 to 1.95 V or 2.7 V to 3.6 V
External load 15 pF to 40 pF
tEXINTW
EXTINTxx
Figure 13. AC Characteristic − External Interrupt
Table 31.
Item
Symbol
Condition
Min
Typ
Max
Unit
Pulse width of External Interrupt
tEXINTW
Set of Interruption Factor not Use Noise
Filter Function
2
−
−
T
61. T: BASICCLK clock rate (frequency = Farm)
www.onsemi.com
69
LC823450
I 2C
• [condition]
VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 V to 1.95 V or
2.7 V to 3.6 V
External load 15 pF to 40 pF
tf
SDA
tLOW
SDA
tHD;STA
tSU;DAT
tr
tHD;DAT
tHIGH
tf
tBUF
tr
tHD;STA
tSU;STO
tSU;STA
Figure 14. AC Characteristics − I2C
Table 32.
Standard Mode
Item
SCLK Frequency
Holding Time START (Repetition) Condition
(After this Period, the First Clock Pulse is Generated)
Low Period of SCLK
High Period of SCLK
Symbol
Min
Max
Full Mode
Min
Max
Unit
fSCL
0
100
0
400
kHz
tHD; STA
4.0
−
0.6
−
μs
tLOW
4.7
−
1.3
−
μs
tHIGH
4.0
−
0.6
−
μs
Setup Time of Repetition START Condition
tSU; STA
4.7
−
0.6
−
μs
Data Holding Time:
(for Master in Accordance with CBUS)
tHD; DAT
5.0
3.45
0
0.9
μs
Data Setup Time
tSU; DAT
250
−
100
−
ns
Tr
−
1000
−
300
ns
Rise Time SDA and SCLK
Fall Time SDA and SCLK
Setup Time of STOP Condition
Time of Bus Release between STOP and START
Condition
Tf
−
300
−
300
ns
tSU; STO
4.0
−
0.6
−
μs
tBUF
4.7
−
1.3
−
μs
www.onsemi.com
70
LC823450
SPI Interface
• [condition]
VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 V to 1.95 V or
2.7 V to 3.6 V
External load 15 pF to 40 pF
tSCK
tSCKL
tSCKH
SCK0
tds
tdh
SDI0
SDO0
tddo
62. Polarity of SCK is changed, SCK of figure is inversed.
Figure 15. AC Characteristics − SPI Interface
Table 33.
Item
Symbol
Condition
SCLK Rate
tSCK
SCLK LOW Time
tSCKL
SCLK HIGH Time
Data Setup Time
Min
Max
Unit
8
−
T
4
−
T
tSCKH
4
−
T
tds
2
−
T
Data Hold Time
tdh
2
−
T
Data Delay Time
tddo
−
2
T
63. T : APB CLK rate (frequency = Fapb).
Serial Flash Interface
• [condition]
VDD1 = 0.93 V to 1.27 V, VDDQSPI = 1.7 V to 1.95 V
or 2.7 V to 3.6 V
External load 10 to 30 pF
Clock
(from LSI)
t ISU
t IH
Input
(to LSI)
Out put
(from LSI)
tODLY
tODLY
(min)
(max)
Figure 16. AC Characteristics − Serial Flash Interface
www.onsemi.com
71
LC823450
• [applied pin]
♦
♦
♦
Clock: SCK1
Output: SDI1, SDO1, SWP1, SHOLD1, QSCS output
Input: SDI1, SDO1, SWP1, SHOLD1 input
Table 34.
I/O voltage (VddQSPI)
2.7 V to 3.6 V
1.7 V to 1.95 V
External Load
10 pF to 30 pF
10 pF to 30 pF
I/O Drivability
Item
8 mA
Symbol
6 mA
Min
Max
10 mA
Min
Max
Min
Max
Unit
SFIFSEL2 = 0 (Note 64)
Clock Frequency
fclk
−
41
−
40
−
40
MHz
Input Set−up Time
tISU
3.4
−
4.3
−
4.5
−
ns
Input Hold−up Time
tIH
7.5
−
7.1
−
6.9
−
ns
Output Delay Time
tODLY
0.3
5.1
1.2
5.2
0.6
5.4
ns
SFIFSEL2 = 1 (Note 64)
Clock frequency
fclk
−
42
−
40
−
40
MHz
Input set−up time
tISU
4.5
−
5.4
−
5.3
−
ns
Input hold−up time
tIH
3.3
−
2.9
−
3.7
−
ns
Output Delay time
tODLY
0.3
5.1
1.2
5.2
0.6
5.4
ns
64. SFIFSEL2 is the value of S−Flash I/F select register (SFIFSEL) bit2 SFIFSEL2 described in the SystemController
ProgrammersModel_SystemController.
XMC External Memory Bus Timing
• [condition]
VDD1 = 0.93 to 1.27 V, VDD2 = 2.7 V to 3.6 V
External load 15 pF to 40 pF
External Memory Bus Read
TEXCYC
PHI
(BASIC clock)
TEXACC1
EXA[20:1]
NCS0, NCS1,
NHBNWRH,
NLBEXA0
NRD
TEXACC2
TEXACC3
TEXRSW
TEXRDS
TEXRDH
EXD[15:0]
Figure 17. AC Characteristics − External Memory Bus Read Timing
www.onsemi.com
72
LC823450
External Memory Bus Write
PHI
(Arm AHB clock)
T
T
EXWSSA
EXWSH
EXA[20:1]
NCS0, NCS1
NHBNWRH,
NLBEXA0
T
EXWSSCS
T
T
EXWSW
EXWSH
NWRENWRL
T
T
EXWDS
EXWDH
EXD[15:0]
Figure 18. AC Characteristics − External Memory Bus Write Timing
Table 35.
Item
Symbol
Min
Typ
Max
Unit
CPUclock Cycle Time
TEXCYC
−
Read Data Access Time
TEXACC1
−
1T
−
ns
−
13
ns
TEXACC2
−
TEXACC3
−
−
Tacs + 13
ns
−
Tacs + Tcos + 12
ns
Read Data Setup Time
TEXRDS
Read Data Hold Time
TEXRDH
20
−
−
ns
0
−
−
Read Strobe Pulse Width
ns
TEXRSW
Tpgwt +1 Tsub −12
−
−
ns
Write Strobe Pulse Width
TEXWSW (Note
65)
Tpgwt + 1 Tsub−5
−
−
ns
Write Address Setup Time
TEXWSSA
Tacs+Tcos + 0.5 Tsub−10
−
−
ns
Write Strobe Setup Time
TEXWSSCS
Tcos +0.5 Tsub −5
−
−
ns
Write Strobe Hold Time
TEXWSH
Tcoh + 0.5 Tsub−5
−
−
ns
Write Data Setup Time
TEXWDS (Note 65)
Tcos+ Tpgwt +1 Tsub −10
−
−
ns
Write Data Hold Time
TEXWDH
Tcoh + 0.5 Tsub−10
−
Tcoh + 0.5 Tsub
ns
65. T: BASIC clock rate (frequency = Farm)
Regarding Tacs, Tcos, Tpgwt, Tcoh, refer to the external
memory controller (XMC) specification Programmers
Model_XMC.
Even when Tpgwt (programmable wait register) = 1,
equivalent to Tpgwt = 0.
www.onsemi.com
73
LC823450
SDRAM Interface
• [condition]
VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 V to 1.95 V or
2.7 V to 3.6 V
External load 5 to 15 pF
Clock
tIH
tISU
Input
(to LSI)
Output Address
(from LSI)
tADLY
Output Others
(from LSI)
tODLY
Figure 19. AC Characteristics − SDRAM Interface
• [applied pin]
♦
♦
♦
Clock : SDRCLK
Output : SDRCKE, SDRCS, SDRWE, SDRCAS, SDRRAS, SDRDQM[1:0], SDRADDR[10:0], SDRBA[1:0],
SDRDATA[15:0] output
Input : SDRDATA[15:0] input
Table 36.
I/O Voltage (VDD2)
2.7 V to 3.6 V
1.7 V to 1.95 V
External Load
5 pF to 15 pF
I/O Drivability
Item
4 mA
Symbol
8 mA
Min
Max
Min
Max
Unit
Clock frequency
fclk
−
65
−
54
MHz
Input set−up time
tISU
8.3
−
9.9
−
ns
Input hold−up time
tIH
−1.9
−
−2.7
−
ns
Address Delay time
tADLY
1.0
21.7
0.7
27.3
ns
Output Delay time
tODLY
−2.9
3.2
−3.3
4.9
ns
66. Address becomes valid 1 cycle before the timing when CS becomes active. Address is stable while CS is active.
www.onsemi.com
74
LC823450
Memory Stick Interface
• [condition]
VDD1 = 0.93 V to 1.27 V, VDDSD1 = 1.7 V to 1.95 V
or 2.7 V to 3.6 V
External load 10 pF to 40 pF
Serial Clock Timing
tSCLKc
tSCLKwh
tSCLKwl
90%
SCLK
50%
10%
tSCLKr
tSCLKf
Figure 20. Serial Clock Timing
Table 37.
Item
Symbol
min
max
unit
Clock Period
tSCLKc
50
−
ns
Clock High Level Width
tSCLKwh
15
−
ns
Clock Low Level Width
tSCLKwl
15
−
ns
Clock Rise Time
tSCLKr
−
10
ns
Clock Fall Time
tSCLKf
−
10
ns
Parallel Clock Timing
tSCLKc
tSCLKwh
tSCLKwl
90%
SCLK
50%
10%
tSCLKr
tSCLKf
Figure 21. Parallel Clock Timing
Table 38.
Item
Symbol
min
max
unit
Clock Period
tSCLKc
25
−
ns
Clock High Level Width
tSCLKwh
5
−
ns
Clock Low Level Width
tSCLKwl
5
−
ns
Clock Rise Time
tSCLKr
−
10
ns
Clock Fall Time
tSCLKf
−
10
ns
www.onsemi.com
75
LC823450
Serial Interface
SCLK
tds 0
tdh 0
Input DATA0
( REI = 0 )
tds 1
tdh 1
Input DATA 0
( REI = 1)
tbsd
BS
tdd
DATA 0
Figure 22. Serial Interface
Table 39.
I/O Voltage
2.7 V to 3.6 V
1.7 V to 1.95 V
External Load
10 pF to 40 pF
10 pF to 30 pF
I/O Drivability
8 mA
10 mA
8 mA
Item
Symbol
Min
Max
Min
Max
Min
Max
Unit
Input setup time
(REI=0)
tds0
9.0
−
9.3
−
9.3
−
ns
Input hold time
(REI=0)
tdh0
−0.2
−
−0.2
−
−0.4
−
ns
Input setup time
(REI=1)
tds1
1.7
−
1.4
−
1.4
−
ns
Input hold time
(REI=1)
tdh1
7.0
−
7.1
−
7.2
−
ns
BS Output delay time
tbsd
1.7
5.1
1.7
5.2
2.2
5.3
ns
DATA Output delay time
tdd
1.7
5.1
1.7
5.2
2.2
5.3
ns
www.onsemi.com
76
LC823450
Parallel Interface
SCLK
tds0
tdh0
Input DATA[3:0]
(REI = 0)
BS
tbsd0
(REO = 0)
Output DATA[3:0]
tdd0
(REO = 0)
tbsd1
BS
(REO = 1)
tdd1
Output DATA[3:0]
(REO = 1)
Figure 23. Parallel Interface
Table 40.
I/O Voltage
2.7 V to 3.6 V
1.7 V to 1.95 V
External Load
10 pF to 40 pF
10 pF to 30 pF
I/O Drivability
8 mA
10 mA
8 mA
Item
Symbol
Min
Max
Min
Max
Min
Max
Unit
Input setup time
(REI=0)
tds0
9.3
−
9.7
−
9.7
−
ns
Input hold time
(REI=0)
tdh0
−0.1
−
−0.4
−
−0.4
−
ns
BS Output delay time
(REO=0)
tbsd0
1.2
16.4
1.2
16.5
1.2
16.6
ns
DATA Output delay time
(REO=0)
tdd0
1.2
16.4
1.2
16.5
1.2
16.6
ns
BS Output delay time
(REO=1)
tbsd1
2.1
4.2
2.1
4.3
2.6
4.4
ns
DATA Output delay time
(REO=1)
tdd1
2.1
4.2
2.1
4.3
2.6
4.4
ns
www.onsemi.com
77
LC823450
PCM Timing
• [condition]
VDD1 = 0.93 V to 1.27 V, VDD2 = 1.7 V to 1.95 V or
2.7 V to 3.6 V
External load 5 pF to 15 pF
Master mode
tBCKIH
tBCKIL
BCK
tDINS
tDINH
DIN
tLRCKO
LRCK
tDOUT
DOUT
Figure 24. Master Mode
• [Applied pin]
♦
♦
♦
Clock : BCK0, BCK1
Output : LRCK0, LRCK1, DOUT0, DOUT1 output
Input : DIN0, DIN1 input
Table 41.
I/O Voltage (VDD2)
1.7 V to 1.95 V / 2.7 V to 3.6 V
External Load
5 pF to 15 pF
I/O Drivability
4 mA
2 mA
1 mA
Item
Symbol
Min
Max
Min
Max
Min
Mix
Unit
BCKI Low Period
tBCKIL
38
−
38
−
38
−
ns
BCKI High Period
tBCKIH
38
−
38
−
38
−
ns
DIN setup Time
tDINS
8
−
8
−
8
−
ns
DIN Hold Time
tDINH
8
−
8
−
8
−
ns
LRCK Delay Time
tLRCKO
−10
10
−10
10
−10
10
ns
DOUT Delay Time
tDOUT
−10
10
−10
10
−10
10
ns
www.onsemi.com
78
LC823450
Slave Mode
tBCKIH
tBCKIL
BCK
tDINS
tDINH
DIN
tLRCKIH
tLRCKIS
LRCK
tDOUT
DOUT
Figure 25. Slave Mode
• [Applied pin]
♦
♦
♦
Clock : BCK0, BCK1
Output : DOUT0, DOUT1 output
Input : LRCK0, LRCK1, DIN0, DIN1 input
Table 42.
I/O Voltage (VDD2)
1.7 V to 1.95 V / 2.7 V to 3.6 V
External
5 pF to 15 pF
I/O Drivability
4 mA
2 mA
1 mA
Item
Symbol
Min
Max
Min
Max
Min
Mix
Unit
BCKI Low Period
tBCKIL
30
−
30
−
30
−
ns
BCKI High Period
tBCKIH
30
−
30
−
30
−
ns
DIN Setup Time
tDINS
8
−
8
−
8
−
ns
DIN Hold Time
tDINH
8
−
8
−
8
−
ns
LRCK Setup Time
tLRCKIS
8
−
8
−
8
−
ns
LRCK Hold Time
tLRCKIH
8
−
8
−
8
−
ns
−10
12.1
−10
14.6
−10
19.7
ns
−10
10
−10
11.2
−10
14.7
ns
I/O VOLTAGE(VDD2) = 1.7 V TO 1.95 V
DOUT Delay Time
tDOUT
I/O VOLTAGE(VDD2) = 2.7 V TO 3.6 V
DOUT Delay Time
tDOUT
www.onsemi.com
79
LC823450
SD Card Interface Timing
• [condition]
VDD1 = 0.93 V to 1.27 V, VDDSD0, VDDSD1,
VDDSD2 = 1.7 V to 1.95 V or 2.7 V to 3.6 V
External load 10 to 40 pF
Normal(Default) Mode
t PP
t WL
Clock
(from LSI)
t WH
t THL
t TLH
t IH
t ISU
In put
(to LSI)
Out put
(from LSI)
t ODLY(min)
tODLY(max)
Figure 26. Normal (Default) Mode
• [Applied pin]
♦
♦
♦
Clock : SDCLK0, SDCLK1, SDCLK2
Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output
Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
Table 43.
I/O Voltage (VDDSD0, VDDSD1, VDDSD2)
2.7 V to 3.6 V
External Load
10 pF to 40 pF
I/O Drivability
8 mA
Item
Symbol
Min
Max
Unit
Clock Frequency
fPP
0
25
MHz
Clock Low Time
tWL
10
−
ns
Clock High Time
tWH
10
−
ns
Clock Rise Time
tTLH
−
10
ns
Clock Fall Time
tTHL
−
10
ns
Input Set−up Time
(from SD to LSI)
tISU
5.9
−
ns
Input Hold−up Time
(from SD to LSI)
tIH
0
−
ns
Output Delay Time During
Data Transfer Mode
(from LSI to SD)
tODLY
5.1
27.8
ns
www.onsemi.com
80
LC823450
High−Speed Mode
t PP
t WL
Clock
(from LSI)
t WH
t THL
t TLH
t IH
t ISU
In put
(to LSI)
Out put
(from LSI)
tODLY
tODLY
(min)
(max)
Figure 27. High−Speed Mode
• [Applied pin]
♦
♦
♦
Clock : SDCLK0, SDCLK1, SDCLK2
Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output
Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
Table 44.
I/O Voltage (VDDSD0, VDDSD1, VDDSD2)
2.7 V to 3.6 V
External Load
10 pF to 40 pF
I/O Drivability
8 mA
Item
Symbol
Min
Max
Unit
Clock Frequency
fPP
0
45
MHz
Clock Low Time
tWL
7
−
ns
Clock High Time
tWH
7
−
ns
Clock Rise Time
tTLH
−
3
ns
Clock Fall Time
tTHL
−
3
ns
Input Set−up Time
(from SD to LSI)
tISU
5.9
−
ns
Input Hold−up Time
(from SD to LSI)
tIH
2.1
−
ns
Output Delay Time
(from LSI to SD)
tODLY
2.1
15.9
ns
www.onsemi.com
81
LC823450
SDR25 Mode
t PP
Clock
(from LSI)
t TLH
t THL
t IH
t ISU
In put
(to LSI)
Out put
(from LSI)
t ODLY(min)
tODLY(max)
Figure 28. SDR25 Mode
• [Applied pin]
♦
♦
♦
Clock : SDCLK0, SDCLK1, SDCLK2
Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output
Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
Table 45.
I/O Voltage (VDDSD0, VDDSD1, VDDSD2)
1.7 V to 1.95 V
External Load
10 pF to 30 pF
I/O Drivability
Item
10 mA
Symbol
Min
Clock Frequency
fPP
Clock Rise Time
tTLH
10 pF to 23 pF
8 mA
Max
Min
0
47
−
2.9
6 mA
Max
Min
Mix
Unit
0
47
−
2.9
0
44
MHz
−
2.9
ns
Clock Fall Time
tTHL
−
2.9
−
2.9
−
2.9
ns
Input Set−up Time
(from SD to LSI)
tISU
6.7
−
6.9
−
8.2
−
ns
Input Hold−up Time
(from SD to LSI)
tIH
0.9
−
0.9
−
0.4
−
ns
Output Delay Time
(from LSI to SD)
tODLY
0.9
11.4
0.9
12.6
0.9
16.2
ns
www.onsemi.com
82
LC823450
SDR50 Mode
t PP
Clock
(from LSI)
t THL
t TLH
t IH
t ISU
In put
(to LSI)
Out put
(from LSI)
t ODLY(min)
tODLY(max)
Figure 29. SDR50 Mode
• [Applied pin]
♦
♦
♦
Clock : SDCLK0, SDCLK1, SDCLK2
Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output
Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
Table 46.
I/O Voltage (VDDSD0, VDDSD1, VDDSD2)
1.7 V to 1.95 V
External Load
10 pF to 30 pF
I/O Drivability
Item
10 mA
Symbol
Min
Clock Frequency
fPP
Clock Rise time
tTLH
10 pF to 23 pF
8 mA
Max
Min
0
68
−
2.9
6 mA
Max
Min
Mix
Unit
0
63
−
2.9
0
52
MHz
−
2.9
ns
Clock Fall Time
tTHL
−
2.9
−
2.9
−
2.9
ns
Input Set−up Time
(from SD to LSI)
tISU
6.6
−
6.7
−
8.1
−
ns
Input Hold−up Time
(from SD to LSI)
tIH
0.9
−
0.9
−
0.4
−
ns
Output Delay Time
(from LSI to SD)
tODLY
0.9
11.2
0.9
12.4
0.9
16.1
ns
www.onsemi.com
83
LC823450
DDR50 Mode
t PP
t TLH
Clock
(from LSI)
t THL
t ISU
t IH
t ISU
t IH
Input
(to LSI)
t ODLY(min)
t ODLY(min)
t ODLY(max)
t ODLY(max)
Out put
(from LSI)
Figure 30. DDR50 Mode
• [Applied pin]
♦
♦
♦
♦
Clock
Output
Input
Input
: SDCLK0, SDCLK1, SDCLK2
: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output
: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
: SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
Table 47.
I/O Voltage (VDDSD0, VDDSD1, VDDSD2)
1.7 V to 1.95 V
External Load
10 pF to 30 pF
I/O Drivability
Item
10 mA
Symbol
Min
Clock Frequency
fPP
Clock Rise Time
tTLH
Clock Fall Time
10 pF to 23 pF
8 mA
Max
Min
0
31
−
2.9
tTHL
−
Input Set−up Time
(from SD to LSI)
tISU
Input Hold−up Time
(from SD to LSI)
Output Delay Time
(from LSI to SD)
6 mA
Max
Min
Mix
Unit
0
29
−
2.9
0
25
MHz
−
2.9
2.9
−
ns
2.9
−
2.9
ns
7.1
−
7.4
−
9.1
−
ns
tIH
1.4
−
1.4
−
1.1
−
ns
tODLY
0.9
11.8
0.9
13.2
0.9
16.6
ns
www.onsemi.com
84
LC823450
eMMC Interface Timing
• [condition]
VDD1 = 0.93 V to 1.27 V, VDDSD0, VDDSD1,
VDDSD2 = 1.7 V to 1.95 V or 2.7 V to 3.6 V
External load 10 to 40pF
Normal(Default) Mode
t PP
t WL
Clock
(from LSI)
t WH
t THL
t TLH
t IH
t ISU
In put
(to LSI)
Out put
(from LSI)
t ODLY(min)
t ODLY(max)
Figure 31. Normal (Default) Mode
• [Applied pin]
♦
♦
♦
Clock : SDCLK0, SDCLK1, SDCLK2
Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output
Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
Table 48.
I/O Voltage
(VDDSD0, VDDSD1, VDDSD2)
2.7 V to 3.6 V
External Load
10 pF to 40 pF
I/O Drivability
1.7 V to 1.95 V
10 pF to 30 pF
8 mA
10 mA
10 pF to 23 pF
8 mA
6 mA
Item
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Unit
Clock Frequency
fPP
0
26
0
26
0
26
0
26
MHz
Clock Low Time
tWL
10
−
10
−
10
−
10
−
ns
Clock High Time
tWH
10
−
10
−
10
−
10
−
ns
Clock Rise Time
tTLH
−
3
−
3
−
3
−
3
ns
Clock Fall Time
tTHL
−
3
−
3
−
3
−
3
ns
Input Set−up Time
(from SD to LSI)
tISU
6.9
−
8.3
−
8.7
−
10.3
−
ns
Input Hold−up Time
(from SD to LSI)
tIH
0.7
−
0
−
0
−
0
−
ns
Output Delay Time
(from LSI to SD)
tODLY
3.1
20.1
3.1
20.1
3.1
20.9
3.1
23.2
ns
www.onsemi.com
85
LC823450
High−Speed SDR Mode
t PP
t WH
t WL
Clock
(from LSI)
t THL
t TLH
t IH
t ISU
In put
(to LSI)
Out put
(from LSI)
t ODLY(min)
t ODLY(max)
Figure 32. High−Speed SDR Mode
• [Applied pin]
♦
♦
♦
Clock : SDCLK0, SDCLK1, SDCLK2
Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output
Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
Table 49.
I/O Voltage
(VDDSD0, VDDSD1, VDDSD2)
2.7 V to 3.6 V
External Load
10 pF to 40 pF
I/O Drivability
8 mA
1.7 V to 1.95 V
10 pF to 30 pF
10 mA
10 pF to 23 pF
8 mA
6 mA
Item
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Unit
Clock Frequency
fPP
0
43
0
43
0
43
0
37
MHz
Clock Low Time
tWL
7
−
7
−
7
−
7
−
ns
Clock High Time
tWH
7
−
7
−
7
−
7
−
ns
Clock Rise Time
tTLH
−
3
−
3
−
3
−
3
ns
Clock Fall Time
tTHL
−
3
−
3
−
3
−
3
ns
Input Set−up Time
(from SD to LSI)
tISU
5.5
−
6.2
−
6.7
−
8.6
−
ns
Input Hold−up Time
(from SD to LSI)
tIH
2.1
−
1.2
−
1.1
−
0
−
ns
Output Delay Time
(from LSI to SD)
tODLY
3.1
19.7
3.1
19.9
3.1
20.2
3.1
23.0
ns
www.onsemi.com
86
LC823450
High−Speed DDR Mode
t PP
t TLH
Clock
(from LSI)
t THL
t IH
t ISU
t IH
t ISU
Input
(to LSI)
t ODLY(min)
t ODLY(min)
t ODLY(max)
t ODLY(max)
Out put
(from LSI)
Figure 33. High−Speed DDR Mode
• [Applied pin]
♦
♦
♦
Clock : SDCLK0, SDCLK1, SDCLK2
Output : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] output
Input : SDCMD0, SDCMD1, SDCMD2, SDAT0[3:0], SDAT1[3:0], SDAT2[3:0] input
Table 50.
I/O Voltage
(VDDSD0, VDDSD1, VDDSD2)
2.7 V to 3.6 V
External Load
10 pF to 40 pF
I/O Drivability
8 mA
Item
1.7 V to 1.95 V
10 pF to 30 pF
10 mA
10 pF to 23 pF
8 mA
6 mA
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Unit
Clock Frequency
fPP
0
24
0
24
0
23
0
20
MHz
Clock rise time
tTLH
−
3
−
3
−
3
−
3
ns
Clock fall time
tTHL
−
3
−
3
−
3
−
3
ns
Input set−up time
(from SD to LSI)
tISU
7.0
−
7.4
−
7.7
−
10.2
−
ns
Input hold−up time
(from SD to LSI)
tIH
0.7
−
0.6
−
0.8
−
0
−
ns
tODLY
3.1
20.5
3.1
20.5
3.1
21.1
3.1
24.1
ns
Input set−up time
(from SD to LSI)
tISU
7.1
−
7.4
−
7.7
−
10.7
−
ns
Input hold−up time
(from SD to LSI)
tIH
1.3
−
1.4
−
1.4
−
0
−
ns
tODLY
2.6
17.8
2.6
17.6
2.6
18.5
2.6
22.2
ns
INPUT CMD
OUTPUT CMD
Output Delay time
(from LSI to SD)
INPUT DAT
OUTPUT DAT
Output Delay time
(from LSI to SD)
www.onsemi.com
87
LC823450
Digital Mic Timing
• [condition]
VDD1 = 0.93 V to 1.27 V, VDD2, VDDQSPI= 1.7 V to
1.95 V or 2.7 V to 3.6 V
External load 15 pF to 40 pF
tCY
DMCKO
tSU
tHLD
tSU
tHLD
DMDIN
Figure 34. Digital Mic Timing
• [applied pin]
♦
♦
Clock
Input
: DMCKO0, DMCKO1
: DMDIN0, DMDIN1
Table 51.
Item
Symbol
Min
Period of clock cycle (Note
67)
tCY
Clock duty
Typ
Max
Unit
−
3.25
MHz
60 : 40
40:60
Data setup time
tSU
40
−
ns
Data hold time
tHLD
0
−
ns
67. Internal clock and register setting.
UART Timing
• [condition]
VDD1 = 0.93 V to 1.27 V, VDDSD2= 1.7 V to 1.95 V or 2.7 V to 3.6 V
External load 10 pF to 30 Pf (VDDSD2 = 1.7 V to 1.95 V), 10 pF to 40 pF (VDDSD2 = 2.7 V to 3.6 V)
CTS Timing
Endod the last Stop Bit
Tsetupcts
Tdlycts
CTS1
TXD1
Start
bit
D0
D1
D2
D3
D4
D5
Figure 35. CTS Timing
www.onsemi.com
88
D6
Stop Stop
D7 Parity
bit Bit1 bit2
D5
D6
Stop
D7 Parity
bit
bit
LC823450
• [applied pin]
♦
♦
Input : CTS1
Output : TXD1
Table 52.
Item
Condition
Symbol
min
max
unit
Delay Time
Completing preparation to transmit the current TXD data by setting registers at CTS1 = high
From the negative edge
Tdlycts
−
6 T + 20
ns
Tsetupcts
3 T + 20
−
ns
CTS Setup Time
(not to transmit the next TXD data)
From end of the last StopBit
68. T: UART functional clock rate
69. In using hardware flow control by CTS/RTS, if the CTS setup time above is NOT met, the next TXD data will be transmitted at the time of
having prepared it regardless of the CTS level.
RTS Timing
End of the last Stop Bit
1.5 Bit
start
bit
RXD1
D0
D1
D2
D3
D4
D5
D6
D7
parity
bit
start
bit
D0
D1
D2
D3
D4
D5
D6
D7
stop
bit1
stop
bit2
parity
bit
stop
bit
Tdlyrts
RTS1
RTS timing
Figure 36. RTS Timing
• [applied pin]
♦
♦
Input : RXD1
Output : RTS1
Table 53.
Condition
Item
Delay Time
Receiving the current RXD data with 15 data
existing in Reception FIFO or Receiving the current RXD data without using Reception FIFO
From 1.5 Bit before end of the last StopBit
70. T: UART functional clock rate
www.onsemi.com
89
Symbol
min
max
unit
Tdlyrts
−
4 T + 20
ns
LC823450
APPLICATION
XTAL
For Oscillation
XIN
XOUT
R1
R2
C1
C2
Figure 37. For Oscillation
Table 54.
Value
XT1
XIN1/XOUT1
XTRTC
XIN32K/XOUT32K
Symbol
20 MHz
48 MHz
32.768 KHz
R1
1 MΩ
1 MΩ
10 MΩ
R2
0Ω
0Ω
0Ω
C1
3 pF
3 pF
10 pF
C2
3 pF
3 pF
10 pF
71. Optimize the circuit constant for each product when you use this oscillation cell and ask to the manufacturer of the crystal oscillator to
investigate (matching investigation) because the best circuit constant changes depending on the specification of the crystal oscillator used
and the ambient surrounding (parasitic capacitance etc. of an external substrate).
72. The values of parts are for reference. There is a possibility that the adjustment is needed according to the situation of the set.
73. The following may be needed as the anti−noise measures of oscillation circuit.
− Be adjacent as much as possible, and shorten wiring between elements such as this LSI and the crystal oscillator.
− GND of the oscillation circuit close to GND (VSS) of this LSI as much as possible.
− Do not bring the wiring pattern of the large current drive close around the oscillation circuit.
− Take wide pattern to avoid the effect of interference of other signals.
www.onsemi.com
90
LC823450
For Input from External Clock Source (XT1)
Do as follows when use the external clock signal that is
generated outside of LSI by the oscillation module, etc. The
specification about XTRTC is not available.
XOUT
XIN
Left open
Clock Input
Figure 38. For Input from External Clock Source (XT1)
• Input the signal of full amplitude to XIN (external
clock input)
Table 55. (FOR YOUR REFERENCE)
Item
Symbol
Min
Max
Unit
H Level Input Voltage
(Note 74)
VIH
VDDXT1 × 0.7
VDDXT1 + 0.3
V
L Level Input Voltage
(Note 74)
VIL
−0.3
VDDXT1 × 0.3
V
Hysteresis (Note 74)
VHYS
VDDXT1 × 0.1
VDDXT1 × 0.4
V
74. No VIH/VIL available to input cell of xtal oscillator.
• The xtal oscillator is supposed to be used with quartz
The schmitt input of xtal oscillator is compliant with
(JEDEC Standard JESD8−12A.01 [Normal Range]).
• There is a possibility of influencing the signal quality
when there is a long wire pattern on a circuit board of
XOUT (The terminal opens). Therefore, recommend to
cut the wire pattern on a circuit board or no wire pattern
on it.
resonator or ceramic resonator, we have no plan to
evaluate this LSI in case of external input to xtal
oscillator.
XTAL not Used
Do as follows when not use the oscillation cell.
XOUT
XIN
Left open
Input H
75. Supply the voltage of recommended operating range of VDDXT1/VSSXT1 (XIN1/XOUT1) even though XT1 is not used.
76. Supply the voltage of recommended operating range of VDDRTC/VSSRTC (XIN32K/XOUT32K), or recommended operating
range of Vdd1 even though XTRTC is not used.
Figure 39. XTAL not Used
www.onsemi.com
91
LC823450
PLL1 (System)
The figure below shows the PLL1 circuit. Place the
decoupling capacitor in the terminal neighborhood on the
AVSSPLL1
board, and keep low noise by apart from other power supply
lines.
VCNT1
AVDDPLL1
C4
+
R2
C3
R1
C2
C1
AVDDPLL1
AVSSPLL1
Figure 40. PLL1 (System)
Table 56. PLL1 (SYSTEM)
Symbol
Value1 (Note 78)
Value2 (Note 79)
Serial Number or Accuracy
R1
100 Ω
100 Ω
±5%
R2
*M Ω
*M Ω
±5%
C1
4.7 μF
0.1 μF
C2
0.047 μF
0.001 μF
C3
0.1 μF
0.1 μF
Capacitor: ±10%
Temperature: ±15%
(−20_C to +65_C)
C4
33 μF
33 μF
16CV33BS
77. C4: refers to the part of mounting on the catalog of our company (CV−B S Series).
78. appropriate value for Fref ≥ 32.768 kHz.
79. appropriate value for Fref ≥ 1 MHz.
80. Use R2 basically by unmounting.
The characteristic of PLL might be improved by mounting R2. Prepare the wire pattern.
81. The values of parts are for reference. There is a possibility that the adjustment is needed according to the situation of the set.
82. Connect with decoupling capacitor in the terminal neighborhood on the board, and keep low noise by apart from other power supply lines.
www.onsemi.com
92
LC823450
PLL2(Audio)
The figure below shows the PLL2 circuit. Place the
decoupling capacitor in the terminal neighborhood on the
AVSSPLL2
board, and keep low noise by apart from other power supply
lines.
VCNT2
AVDDPLL2
C4
+
R2
C3
R1
C2
C1
AVDDPLL2
AVSSPLL2
Figure 41. PLL2 (Audio)
Table 57. PLL2 (AUDIO)
Symbol
Value1 (Note 84)
Value2 (Note 85)
Serial Number or Accuracy
R1
120 Ω
560 Ω
±5%
R2
*M Ω
*M Ω
±5%
C1
4.7 μF
0.33 μF
C2
0.047 μF
0.015 μF
C3
0.1 μF
0.1 μF
Capacitor:±10%
Temperature:±15%
(−20_C to +65_C )
C4
33 μF
33 μF
16CV33BS
83. C4 : refers to the part of mounting on the catalog of our company (CV−B S Series).
84. appropriate value for Fre ≥ 6.4 kHz
85. appropriate value for Fref ≥ 38.4 kHz
86. Use R2 basically by unmounting.
The characteristic of PLL might be improved by mounting R2. Prepare the wire pattern.
87. The values of parts are for reference. There is a possibility that the adjustment is needed according to the situation of the set.
88. Connect with decoupling capacitor in the terminal neighborhood on the board, and keep low noise by apart from other power supply lines.
www.onsemi.com
93
LC823450
PLL3 (Audio)
The figure below shows the PLL3 circuit. Place the
decoupling capacitor in the terminal neighborhood on the
AVSSPLL2
board, and keep low noise by apart from other power supply
lines.
VCNT3
AVDDPLL3
C4
+
R2
C3
R1
C2
AVDDPLL3
C1
AVSSPLL2
Figure 42. PLL3 (Audio)
Table 58. PLL3 (AUDIO)
Symbol
Value
Serial Number or Accuracy
R1
120 Ω
±5%
R2
*M Ω
±5%
C1
4.7 μF
C2
0.047 μF
C3
0.1 μF
Capacitor:±10%
Temperature:±15%
(−20_C to +65_C )
C4
33 μF
16CV33BS
89. C4 : refers to the part of mounting on the catalog of our company (CV−B S Series).
90. Use R2 basically by unmounting.
The characteristic of PLL might be improved by mounting R2.
Place the wire pattern.
91. The values of parts are for reference. There is a possibility that the adjustment is needed according to the situation of the set.
92. Connect with decoupling capacitor in the terminal neighborhood on the board,
and keep low noise by apart from other power supply lines.
www.onsemi.com
94
LC823450
10Bit AD Converter
This LSI
ADC Analog Power Supply
AVDDADC
VRH (Note 95)
(Note 93)
AN5−0
VR (Note 94, 3)
(Note 94)
VRL (Note 95)
AVSSADC
ADC Analog Ground
93. It is important to get the correct ADC conversion result that the wiring resistance is accurate. Pay attention to keeping low noise.
It is recommended that the ceramic capacitor of the high frequency type to be used as a decoupling capacitor between AVDDADC and
AVSSADC.
Place the capacitor close to the terminal of LSI as much as possible so that the wiring length may be short as much as possible.
94. When the terminal VR is prepared (Package Code = “RA”, etc), the ADC conversion speed (operation clock frequency) is different
depending on the value of the capacitor used. Confirm specs of ADC.
95. VRH and AVddADC, VRL and AVssADC are connected in the package (Package Code = “TA”, “XA”, “XB”, “XC”, “XD”, etc). VR terminal
is open in the package.
Figure 43. 10Bit AD Converter
www.onsemi.com
95
LC823450
USB2.0 PHY
Refer to the LC823450−USB20PCB design guideline.
USB Device
Power IC
Power Supply to system
Power
(USB 3.3 V)
This LSI
AVDDUSBPHY2
Voltage Driver
AVSSUSBPHY
GPIOxx
Detect attach and detach
Interrupt
Common Mode
Choke Coil
Power
(USB 1.2 V)
USBDM
D−
USBDP
D+
ID
AVDDUSBPHY1
DVDDUSBPHY1
AVSSUSBPHY
VBUS
GND
USBRXT12
100 kΩ
or more
12 kΩ
(1% tolerance)
Indicate USB Device
96. DVDDUSBPHY1 Port not Available for some Products
Figure 44. USB Device
www.onsemi.com
96
LC823450
USB Host
Required for USB Host System
Power IC
Power
(USB 3.3 V)
Over Current Detect IC
This LSI
500 mA Max
AVDDUSBPHY2
GPIOxx
AVSSUSBPHY
GPIOxx
Power ON/OFF
Control
Voltage Driver
Over Current Detect
Interrupt
Common Mode
Choke Coil
Power
(USB 1.2 V)
USBDM
D−
USBDP
D+
ID
AVDDUSBPHY1
DVDDUSBPHY1
AVSSUSBPHY
VBUS
GND
USBRXT12
12 kΩ
(1% tolerance)
97. DVDDUSBPHY1 Port not Available for some Products
Figure 45. USB Host
www.onsemi.com
97
Indicate USB Host
LC823450
Class−D AMP
Power
+
0.1 μF
AVDDDAMPL
LOUT
0.1 μF
This LSI
220 μF or
more
Rd
0∼ 10 Ω
L
220 μΗ
220 μF
+
C
0.22 μF
AVSSDAMPL
Headphone L−ch
16 Ω
Ipp(Irms)
10 kΩ
Mut e
ROUT
AVSSDAMPR
0.1 μF
AVDDDAMPR
Rd
0∼ 10 Ω
Nch Power
FET
L
220 μΗ
220 μF
C
0.22 μF
Mut e
Headphone R−ch
16 Ω
10 kΩ
Ipp(Irms)
98. Add the bypass condenser (0.1 mF) between AVDDDAMPL and AVSSDAMPL, AVDDDAMPR and AVSSDAMPR as close as possible to
terminals.
99. Add the large electrolyte capacitor (220 mF or more recommended) to AVDDDAMPL, AVDDDAMPR terminal to reject the noise and reduce
the pumping phenomenon of Class−D AMP.
100. Check the voltage level of AVDDDAMPL, AVDDDAMPR and make sure not to exceed 1.65 V (recommended operating voltage) by using
playback of 20 Hz, 0db (full scale) sin wave.
101. The combination of L = 47 mH and C = 1 mF is acceptable.
102. Large volume of damping resister, Rd causes the drop of output voltage. Besides, Rd has a strong relationship between L and C, and,
the “Q” value depending on Rd, L and C determines the frequency characteristics. Therefore the resister value should be decided
depending on your real system. Please note that the peripheral constants should be considered including the DC resistance component.
103. When Class−D Amp terminal is used as GPO (General Purpose Output), it is not necessary to add LC filter circuit because of avoidance
of overvoltage supply though AVddDAMPL and AVddDAMPR can supply up to 1.95 V.
Figure 46. Class−D AMP
Prms = Irms ^ 2 × 15 = 7.53 (mW)
Output Power Calculation
[ condition ]
• The DC resistance element of the coil, capacitor is
small
• Maximum output amplitude = 90% (Theoretical Value
of Delta−sigma Circuit) to power supply of PWM
• Class−D AMP power supply (AvDDDAMPL,
AVDDDAMPR) = 1.2 V
• Class−D AMP Turning on resistance of internal
transistor(Ron) = 2 Ω
• Headphone load resistance(RL) = 15 Ω
• Series resistance(Rd) = 0 Ω
Power Supply
Class−D AMP power supply to (AVDDDAMPL,
AVDDDAMPR) must use a transient response and good
power supply. When the power supply where the transient
response is bad is used and the capacity of the capacitor is
small, a peculiar pumping phenomenon to Class−D AMP is
generated. The power supply voltage must not exceed the
recommended operating range when the pumping
phenomenon occurs.
Class−D AMP output is PWM. The power supply noise
affects the output of Class−D AMP.
Power sources which have large internal impedance such
as dry cell should not be directly connected to power supply
of Class−D AMP, and those which have large switching
noise such as switching regulator are not suitable and need
to be taken care of.
Assume the current that flows to the headphone to be Ipp:
Ipp = (1200 / 2) × 0.9 / (15 + 2) = 31.7 (mA)
Irms = Ipp / SQRT(2) = 22.4 (mA)
www.onsemi.com
98
LC823450
Digital Mic
Digital
Mic
R−ch
Config
This LSI
DMCKO0
(DMCKO1)
Digital
Mic
L−ch
Config
DMDIN0
(DMDIN1)
Figure 47. Digital Mic
I2C
Power
This LSI
2 kΩ
2 kΩ
(Appropriate resistor value depends on the communication speed. Refer to the
I2C specification for the calculation for the calculation of resistor value)
I2C−Device
SCL0
(SCL1)
SCL
SDA0
(SDA1)
SDA
I2C−Device
SCL
SDA
Figure 48. I2C
www.onsemi.com
99
LC823450
S−Flash I/F
Power
This LSI
VDDQSPI
Serial flash memory
GPIO03(QSCS)
power
CS
SCLK
SCK1
SDI1(QIO0)
SI(SIO0)
SPW1(QIO2)
WP(SIO2)
HOLD(SIO3)
SHOLD1(QIO3)
SO(SIO1)
SDO1(QIO1)
104. QSCS is pull up internally after hard reset (the state of figure).
Pull up can be off by register setting.
105. Signals name in parenthesis is name during 4bit mode.
VSS
Figure 49. S−Flash I/F
RTC (General RTC)
VDDRTC
Volt age det ect or
This LSI
VDDRTC
Det ect drop
of VDDRTC
VDET
VDD1
Volt age det ect or
VDD2
BACKUPB
Det ect drop of
VDD1 and VDD2
power
RTCINT
Timer event out put
Usage) Release sleep and power on
VSSRTC
Figure 50. RTC (General RTC)
www.onsemi.com
100
LC823450
RTC (KeyInt RTC)
VDDRTC
This LSI
VDDRTC
Voltage detector
Detect drop
of VDDRTC
VDET
Voltage detector
VDD1
VDD2
BACKUPB
Detect drop of
VDD1 and VDD2
Wakeup
event input
KEYINT[2:0]
power
RTCINT(PWRON )
Connet to enable of
Regulator
VSSRTC
Figure 51. RTC (KeyInt RTC)
JTAG
This LSI
TCK
JTAG
Connector
TCK
TMS
TMS
TDI
TDI
TDO
TDO
Figure 52. JTAG
www.onsemi.com
101
106. LPDSP32 reset is available by reset command using debugger through JTAG. The connection of reset signal between JTAG and LSI is
not
mandatory.
107. Internal pull down resistor can be used if the
pull down resistors are enabled before the reset
release of LPDSP32.
108. JTAG signals should be pull up or down for
avoiding being left open if JTAG function is not
used and JTAG signals are in input state.
109. Regarding JTAG signal connection, refer to
the reference circuit from ICE tool vendor also.
LC823450
SWD
This LSI
SWD
Connect or
SVDCLK
SWDCK
VDD2
SWDIO
SWDIO
SWO
SDO
NRES
nSRST
VDD2
R
C
110.
111.
nRESET
(Open Drain
R, C Value should be determined based on the
NRES input timing requirement
Pull up and pull down can be implemented by usgin internal registor.
Regarding SWD conneter signal, refer to the document about ICE tool
Figure 53. SWD
BMODE[1:0]
POWER
This LSI
Power or Ground
1 kΩ
or
470 kΩ
VDD2
BMODE0
BMODE1
1 kΩ
or
470 kΩ
VSS
Power or Ground
112. Don’t put capacitance on BMODE pin Don’t use long pattern on
board. Otherwise these factors cause wrong BMODE level decision.
Figure 54. BMODE[1:0]
www.onsemi.com
102
LC823450
APPLICATION DIAGRAM
Figure 55. Application Diagram
www.onsemi.com
103
LC823450
INTERNAL POWER DOMAIN CONTROL
This LSI has eight power isolated region of internal core
for leakage current reduction, these can be power supply
OFF separately. Power isolated region ISOLATED−X (X
means one of the eight region ISOLATED A to I.
ISOLATED F doesn’t exist) described in Figure 37. Power
ON / OFF for each power domain is controlled by the
appropriate bit of System Controller of power control
register (LSISTBY). However, to control the power control
register (LSISTBY), also control ISOLATION control
register (ISOCNT) as necessary. Please refer to the
ProgrammersModel_SystemController for details.
Each power isolation region and its contents, the flag of
the corresponding power control register (LSISTBY) and
power control register (LSISTBY) is as follows.
Table 59.
Name
Content
LSISTBY
ISOCNT
ISOLATED−A
Audio Block
Bit0 STBYA
Bit0 ISOCNTA
ISOLATED−B
Internal SRAM(seg 3/4/5)
Bit0 STBYB
Bit0 ISOCNTB
ISOLATED−C
Internal SRAM(seg 6/7/8)
Bit0 STBYC
Bit0 ISOCNTC
ISOLATED−D
Internal SRAM(seg 9)
220KB LPDSP32 ROM
Bit0 STBYD
Bit0 ISOCNTD
ISOLATED−E
USB 2.0 Holt Controller
SRAM for USB
Bit0 STBYE
Bit0 ISOCNTE
ISOLATED−G
Cache for S−Flash I/F
Bit0 STBYG
Bit0 ISOCNTG
ISOLATED−H
SD Card I/F
Memory Stick I/F
Bit0 STBYH
Bit0 ISOCNTH
ISOLATED−I
Internal ROM 256KB
Bit0 STBYI
Bit0 ISOCNTI
POWER SUPPLY SEQUENCE
Background
Power Supply Group
The basic sequence of power on/off of power supply is the
following order.
(Simultaneous power on/off is acceptable)
• Power on Vdd*(Internal) → Vdd*(IO) → Vsig(Signal)
• Power off Vsig(Signal) → Vdd*(IO) → Vdd*(Internal)
1. Internal core, analog power supply (1V power
supply)
Vdd1, VddXT1, AVddPLL1, AVddPLL2,
AVddUSBPHY1, DVddUSBPHY1
2. External IO power supply (3V power supply)
Vdd2, VddSD0, VddSD1, VddSD2, VddQSPI
AVddUSBPHY2, AVddADC, AVddPLL3
AVddDAMPL, AVddDAMPR
3. RTC power supply
VddRTC
Power on of Vdd*(IO) while Vdd *(Internal) are power
off might generate the glitch on IO signals and flow of
through current.
To avoid it, the sequence mentioned above is recommended
as the basic sequence.
(Dedicated power supply and sequence is dedicated
power on/off sequence is described in the following
sections)
Recommendation
Following sequence is recommended (Simultaneous
power on/off is acceptable).
• Power on 1 → 2 → Vsig(signal)
• Power off Vsig(signal) → 2 → 1
RTC Terminal Control Sequence
A power supply sequence and other terminal control
sequence of RTC are described as follows.
NOTE: The sequence of 1(Internal) → 2(IO) causes LSI
hard reset and prevent from making IO glitch
3(RTC) has dedicated power supply and
sequence which is described on the following
section.
www.onsemi.com
104
LC823450
General RTC Mode (RTCMODE = 1)
When only RTC operates, it is necessary to detect the drop of the voltage of Vdd1 and Vdd2 power supply, and set BACKUPB
to Low which isolates VddRTC Domain from Vdd1 Domain.
Moreover, it is necessary to detect the drop of the voltage of VddRTC power supply, and set VDET to Low. (The RTC
operation stops).
VDD2
2.7 V
Min 0 ns
1
NRES
0.25 × VDD2
VDDRTC
VDDRTC
VDD1
VDD1
0.93 V
2
Min 0 ns
BACKUPB
VDET
XIN32K
Min 0 ns
0.2 × VDDRTC
0.2 × VDDRTC
0.7 × VDDRTC
…
0.2 × VDDRTC
113.
VDD2
1 & 2 is a reset condition of the
internal logic circuit.
Please refer to a chapter of Power
supply sequence during the
period when you should meet
these 2 conditions.
Internal control logic for isolation.
Figure 56.
ALL OUTPUT
ALL INPUT
VDDRTC Domain
VDD1 Domain
ALL INPUT
ALL OUTPUT
BACKUPB
114.
VDD1 can be shut down while BACKUPB = Low
Figure 57.
www.onsemi.com
105
LC823450
KeyInt RTC Mode (RTCMODE = 0)
By the master command from Cortex−M3, internal sequencer of RTC controls BACKUPB signal for isolation and power
off. KEYINT input or internal RTCINT signal can generate power on sequence. Power off sequence using BACKUPB is also
available for activation of power off by external source.
It is necessary to detect the drop of the voltage of VDDRTC power supply, and set VDET to Low. (The RTC operation stops).
VDET
S0
S1
S2
INIT
Wait for
Xt al
oscillat ion
S3
Wait for
VDD1
Power ON
PWRON
NOP
(RTCINT − HiZ)
S8
S4
Wait for
KEYINT or
Int ernal RTCINT
Sequencer runs on XIN32K
and makes st at e t ransit ion
ISOLATOR off
if
S7
S6 RTCMASTER
PWROFF
(RTCINT = L)
ISOLATOR
on
S5
Release Cort ex−M3 Core0 reset
Wait for RTC master command
XIN32K
STATE (Internal)
S0
S1
S2
S3
S4
S5
VDET
RTCINT
(PWRON)
ISOLATOR control
(Internal 1: off 0: on)
32 kH clk to
VDD1 Power Area
(Internal)
RESET to VDD1 Power Area
(internal 1: release, 0: reset)
XIN32K
STATE
(Internal)
Any St at e
BACKUPB
ISOLATOR control
(Internal 1: off 0: on)
32 kH clk to
VDD1 Power Area
(Int ernal)
RESET to VDD1 Power Area
(internal 1: release, 0: reset)
Figure 58.
www.onsemi.com
106
S5
S6
S7
S8
S1
LC823450
THE GUIDANCE OF POWER SUPPLY CONTROL (RECOMMENDATION)
The Guidence in Terms of Power on Wave Form
Power supply control should keep at least one of the
Power on wave form should keep the guidance below.
guidances below, and make sure no problem for mass
production based on customer side evaluations.
Power supply electric potential
− 0.1 V
0.6 V or less
More than 600 μs
0V
No care
Figure 59.
When the voltage suddenly stands up at the time of power
supply injection, please make the voltage to arrive at it less
than 0.6 V. Please spend time beyond 600 μs and increase the
voltage from the voltage which rose momentarily to the
power supply electric potential – 0.1 V. When the voltage
does not suddenly rise and stands up to power supply electric
potential linearly, please spend time beyond 600 μs and
increase the voltage from 0 V to the power supply electric
potential.
nearest point of power supply pin.
Parasitic inductance L1 and L2 should be equal to or below
the value described in the table below. In addition, as for the
value of L1 of the WLP package, it becomes the value that
added 4nH to value of L1 of the table.
The inductance can be calculated from the width:W[mm],
thickness: H[mm] and length: L[mm] of wiring on board,
and affect layour of this LSI and bypass condenser.
Refer to “The formula to calculate parasitic inductance”
to calculate indactance.
The Guidence in Terms of the Placement of Bypass
Condenser
Place bypass condenser 0.1 μF or more at the nearest point
of each power supply pin, and place power circuit at the
L1
L2
This LSI
Bypass capacitor
Figure 60.
www.onsemi.com
107
power
circuit
LC823450
Table 60.
FBGA
(Ball)
TQFP
(Pin No)
WLP
(Ball)
D2
69
A2
F2
75
PIN NAME
L1
(FBGA/TQFP/WLP)
[nH]
L2
(FBGA/TQFP, WLP)
[nH]
Bypass
Capacitor
(FBGA/TQFP, WLP)
[mF]
Power Supply Range
Vdd2
B4
− / 4/ 8
160 / 50
- / 0.1
under 2 V case
− /1.5 / 5.5
160 / 50
− / 0.1
equal 2 V or more case
A5
AVddUSBPHY1
−/4/8
160 / 80
− / 0.1
−
M2
91
A9
AVddPLL1
−/4/8
160 / 80
− / 0.1
−
R13
120
K12
AVddPLL2
−/4/8
160 / 80
− / 0.1
−
−
−
J12
AVddPLL3
− / 6 / 10
- / 80
− / 0.1
−
R7
113
G11
AVddDAMPR
− / 8 / 12
160 / 160
− / 0.1
−
R8
114
G12
AVddDAMPL
− / 8 / 12
160 / 160
− / 0.1
−
P15
2
N12
Vdd2
B1
40 / 8 / 12
160 / 160
0.01 / 0.01
under 2 V case
40 / 6 / 10
160 / 80
0.01 / 0.1
equal 2 V or more case
R14
127
M12
Vdd2
P8
− / 8 / 12
160 / 160
0.01 / 0.01
under 2 V case
− / 6 / 10
160 / 80
0.01 / 0.1
equal 2 V or more case
Vdd2
P6
− / 16 / 20
160 / 160
0.01 / 0.01
under 2 V case
− / 6 / 10
160 / 160
0.01 / 0.01
equal 2 V or more case
Vdd2
P6
− / 16 / 20
160 / 160
0.01 / 0.01
under 2 V case
− / 6 / 10
160 / 160
0.01 / 0.01
equal 2 V or more case
Vdd2
P6
40 / 16 / 20
160 / 160
0.01 / 0.01
under 2 V case
40 / 6 / 10
160 / 160
0.01 / 0.01
equal 2 V or more case
−
P4
P5
P8
95
99
108
A12
C11
E11
H2
80
D6
AVddUSBPHY2
12 / 12 / 16
160 / 160
0.01 / 0.01
J2
83
C7
AVddUSBPHY2
12 / 12 / 16
160 / 160
0.01 / 0.01
−
D14
28
N2
Vdd2
B2
− / 16 / 20
160 / 160
− / 0.01
under 2 V case
− / 6 / 10
160 / 160
− / 0.01
equal 2 V or more case
C9
49
H1
Vdd2
B3
16 / 16 / 20
160 / 160
0.01 / 0.01
under 2 V case
16 / 16 / 20
160 / 160
0.01 / 0.01
equal 2 V or more case
C12
31
N1
VddSD0
32 / 32 / 36
160 / 160
0.01 / 0.01
−
D8
50
H2
VddRTC
− / 16 / 20
160 / 160
− / 0.01
−
A6
57
E2
AVddADC
− / 32 / 36
160 / 160
− / 0.01
−
L13
5
L9
Vdd1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
G14
9
L8
VddQSPI
40 / 40 / 44
160 / 160
0.01 / 0.01
−
F14
20
N5
VddSD1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
E13
26
L4
Vdd1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
D12
40
L1
VddSD2
40 / 40 / 44
160 / 160
0.01 / 0.01
−
A9
47
J1
Vdd1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
E3
74
B4
Vdd1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
H3
84
D7
AVddUSBPHY1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
K2
86
B8
VddXT1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
L4
90
E8
Vdd1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
P9
110
G10
Vdd1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
P11
121
G9
Vdd1
40 / 40 / 44
160 / 160
0.01 / 0.01
−
L15
−
−
Vdd2
B1
−/−/-
160 / −
−/−
under 2 V case
−/−/−
160 / −
−/−
equal 2 V or more case
Vdd2
B1
40 / − / −
160 / −
0.01 / −
under 2 V case
40 / − / −
160 / −
0.01 / −
equal 2 V or more case
Vdd2
B2
-/−/−
160 / −
−/−
under 2 V case
-/−/−
160 / −
−/−
equal 2 V or more case
Vdd2
B4
-/−/−
160 / −
−/−
under 2 V case
-/−/−
160 / −
−/−
equal 2 V or more case
Vdd2
B4
40 / − / −
160 / −
0.01 / −
under 2 V case
40 / − / −
160 / −
0.01 / −
equal 2 V or more case
J13
B16
B2
F3
−
−
−
−
−
−
−
−
www.onsemi.com
108
LC823450
Table 60. (continued)
L2
(FBGA/TQFP, WLP)
[nH]
Bypass
Capacitor
(FBGA/TQFP, WLP)
[mF]
FBGA
(Ball)
TQFP
(Pin No)
WLP
(Ball)
PIN NAME
L1
(FBGA/TQFP/WLP)
[nH]
E2
−
−
DVddUSBPHY1
40 / − / −
160 / -
0.01 / −
K3
−
−
DVddUSBPHY1
40 / − / −
160 / −
0.01 / −
P1
−
−
Vdd2
B6
40 / − / −
160 / −
0.01 / −
under 2 V case
40 / − / −
160 / −
0.01 / −
equal 2 V or more case
Power Supply Range
P10
−
−
Vdd1
40 / − / −
160 / −
0.01 / −
−
N12
−
−
Vdd2
B8
40 / − / −
160 / −
0.01 / −
under 2 V case
40 / − / −
160 / −
0.01 / −
equal 2V or more case
ƪ ǒW 2L) HǓ ) 0.2235ǒW )L HǓ ) 0.5ƫ mH
The formula to calculate parasitic inductance (for your
reference):
0.0002L ln
(eq. 1)
L
W
H
Figure 61.
Rush Current
This LSI has the circuits to protect from electrostatic
discharge. The rush current flows in accordance with the
steepness of rising curve of power supply.
ORDERING INFORMATION
Package
Shipping (Qty / Packing)†
LC823450TA−2H
TQFP128 14x14 / TQFP128L
(Pb−Free / Halogen Free)
450 / Tray JEDEC
LC823450XATBG
WLCSP154, 5.52x5.33
(Pb−Free / Halogen Free)
1000 / Tape & Reel
LC823450XBTBG
WLCSP154, 5.52x5.33
(Pb−Free / Halogen Free)
1000 / Tape & Reel
LC823450XCTBG
WLCSP154, 5.52x5.33
(Pb−Free / Halogen Free)
1000 / Tape & Reel
LC823450XDTBG
WLCSP154, 5.52x5.33
(Pb−Free / Halogen Free)
1000 / Tape & Reel
LC823450RAH−2H
LFBGA240
(Pb−Free / Halogen Free)
840 / Tray JEDEC
LC823450RBH−2H
LFBGA240
(Pb−Free / Halogen Free)
840 / Tray JEDEC
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Arm, the Arm logo, AMBA, and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere.
Bluetooth is a registered trademark of Bluetooth SIG.
www.onsemi.com
109
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
LFBGA240, 11x11
CASE 566EY
ISSUE O
DATE 05 NOV 2014
SCALE 1:1
PIN A1
INDICATOR
D
ÈÈ
ÈÈ
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b IS MEASURED AT THE MAXIMUM
SOLDER BALL DIAMETER PARALLEL TO DATUM C.
4. COPLANARITY APPLIES TO SPHERICAL CROWNS
OF SOLDER BALLS.
5. DATUM C, THE SEATING PLANE, IS DEFINED BY
THE SPHERICAL CROWNS OF SOLDER BALLS.
A B
DIM
A
A1
A2
A3
b
D
E
e
E
2X
0.10 C
0.10 C
2X
A2
A
0.10 C
NOTE 4
GENERIC
MARKING DIAGRAM*
TOP VIEW
0.10 C
A3
C
A1
SIDE VIEW
MILLIMETERS
MIN
MAX
1.31
−−−
0.20
0.30
0.70 REF
0.26 REF
0.30
0.40
11.00 BSC
11.00 BSC
0.65 BSC
SEATING
PLANE
NOTE 5
e/2
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
AWLYYWWG
CCCCC
A
WL
YY
WW
G
CC
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
= Country of Origin
e
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
e
RECOMMENDED
SOLDERING FOOTPRINT*
0.65
PITCH
A1
1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16
BOTTOM VIEW
240X
b
0.15 M C A B
0.08 M C
NOTE 3
PACKAGE
OUTLINE
0.65
PITCH
240X
0.35
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
DOCUMENT NUMBER:
98AON92743F
Electronic versions are uncontrolled except when
accessed directly from the Document Repository. Printed
STATUS: ON SEMICONDUCTOR STANDARD
versions are uncontrolled except when stamped
“CONTROLLED COPY” in red.
NEW STANDARD:
© Semiconductor Components Industries, LLC, 2002
Case Outline Number:
http://onsemi.com
LFBGA240, 11X11
DESCRIPTION:
October, 2002
− Rev. 0
PAGE 1 OFXXX
2
1
DOCUMENT NUMBER:
98AON92743F
PAGE 2 OF 2
ISSUE
O
REVISION
RELEASED FOR PRODUCTION. REQ. BY I. CAMBALIZA.
DATE
05 NOV 2014
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
© Semiconductor Components Industries, LLC, 2014
November, 2014 − Rev. O
Case Outline Number:
566EY
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
WLCSP154, 5.52x5.33
CASE 567LD
ISSUE A
DATE 28 OCT 2015
SCALE 2:1
ÈÈ
ÈÈ
PIN A1
REFERENCE
E
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO SPHERICAL
CROWNS OF THE SOLDER BALLS.
B
BACK
COAT
DIM
A
A1
A3
b
D
E
e
A3
D
A
2X
0.03 C
0.03 C
2X
DETAIL A
TOP VIEW
DETAIL A
MILLIMETERS
MIN
MAX
−−−
0.73
0.18
0.24
0.04 REF
0.23
0.29
5.52 BSC
5.33 BSC
0.40 BSC
A
0.10 C
RECOMMENDED
SOLDERING FOOTPRINT*
0.05 C
NOTE 3
C
SIDE VIEW
A1
SEATING
PLANE
A1
PACKAGE
OUTLINE
e
e/2
N
M
L
K
J
H
G
F
E
D
C
B
A
0.40
PITCH
e
154X
0.22
0.20
154X
1 3 5 7 9 11
2 4 6 8 10 12
BOTTOM VIEW
DOCUMENT NUMBER:
98AON93273F
b
0.05 C A B
0.03 C
0.40
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
Electronic versions are uncontrolled except when
accessed directly from the Document Repository. Printed
STATUS: ON SEMICONDUCTOR STANDARD
versions are uncontrolled except when stamped
“CONTROLLED COPY” in red.
NEW STANDARD:
© Semiconductor Components Industries, LLC, 2002
Case Outline Number:
http://onsemi.com
WLCSP154, 5.52X5.33
DESCRIPTION:
October, 2002
− Rev. 0
PAGE 1 OFXXX
2
1
DOCUMENT NUMBER:
98AON93273F
PAGE 2 OF 2
ISSUE
REVISION
DATE
O
RELEASED FOR PRODUCTION. REQ. BY M. MACARAIG.
14 JAN 2015
A
ADDED RANGE FOR BALL POST DIAMETER FROM 0.20MM TO 0.22MM ON
RECOMMENDED SOLDERING FOOTPRINT. REQ. BY M. MACARAIG.
28 OCT 2015
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
© Semiconductor Components Industries, LLC, 2015
October, 2015 − Rev. A
Case Outline Number:
567LD
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
TQFP128 14x14 / TQFP128L
CASE 932BA
ISSUE A
DATE 30 APR 2015
GENERIC
MARKING DIAGRAM*
XXXXXXXXXXX
XXXXXXXXXXX
AWLYYWWG
A
WL
YY
WW
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
DOCUMENT NUMBER:
STATUS:
98AON67112E
ON SEMICONDUCTOR STANDARD
NEW STANDARD:
© Semiconductor Components Industries, LLC, 2002
October, DESCRIPTION:
2002 − Rev. 0
http://onsemi.com
TQFP128 14X14 / TQFP128L 1
Electronic versions are uncontrolled except when
accessed directly from the Document Repository. Printed
versions are uncontrolled except when stamped
“CONTROLLED COPY” in red.
Case Outline Number:
PAGE 1 OFXXX
2
DOCUMENT NUMBER:
98AON67112E
PAGE 2 OF 2
ISSUE
REVISION
DATE
O
RELEASED FOR PRODUCTION FROM SANYO ENACT# S−508 TO ON
SEMICONDUCTOR. REQ. BY D. TRUHITTE.
29 FEB 2012
A
REDREW DRAWING TO JEDEC STANDARDS. ADDED SOLDERING FOOTPRINT
AND MARKING DIAGRAM. REQ. BY I. CAMBALIZA.
30 APR 2015
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
© Semiconductor Components Industries, LLC, 2015
April, 2015 − Rev. A
Case Outline Number:
932BA
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
www.onsemi.com
1
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative