Ordering number : ENA1954A
LC88F85D0A
CMOS IC
FROM 256K byte, RAM 8K byte on-chip
16-bit 1-chip Microcontroller
http://onsemi.com
Overview
The LC88F85D0A is a 16-bit microcomputer that, centered around an Xstormy16 CPU core, integrates on a single
chip a number of hardware features such as 256K bytes of flash ROM (onboard programmable), 8K bytes of RAM,
five 16-bit timers, a time base timer, a synchronous SIO interface with automatic transfer function, a single-master
I2C/synchronous SIO interface, two asynchronous SIO (UART) interfaces, a remote control receiver, LCD dedicated
RAM, an LCD dot-matrix driver, a 12-bit-resolution 8-channel AD converter, a watchdog timer, a system clock
frequency divider, and a 35-source 10-vector interrupt feature.
Features
Xstromy16 CPU
• 4G-byte address space
• General-purpose registers: 16 bits × 16
Flash ROM
• Onboard programmable with a wide range of supply voltages: 3.0 to 5.5V
• Block erasable in 512-byte/1K-byte units
• Data writing in 2-byte units
• 262144 × 8 bits
RAM
• Data: 8192 × 8 bits
• LCD display: 128 × 16 bits
* This product is licensed from Silicon Storage Technology, Inc. (USA).
Semiconductor Components Industries, LLC, 2013
May, 2013
Ver.1.10
42512HKIM 20120328-S00010 No.A1954-1/31
LC88F85D0A
Minimum instruction cycle time (tCYC)
• 100ns (10MHz)
VDD = 4.5 to 5.5V
• 125ns (8MHz)
VDD = 3.0 to 5.5V
• 500ns (2MHz)
VDD = 2.0 to 5.5V
Ports
• Normal withstand voltage I/O ports
Ports whose I/O direction specifiable in 1-bit units:
20 (P0n, P1n, P20 to P23)
• LCD (Pins COM16/SEG0 to COM31/SEG15 are multiplexed with COM and SEG.)
LCD driver bias power supply pins
4 (VLCD1 to VLCD4)
Step-up capacitor pins
2 (CUP00, CUP01)
16 common mode
Segment output
64 (SEG0 to SEG63)
Common output
16 (COM0 to COM15)
32 common mode
Segment output
48 (SEG16 to SEG63)
Common output
32 (COM0 to COM31)
• Oscillation dedicated ports
4 (XT1, XT2, CF1, CF2)
• Reset pin
1 (RESB)
• TEST pin
1 (TEST)
• LCD port power pins
2 (LCDVSS0, LCDVSS1)
• Power pins
2 (VDD, VSS)
LCD
• LCD power supply
• Number of dots
• Contrast
• LCD frame frequency
: Capacitor step-up type
: 1024 (64 segments × 16 commons) / 1536 (48 segments × 32 commons)
: Selectable from 16 levels
: Selectable from 4 frequencies
Timers
• Timer 0: 16-bit timer that supports PWM/toggle outputs
With 5-bit prescaler
8-bit PWM × 2 / 8-bit timer + 8-bit PWM split mode selectable
Clock source selectable from system clock, OSC0, OSC1, and internal RC oscillator
• Timer 1: 16-bit timer with a capture register
With 5-bit prescaler
Can be divided into 8-bit timer × 2 channels
Clock source selectable from system clock, OSC0, OSC1, and internal RC oscillator
• Timer 3: 16-bit timer that supports PWM/toggle outputs
With 8-bit prescaler
8-bit timer × 2 channels / 8-bit timer + 8-bit PWM split mode selectable
Clock source selectable from system clock, OSC0, OSC1, and external events
• Timer 4: 16-bit timer that supports toggle output
Clock source selectable from system clock and prescaler 0
• Timer 5: 16-bit timer that supports toggle output
Clock source selectable from system clock and prescaler 0
* The prescaler 0 consists of 4 bits and its clock source is selectable from the system clock, OSC0, and OSC1.
• Base timer
The clock can be selected from OSC0 (32.768kHz crystal oscillator) and the frequency-divided output of the
system clock.
Interrupts can be generated in 7 time schemes.
Realtime clock (RTC)
Calendar function from January 1, 2000 to December 31, 2799 (with automatic leap year compensation)
Independent counter configuration for century, year, month, day, hour, minute, and second
Programmable count clock correction function
No.A1954-2/31
LC88F85D0A
Serial interfaces
• SIO0: 8-bit synchronous SIO
LSB first/MSB first selectable
Supports communication of less than 8 bits (1 to 8 bits specifiable).
Built-in 8-bit baudrate generator (transfer clock cycles of 4 tCYC to 512 tCYC)
Automatic continuous data transfer (9 to 32768 bits specifiable in 1-bit units)
Interval function (interval time specifiable in 0 to 64 tSCK units)
Wakeup function
• SMIIC0: Single-master I2C/8-bit synchronous SIO
Mode 0: Single-master master mode communication
Mode 1: 8-bit synchronous serial I/O (MSB first)
• UART0
Data length: 8 bits (LSB first)
Start bits: 1 bit
Stop bits: 1 bit
Parity bits: None/even parity/odd parity
Transfer rate: 4/8 tCYC
Baudrate clock source: The P07 input signal is used as a 1 cycle signal (T0PWMH can be used as the clock
source) or a timer 4 period.
Full duplex communication
• UART2
Data length: 8 bits (LSB first)
Start bits: 1 bit
Stop bits: 1/2 bit
Parity bit: None/even parity/odd parity
Transfer rate: 8 to 4096 tCYC
Baudrate clock source: System clock/OSC0/OSC1/P21 input signal
Wakeup function
Full duplex communication
AD converter
8/12-bit resolution selectable
Analog inputs: 12 channels
Comparator mode
Automatic reference voltage generation
Watchdog timer
Runs on the base timer + internal watchdog timer dedicated counter.
Interrupt or reset signals selectable
Infrared remote control receiver
Noise rejection function
(Noise filter time constant: Approx. 120μs when the 32.768kHz crystal oscillator is selected as the reference
clock source)
Supports PPM (Pulse Position Modulation), Manchester and other encoding systems.
HOLDX mode release function
Interrupts (peripheral function)
Either "Normal" or "LC888300 Compatible" mode is selectable by user option.
* Note: The "LC888300 Compatible" mode is an option that is available to provide compatibility between this model
and the LC888300. It is to be unavailable in future developed models.
Provides three levels of multiplex interrupt control. Any interrupt request of the level equal to or lower than the
current interrupt is not accepted.
When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level
takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector
address takes precedence.
No.A1954-3/31
LC88F85D0A
• Normal mode: 35 sources (15 modules), 10 vectors
No.
Vector
Interrupt Module
1
08000H
2
08004H
Base timer (2)
3
08008H
Timer 0 (2)
4
08018H
Timer 1 (2)/UART2 (4)
5
0801CH
SMIIC0 (1)
6
08020H
Timer 3 (2)/infrared remote control receiver (4)
Watchdog timer (1)
7
08024H
Timer 4 (1)
8
08030H
ADC (1)/timer 5 (1)
9
08038H
SIO0 (2)
10
0803CH
Port 0 (3)/RTC2 (1)/SEGINT (8)
• LC888300 Compatible mode: 35 sources (15 modules), 13 vectors
No.
Vector
1
08000H
Interrupt Module
Watchdog timer (1)
2
08004H
Base timer (2)
3
08008H
Timer 0 (2)
4
08018H
SIO0 (2)
5
0801CH
Timer 1 (2)
6
08020H
UART2 (4)
7
08024H
Timer 3 (2)
8
08028H
Timer 4 (1)
9
0802CH
Timer 5 (1)
10
08030H
ADC (1)
11
08034H
SMIIC0 (1)
12
08038H
Infrared remote control receiver (4)
13
0803CH
Port 0 (3)/RTC2 (1)/SEGINT (8)
• Priority levels X > H > L
• When interrupts of the same level occur at the same time, an interrupt with a smaller vector address is given priority.
• The number in parentheses indicates the number of sources in a module.
Subroutine stack: 8K-byte RAM area
• Subroutine calls that automatically save the PSW, interrupt vector call: 6 bytes
• Subroutine calls that do not automatically save the PSW: 4 bytes
Multiplication/division instructions
• 16 bits × 16 bits
(18 tCYC execution time)
• 16 bits ÷ 16 bits
(18 to 19 tCYC execution time)
• 32 bits ÷ 16 bits
(18 to 19 tCYC execution time)
■Oscillator circuits
• RC oscillator circuit (internal):
• CF oscillator circuit:
• RC oscillator circuit (external RCR1):
• Crystal oscillator circuit (Rf built-in):
• RC oscillator circuit (external RCR0):
• SLRC oscillator circuit (internal):
For system clock
For system clock (OSC1)
For system clock (OSC1)
For low-speed system clock (OSC0) (option available)
For low-speed system clock (OSC0)
For system clock (used during exception processing)
■System clock frequency divider function
• Can run on low consumption current.
• Supports frequency-dividing of 1/1 to 1/128 of the system clock
Standby function
• HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
1) Oscillation is not halted automatically.
2) HALT mode is released by a system reset or an interrupt .
Continued on next page.
No.A1954-4/31
LC88F85D0A
Continued from preceding page.
• HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
1) OSC1, RC, and OSC0 oscillations automatically stop.
2) There are five ways of releasing the HOLD mode:
Setting the reset pin to the low level
Having an interrupt source established at port 0
Having an interrupt source established at SIO0
Having an interrupt source established at UART2
Having an interrupt source established at SEGINT
• HOLDX mode: Suspends instruction execution and the operation of all the circuits except the peripheral circuits
running on OSC0.
1) OSC1 and RC oscillators automatically stop operation.
2) OSC0 retains the state established when the HOLDX mode is entered.
3) There are seven ways of releasing the HOLDX mode:
Setting the reset pin to the low level
Having an interrupt source established at port 0
Having an interrupt source established at SIO0
Having an interrupt source established at UART2
Having an interrupt source established at SEGINT
Having an interrupt source established in the base timer or RTC2 circuit
Having an interrupt source established in the infrared remote control receiver circuit
On-chip debugger function
• Supports software debugging with the microcontroller mounted on the target board.
• Supports source line debugging, tracing, breakpoint manipulation, and realtime display.
• Single-wire communication
Operating temperature
• -20 to +75°C
Package form
• TQFP120 (14×14) (lead-free type)
Development tools
• On-chip debugger: EOCUIF1 + LC88F85D0A
Package Dimensions
unit : mm (typ)
3257A
14.0
16.0
0.5
16.0
14.0
120
1
0.4
0.15
0.125
0.1
1.2MAX
(1.0)
(1.2)
SANYO : TQFP120(14X14)
No.A1954-5/31
LC88F85D0A
Pad Assignment
: 4.10mm × 3.40mm
: 59μm
: 80μm
: 280μm ± 20μm
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
• Chip size (X × Y)
• PAD opening siz
• PAD pitch
• Chip thickness
X
(0, 0)
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
62
61
60
59
58
57
56
55
54
53
□
□
□
□
□
□
□
□
52
51
50
49
48
47
46
45
□
□
□
□
□
□
□
□
44
43
42
41
40
39
38
37
□
□
□
□
□
□
□
Y
5
135
136
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
1
2
3
4
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
36
35
34
33
• Note: Package pin numbers differ from chip pad numbers. The numbers shown in the above figure are pad numbers.
No.A1954-6/31
LC88F85D0A
Table of PAD Coordinates
Pad No.
Pin Name
1
Coordinate
Pad No.
Pin Name
-1569.9
48
-1567.9
-1569.9
-1483.2
-1569.9
VLCD1
-1403.2
-1569.9
5
TST
-1184.0
-1569.9
52
6
XT2
-890.0
-1569.9
53
7
XT1
-781.5
-1569.9
54
SEG46
8
RESB
X μm
Y μm
VLCD4
-1647.9
2
VLCD3
3
VLCD2
4
9
10
VDD
11
Coordinate
X μm
Y μm
SEG52
1958.5
208.2
49
SEG51
1958.5
298.2
50
SEG50
1958.5
388.2
51
SEG49
1958.5
478.2
SEG48
1958.5
568.2
SEG47
1919.9
710.0
1919.9
790.0
-670.0
-1569.9
55
SEG45
1919.9
870.0
-494.5
-1569.9
56
SEG44
1919.9
950.0
-374.5
-1569.9
57
SEG43
1919.9
1030.0
1110.0
-263.5
-1569.9
58
SEG42
1919.9
12
CF1
-165.0
-1569.9
59
SEG41
1919.9
1190.0
13
CF2
-85.0
-1569.9
60
SEG40
1919.9
1280.0
10.0
-1569.9
61
SEG39
1919.9
1370.0
1460.0
14
15
VSS
16
110.0
-1569.9
62
SEG38
1919.9
210.0
-1569.9
63
LCDVSS1
1420.0
1569.9
17
P00
300.0
-1569.9
64
SEG37
1300.0
1569.9
18
P01
380.0
-1569.9
65
SEG36
1190.0
1569.9
19
P02
460.0
-1569.9
66
SEG35
1080.0
1569.9
20
P03
540.0
-1569.9
67
SEG34
990.0
1569.9
21
P04
620.0
-1569.9
68
SEG33
910.0
1569.9
22
P05
700.0
-1569.9
69
SEG32
830.0
1569.9
23
P06
780.0
-1569.9
70
SEG31
750.0
1569.9
24
P07
860.0
-1569.9
71
SEG30
670.0
1569.9
25
P10
940.0
-1569.9
72
SEG29
590.0
1569.9
26
P11
1020.0
-1569.9
73
SEG28
510.0
1569.9
27
P12
1100.0
-1569.9
74
SEG27
430.0
1569.9
28
P13
1180.0
-1569.9
75
SEG26
350.0
1569.9
29
P14
1260.0
-1569.9
76
SEG25
270.0
1569.9
30
P15
1340.0
-1569.9
77
SEG24
190.0
1569.9
31
P16
1420.0
-1569.9
78
SEG23
110.0
1569.9
32
P17
1500.0
-1569.9
79
SEG22
30.0
1569.9
33
P20
1919.9
-1415.0
80
SEG21
-50.0
1569.9
34
P21
1919.9
-1325.0
81
SEG20
-130.0
1569.9
35
P22
1919.9
-1192.0
82
SEG19
-210.0
1569.9
36
P23
1919.9
-1057.0
83
SEG18
-290.0
1569.9
37
SEG63
1958.5
-871.8
84
SEG17
-370.0
1569.9
38
SEG62
1958.5
-781.8
85
SEG16
-450.0
1569.9
39
SEG61
1958.5
-691.8
86
-
-
-
40
SEG60
1958.5
-601.8
87
COM31/SEG15
-620.0
1569.9
41
SEG59
1958.5
-511.8
88
-
-
-
42
SEG58
1958.5
-421.8
89
COM30/SEG14
-780.0
1569.9
43
SEG57
1958.5
-331.8
90
-
-
-
44
SEG56
1958.5
-241.8
91
COM29/SEG13
-940.0
1569.9
45
SEG55
1958.5
-61.8
92
-
-
-
46
SEG54
1958.5
28.2
93
COM28/SEG12
-1100.0
1569.9
47
SEG53
1958.5
118.2
94
-
-
-
Continued on next page.
No.A1954-7/31
LC88F85D0A
Continued from preceding page.
Coordinate
Pad No.
Pin Name
X μm
Y μm
95
COM27/SEG11
-1260.0
96
-
97
98
99
Coordinate
Pad No.
Pin Name
1569.9
116
-
-
-
-
-
117
COM16/SEG0
-1919.9
60.0
COM26/SEG10
-1420.0
1569.9
118
COM15
-1919.9
-20.0
-
-
-
119
COM14
-1919.9
-100.0
COM25/SEG9
-1580.0
1569.9
120
COM13
-1919.9
-180.0
-260.0
X μm
Y μm
100
-
-
-
121
COM12
-1919.9
101
COM24/SEG8
-1919.9
1340.0
122
COM11
-1919.9
-340.0
102
-
-
-
123
COM10
-1919.9
-420.0
103
COM23/SEG7
-1919.9
1180.0
124
COM9
-1919.9
-500.0
104
-
-
-
125
COM8
-1919.9
-580.0
105
COM22/SEG6
-1919.9
1020.0
126
COM7
-1919.9
-660.0
106
-
-
-
127
COM6
-1919.9
-740.0
107
COM21/SEG5
-1919.9
860.0
128
COM5
-1919.9
-820.0
108
-
-
-
129
COM4
-1919.9
-900.0
109
COM20/SEG4
-1919.9
700.0
130
COM3
-1919.9
-980.0
110
-
-
-
131
COM2
-1919.9
-1060.0
111
COM19/SEG3
-1919.9
540.0
132
COM1
-1919.9
-1140.0
112
-
-
-
133
COM0
-1919.9
-1220.0
113
COM18/SEG2
-1919.9
380.0
134
LCSVSS0
-1919.9
-1320.0
114
-
-
-
135
CUP00
-1919.9
-1443.3
115
COM17/SEG1
-1919.9
220.0
136
CUP01
-1919.9
-1523.3
Note:
• The coordinate values shown in the above table represent the coordinates of the pin pads measured with the center
coordinates of the IC set to (0, 0).
• There are three pads for each of the VDD and VSS pins. They should be triple bonded.
No.A1954-8/31
LC88F85D0A
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
COM25/SEG9
COM26/SEG10
COM27/SEG11
COM28/SEG12
COM29/SEG13
COM30/SEG14
COM31/SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
LCDVSS1
Pin Assignment
LC88F85D0A
XT2
XT1
RESB
VDD
CF1
CF2
VSS
P00/P0LI/AN8
P01/P0LI/AN9
P02/P0LI/AN10
P03/P0LI/AN11
P04/P0HLI/AN12
P05/P0HLI/AN13
P06/T0PWML/AN14
P07/T0PWMH/AN15
P10/SI0O
P11/SI0IO
P12/SI0CK
P13/T3PWML
P14/T3PWMH/U0RX
P15/U0TX
P16/U2RX
P17/U2TX
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
VLCD4
VLCD3
VLCD2
VLCD1
TEST
COM24/SEG8
COM23/SEG7
COM22/SEG6
COM21/SEG5
COM20/SEG4
COM19/SEG3
COM18/SEG2
COM17/SEG1
COM16/SEG0
COM15
COM14
COM13
COM12
COM11
COM10
COM9
COM8
COM7
COM6
COM5
COM4
COM3
COM2
COM1
COM0
LCSVSS0
CUP00
CUP01
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
SEG38
SEG39
SEG40
SEG41
SEG42
SEG43
SEG44
SEG45
SEG46
SEG47
SEG48/SGND15/SGIN15
SEG49/SGND14/SGIN14
SEG50/SGND13/SGIN13
SEG51/SGND12/SGIN12
SEG52/SGND11/SGIN11
SEG53/SGND10/SGIN10
SEG54/SGND9/SGIN9
SEG55/SGND8/SGIN8
SEG56/SGND7/SGIN7/SGINT7
SEG57/SGND6/SGIN6/SGINT6
SEG58/SGND5/SGIN5/SGINT5
SEG59/SGND4/SGIN4/SGINT4
SEG60/SGND3/SGIN3/SGINT3
SEG61/SGND2/SGIN2/SGINT2
SEG62/SGND1/SGIN1/SGINT1/T3IH
SEG63/SGND0/SGIN0/SGINT0/T3IL
P23/AN3/SM0DA
P22/AN2/SM0CK
P21/AN1/T5O
P20/AN0/T4O/RMIN
Top view
TQFP120 (14×14) “Lead-free Type”
No.A1954-9/31
LC88F85D0A
System Block Diagram
CF
RC
X’tal
Clock
generator
RC
RC
Low
speed
RC
Base timer
Watchdog timer
FLASH ROM
Xstormy16
CPU
Timer 0
RAM
Timer 1
On-chip debugger
Timer 3
Port 0
Timer 4
Port 1
Timer 5
Port 2
UART0
AD
UART2
RTC2
SIO0
SMIIC0
LCD control
Infrared
remote control
receiver
LCD display RAM
No.A1954-10/31
LC88F85D0A
Pin Description
Pin Name
VSS
I/O
-
Description
- Power supply pin
VDD
-
+ Power supply pin
VLCD1 to 4
-
LCD bias power source (connected to capacitors)
LCDVSS0,
LCDVSS1
-
LCD port power source (-)
CUP00, CUP01
-
Switching pins for generating the LCD drive voltage. A capacitor must be connected across both pins.
PORT 0
I/O
• 8-bit I/O port
• I/O specifiable in 1 bit units
P00 to P07
• Pull-up registers can be turned on and off in 1-bit units.
• HOLD releaset inputs (P00 to P03, P04, P05)
• Port 0 interrupt inputs (P00 to P03, P04, P05)
• Pin functions
P00 (AN8) to P07 (AN15): AD converter inputs
P06: Timer 0L output
P07: Timer 0H output/UART0 clock input
PORT 1
I/O
• 8-bit I/O port
• I/O specifiable in 1-bit units
P10 to P17
• Pull-up registers can be turned on and off in 1-bit units.
• Pin functions
P10: SIO0 data output
P11: SIO0 data input/bus input/output
P12: SIO0 clock input/output
P13: Timer 3L output
P14: Timer 3H output/UART0 receive
P15: UART0 transmit
P16: UART2 receive
P17: UART2 transmit
PORT 2
I/O
• 4-bit I/O port
• I/O specifiable in 1-bit units
P20 to P23
• Pull-up registers can be turned on and off in 1-bit units.
• Pin functions
P20 (AN0) to P23 (AN3): AD converter inputs
P20: Timer 4 output/remote controller receive
P21: Timer 5 output
P22: SMIIC0 clock input/output
P23: SMIIC0 bus input/output/data input
COM0 to COM15
O
• LCD common output
COM16/SEG0 to
O
• LCD common output/segment output
SEG16 to SEG47
O
• LCD segment output
SEG48 to SEG63
I/O
• LCD segment output
COM31/SEG15
Common output/segment output switched by a register
• SEG63-SEG48: General-purpose N-channel open drain output/general-purpose input
SEG63-SEG48: LCD output in 4-bit units/general-purpose N-channel open drain output/general-purpose
input selectable
• SEG63-SEG56: Interrupt function (4-bit units)
Chatter removal sampling frequency select (4-bit units)
Level/edge sense mode select (4-bit units)
Hi/low level or rising/falling edge sense mode select (1-bit units)
• SEG63-SEG62: Timer 3 external input
TEST
I/O
• TEST pin
• On-chip debugger communication pin
• An external 100kΩ pull-down resistor must be connected.
RESB
I
Reset pin
CF1
I
Ceramic oscillator input/RC oscillator resistor to be connected
CF2
O
Ceramic oscillator output
XT1
I
32.768kHz crystal oscillator input/RC oscillator resistor to be connected
XT2
O
32.768kHz crystal oscillator output
No.A1954-11/31
LC88F85D0A
Port Output Types
The table below lists the types of port outputs and the presence/absence of a pull-up resistor.
Data can be read into any input port even if it is in the output mode.
Port Name
Options Selected in Units of
P00 to P07
1 bit
P10 to P17
1 bit
P20 to P23
Output Type
Pull-up Resistor
CMOS
Programmable
Multiplexed pin outputs are programmable either as CMOS
Programmable
or N-channel open drain output.
SEG48 to SEG63
4 bits
N-channel open drain
None
(LCD segment output)
Table of User Options
Option Name
X'tal OSC (*1)
Interrupt Vector (*2)
Option
Description
Normal
Normal XT mode
Low Power
Low power XT mode
Normal
Interrupt vector switching
LC888300 Compatible
*1 The circuit constant values of the external components and oscillation stabilization time differ between the normal
XT mode and low power XT mode.
*2 The "LC888300 Compatible" mode is an option that is available to provide compatibility between this model and the
LC888300. It is to be unavailable in future models.
No.A1954-12/31
LC88F85D0A
Application circuit
I/O
UART device
SEG63
SEG16
COM31/SEG15
COM16/SEG0
I/O
P00
P01
P02
P03
P04
P05
P06
P07
COM15
COM0
LCD panel 64×16/48×32
CUP01
CUP00
LC88F85D0A
C1
VLCD4
VLCD3
C2
C3
VLCD2
VLCD1
C4
C5
P10 (SIO0-OUT)
P11 (SIO0-IN)
P12 (SIO0-CLK)
P13
P14
P15
P16 (UART2-RX)
P17 (UART2-TX)
VDD
2.3V to 5.5V
+
RESB
I/O
On-chip
debugger
CRES
P20
P21
P22
P23
VSS
LCDVSS0
LCDVSS1
XT2
RTST
CF1
CF2
TST
CGC
*3
CDC
X'tal
Trimmer capacitor
CDX
Capacitor for X’tal oscillator
CCR0
*5
CDX
*4
CCR0
RCR0
Crystal resonator
CGX
RCR0
*1: Crystal oscillation
*2: Internal RC oscillation
*3: Ceramic oscillation
CGX
*1
X'tal
CF
CCR1
RCR1
XT1
Pulse output
Resistor for low-speed oscillator
*4: RC oscillation type
Capacitor for low-speed oscillation stabilization
*4: RC oscillation type (*1)
(*1)
0.1μF capacitor is recommended when using XT1/XT2 as the system clock source.
CF
Ceramic resonator
CGC
Capacitor for CF oscillator
CDC
Capacitor for CF oscillator
RCR1
Resistor for high-speed oscillation
*5: RC oscillation type
CCR1
Capacitor for high-speed oscillation stabilization
*5: RC oscillation type
C1 to C5
CDEN
Capacitor
CDEN
Electrolytic capacitor
CRES
Capacitance for RESB
RTST
Resistor used when using the on-chip debugger
No.A1954-13/31
LC88F85D0A
Absolute Maximum Ratings at Ta = 25°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Parameter
Maximum supply
Symbol
Pin/Remarks
Conditions
VDD max
VDD
VDD
VLCD max
VLCD2 to VLCD4
VDD
SEG0 to SEG63
VDD, VLCD4
voltage
LCD supply
voltage
Maximum LCD
LCD max
supply voltage
COM0 to COM31
Input voltage
VI(1)
CF1, XT1, RESB
Input/output
VIO(1)
Ports 0, 1, 2
voltage
Peak output
SEG63 to SEG48
IOPH(1)
Ports 0, 2
Low level output current
High level output current
current
Mean output
Per 1 applicable pin
IOPH(2)
Port 1
Per 1 applicable pin
IOMH(1)
Ports 0, 2
CMOS output select
current
(Note 1-1)
CMOS output select
Per 1 applicable pin
IOMH(2)
Port 1
CMOS output select
Per 1 applicable pin
Specification
VDD[V]
min
typ
max
unit
-0.3
+6.5
-0.3
+6.5
-0.3
+6.5
-0.3
VDD+0.3
-0.3
VDD+0.3
-5
-14
-3
-9
Total output
ΣIOAH(1)
Ports 0, 2
Total of all applicable pins
current
ΣIOAH(2)
Port 1
Total of all applicable pins
-25
ΣIOAH(3)
Ports 0, 1, 2
Total of all applicable pins
-47.5
Peak output
IOPL(1)
Ports 0, 2
Per 1 applicable pin
current
IOPL(2)
Port 1
Per 1 applicable pin
17
Mean output
IOML(1)
Ports 0, 2
Per 1 applicable pin
7.5
current
IOML(2)
Port 1
Per 1 applicable pin
ΣIOAL(1)
Ports 0, 2
Total of all applicable pins
ΣIOAL(2)
Port 1
Total of all applicable pins
ΣIOAL(3)
Ports 0, 1, 2
Total of all applicable pins
-22.5
13
35
current
Allowable power
Pd max
60
80
Ta=-20 to +75°C
250
dissipation
Operating ambient
Topr
temperature
Storage ambient
Tstg
temperature
mA
10.5
(Note 1-1)
Total output
V
-20
+75
-65
+125
mW
°C
Note 1-1: The mean output current is a mean value measured over 100ms.
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating
Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
No.A1954-14/31
LC88F85D0A
Allowable Operating Conditions at Ta = -20°C to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Parameter
Operating
Symbol
VDD(1)
Pin/Remarks
VDD
supply voltage
(Note2-1)
LCD drive
VLCD(1)
VLCD2 to VLCD4
VHD
VDD
Conditions
Ratings
VDD[V]
min
typ
max
4.5
5.5
0.123μs≤tCYC≤66μs
3.0
5.5
0.490μs≤tCYC≤66μs
2.0
5.5
5.5
voltage
Memory
sustaining
unit
0.098μs≤tCYC≤66μs
RAM and register contents
sustained in HOLD mode.
2.0
5.5
supply voltage
High level
VIH(1)
Ports 0, 1, 2
Output disabled
0.30VDD
input voltage
Low level
VIH(2)
CF1, RESB
Ports 0, 1, 2
VIL(2)
CF1, RESB
0.75VDD
Output disabled
input voltage
Instruction
tCYC
cycle time
(Note 2-2)
External
FEXCF(1)
CF1
• CF2 pin open
• System clock frequency
system clock
frequency
division ratio=1/1
• External system clock
duty=50±5%
Oscillation
FmCF(1)
CF1,CF2
10MHz ceramic oscillation
See Fig. 1.
frequency
range
VDD
+0.70
VIL(1)
FmCF(2)
CF1,CF2
(Note 2-3)
8MHz ceramic oscillation
See Fig. 1.
FmCF(3)
CF1,CF2
4MHz ceramic oscillation
See Fig. 1.
VSS
VDD
0.10VDD
+0.40
VSS
0.25VDD
4.5 to 5.5
0.098
66
3.0 to 5.5
0.123
66
2.0 to 5.5
0.490
66
4.5 to 5.5
0.1
10
3.0 to 5.5
0.1
8
2.0 to 5.5
0.1
2
4.5 to 5.5
10
3.0 to 5.5
8
2.4 to 5.5
4
Internal RC oscillation
2.0 to 5.5
0.5
1.0
2.0
FmSLRC
Internal SLRC oscillation
2.0 to 5.5
18
30
45
XT1, XT2
32.768kHz crystal oscillation
See Fig. 2.
FmRC1(1)
CF1
High-speed RC oscillation
(Note 2-4)
FmRC1(2)
CF1
High-speed RC oscillation
(Note 2-4)
FsRC0
XT1
Low-speed RC oscillation
(Note 2-4)
2.2 to 5.5
μs
MHz
MHz
FmRC
FsX'tal
V
32.768
2.4 to 5.5
400
4200
2.0 to 5.5
400
2000
2.2 to 5.5
30
80
kHz
Note2-1: VDD must be held greater than or equal to 3.0V when onboard writing to flash ROM.
Note2-2: Relationship between tCYC and oscillation frequency is 1/FmCF at a frequency division ratio of 1/1 and
2/FmCF at a division ratio of 1/2.
Note2-3: See Tables 1 and 2 for the oscillation constants.
Note2-4: Ta=0°C to 60°C
No.A1954-15/31
LC88F85D0A
Electrical Characteristics at Ta = -20°C to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Parameter
High level input
Symbol
IIH(1)
current
Pin/Remarks
Conditions
Ports 0, 1, 2
Output disabled
RESB
Pull-up resistor off
VIN=VDD
(including output Tr off
Specification
VDD[V]
min
typ
max
2.0 to 5.5
unit
1
μA
leakage current)
Low level input
IIL(1)
Ports 0, 1, 2
current
Output disabled
Pull-up resistor off
VIN=VSS
(including output Tr off
2.7 to 5.5
μA
-1
leakage current)
High-level output
VOH(1)
Ports 0, 1, 2
IOH=-1.0mA
4.5 to 5.5
VDD-1
voltage
VOH(2)
IOH=-0.4mA
3.0 to 5.5
VDD-0.4
VOH(3)
IOH=-0.1mA
2.0 to 5.5
2.0 to 5.5
VDD-0.4
VLCD4
VOH(4)
COM0 to COM31
IOH=-25μA
VOH(5)
SEG0 to SEG63
IOH=-10μA
2.0 to 5.5
Low level output
VOL(1)
Ports 0, 1, 2
IOL(1)=10mA
4.5 to 5.5
1.5
voltage
VOL(2)
IOL(1)=1.6mA
3.0 to 5.5
0.4
VOL(3)
IOL(1)=0.7mA
2.0 to 5.5
0.4
2.0 to 5.5
VSS
+0.05
2.0 to 5.5
VSS
+0.05
Pull-up resistance
VOL(4)
COM0 to COM31
IOLH=25μA
VOL(5)
SEG0 to SEG63
IOL=10μA
Rpu(1)
Ports 0, 1, 2
VOH=0.9VDD
Rpu(2)
Hysteresis voltage
VHYS
Ports 0, 1, 2 RESB
Pin capacitance
CP
All pins
-0.05
VLCD4
-0.05
4.5 to 5.5
15
35
80
2.0 to 4.5
18
55
180
V
kΩ
2.0 to 5.5
0.1VDD
V
2.0 to 5.5
10
pF
For pins other than that
under test
VIN=VSS
f=1MHz
Ta=25°C
No.A1954-16/31
LC88F85D0A
LCD Drive Voltage at Ta = -20°C to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Special notes: 0.1μF capacitors are connected to VLCD1, VLCD2, VLCD3, and VLCD4. (with no panel load)
Parameter
LCD drive voltage
Symbol
VLCD1
Pin/Remarks
VDD
VLCD1
Conditions
Specification
VDD[V]
min
typ
Contrast “00”
1.030
Contrast “01”
1.045
Contrast “02”
1.060
Contrast “03”
1.075
Contrast “04”
1.090
Contrast “05”
1.105
Contrast “06”
max
1.120
Contrast “07”
Typ
1.135
Typ
Contrast “08”
×0.88
1.150
×1.10
Contrast “09”
unit
2.0 to 5.5
1.165
Contrast “10”
1.180
Contrast “11”
1.195
Contrast “12”
1.210
Contrast “13”
1.225
Contrast “14”
1.240
Contrast “15”
1.255
VLCD2
2×VLCD1
VLCD3
3×VLCD1
VLCD4
4×VLCD1
V
No.A1954-17/31
LC88F85D0A
Serial I/O Characteristics at Ta = -20°C to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
SIO0 Serial I/O Characteristics (When wakeup function is not in used) (Note 4-1-1)
Parameter
Symbol
Frequency
tSCK(1)
Low level
tSCKL(1)
Pin/Remarks
SCK0(P12)
Conditions
Specification
VDD[V]
• See Fig. 6.
max
unit
2
tSCKH(1)
2
pulse width
Input clock
typ
4
pulse width
High level
min
• Automatic communication
tSCKHA(1)
mode
2.0 to 5.5
6
• See Fig. 6.
tCYC
• Automatic communication
tSCKHBSY(1a)
mode
23
• See Fig. 6.
• Mode other than automatic
tSCKHBSY(1b)
communication mode
4
Serial clock
• See Fig. 6.
Frequency
tSCK(2)
SCK0(P12)
• CMOS output type selected
4
• See Fig. 6.
Low level
tSCKL(2)
1/2
pulse width
High level
tSCK
tSCKH(2)
1/2
pulse width
• Automatic communication
Output clock
tSCKHA(2)
mode
• CMOS output type selected
2.0 to 5.5
6
• See Fig. 6.
• Automatic communication
tSCKHBSY(2a)
mode
4
• CMOS output type selected
23
tCYC
• See Fig. 6.
• Mode other than automatic
tSCKHBSY(2b)
communication mode
4
• See Fig. 6.
Serial input
Data setup time
SI0(P11),
SB0(P11)
• Specified with respect to
rising edge of SIOCLK.
• See Fig. 6.
Data hold time
thDI(1)
0.03
2.0 to 5.5
0.03
Output clock
Input clock
Output
Serial output
tsDI(1)
tdD0(1)
delay time
SO0(P10),
• (Note4-1-2)
SB0(P11)
1tCYC
μs
+0.05
tdDO(2)
• (Note4-1-2)
2.0 to 5.5
1tCYC
+0.05
Note 4-1-1: These specifications are theoretical values. Margins must be allowed according to the actual operating
conditions.
Note 4-1-2: Specified with respect to the falling edge of SIOCLK. Specified as the time up to the time the output state is
changed in the open drain output mode. See Fig. 6.
No.A1954-18/31
LC88F85D0A
SIO1 Serial I/O Characteristics (When wakeup function is not in used) (Note 4-2-1)
Input clock
Serial clock
Parameter
Symbol
Period
tSCK(3)
Low level
tSCKL(3)
Pin/Remarks
SCK0(P12)
Conditions
min
• See Fig. 6.
2.0 to 5.5
tSCKH(3)
tCYC
Serial input
2
SI0(P11),
SB0(P11)
• Specified with respect to
rising edge of SIOCLK.
• See Fig. 6.
Data hold time
unit
1
tSCKHBSY(3)
tsDI(2)
max
2
pulse width
Data setup time
typ
1
pulse width
High level
Specification
VDD[V]
thDI(2)
0.03
2.0 to 5.5
0.03
Input clock
Serial output
μs
Output
tdD0(3)
delay time
SO0(P10),
• (Note4-2-2)
SB0(P11)
1tCYC
2.0 to 5.5
+0.05
Note 4-2-1: These specifications are theoretical values. Margins must be allowed according to the actual operating
conditions.
Note 4-2-2: Specified with respect to the falling edge of SIOCLK. Specified as the time up to the time the output state is
changed in the open drain output mode. See Fig. 6.
SMIIC0 Simple SIO Mode I/O Characteristics
Specification
Parameter
Symbol
Pin/Remarks
Conditions
VDD[V]
Input clock
tSCK(7)
SM0CK
• See Fig. 6.
Low level
tSCKL(7)
2.0 to 5.5
pulse width
High level
Period
Low level
SM0CK
• CMOS output type selected
(P22)
• See Fig. 6.
tSCKL(8)
4
2.0 to 5.5
1/2
tSCK
tSCKH(8)
1/2
Serial input
SM0DA
(P23)
• Specified with respect to
rising edge of SIOCLK
• See Fig. 6.
Data hold time
thDI(5)
0.03
2.0 to 5.5
0.03
Output delay time
Serial output
tsDI(5)
unit
2
pulse width
Data setup time
max
2
pulse width
High level
typ
tCYC
tSCKH(7)
tSCK(8)
min
4
(P22)
pulse width
Output clock
Serial clock
Period
tdD0(7)
SM0DA
(P23)
μs
• Specified with respect to
falling edge of SIOCLK
• Specified as the time up to
the beginning of output
2.0 to 5.5
1tCYC
+0.05
change .
• See Fig. 6.
Note 4-3-1: These specifications are theoretical values. Margins must be allowed according to the actual operating
conditions.
No.A1954-19/31
LC88F85D0A
SMIIC0 I2C Mode I/O Characteristics
Specification
Parameter
Symbol
Pin/Remarks
Conditions
VDD[V]
Input clock
Period
tSCL
SM0CK
• See Fig. 8.
tSCLL
2.0 to 5.5
pulse width
High level
Clock
Output clock
SM0CK
(P22)
Low level
• Specified as the time up to
2.5
change.
tSCLLx
10
the beginning of output
2.0 to 5.5
pulse width
High level
1/2
tSCL
tSCLHx
1/2
pulse width
SM0CK, SM0DA pin
tsp
input spike suppression
SM0CK(P22)
• See Fig. 8.
SM0DA(P23)
2.0 to 5.5
time
period bus
release time
tBUF
SM0CK(P22)
1
Tfilt
• See Fig. 8.
SM0DA(P23)
Input
Start-to-stop
unit
2
pulse width
tSCLx
max
Tfilt
tSCLH
Period
typ
5
(P22)
Low level
min
2.5
tBUFx
SM0CK(P22)
• Standard clock mode
SM0DA(P23)
• Specified as the time up to
2.0 to 5.5
Output
the beginning of output
Tfilt
5.5
change.
μs
• High-speed clock mode
• Specified as the time up to
1.6
the beginning of output
change.
Start/restart
tHD;STA
condition hold
SM0DA(P23)
• When SMIIC register
control bit I2CSHDS=0
2.0
• See Fig. 8.
Input
time
SM0CK(P22)
Tfilt
• When SMIIC register
2
control bit I CSHDS=1
2.5
• See Fig. 8.
tHD;STAx
SM0CK(P22)
• Standard clock mode
SM0DA(P23)
• Specified as the time up to
2.0 to 5.5
4.1
Output
the beginning of output
change.
μs
• High-speed clock mode
• Specified as the time up to
1.0
the beginning of output
change.
SM0CK(P22)
• See Fig. 8.
SM0DA(P23)
1.0
tSU;STAx
SM0CK(P22)
• Standard clock mode
SM0DA(P23)
• Specified as the time up to
the beginning of output
Output
setup time
tSU;STA
Input
Restart condition
2.0 to 5.5
5.5
change.
μs
• High-speed clock mode
• Specified as the time up to
the beginning of output
Tfilt
1.6
change.
Continued on next page.
No.A1954-20/31
LC88F85D0A
Continued from preceding page.
Specification
Parameter
Symbol
Pin/Remarks
tSU;STO
SM0CK(P22)
Conditions
setup time
Input
VDD[V]
Stop condition
SM0CK(P22)
• Standard clock mode
SM0DA(P23)
• Specified as the time up to
the beginning of output
Output
typ
max
1.0
SM0DA(P23)
tSU;STOx
min
Unit
• See Fig. 8.
2.0 to 5.5
Tfilt
4.9
change.
μs
• High-speed clock mode
• Specified as the time up to
1.1
the beginning of output
SM0CK, SM0DA
pin fall time
Input
Output
Data setup time
Input
Output
Input
change.
Data hold time
tHD;DAT
SM0CK(P22)
• See Fig. 8.
0
SM0DA(P23)
tHD;DATx
SM0CK(P22)
SM0DA(P23)
• Specified as the time up to
2.0 to 5.5
the beginning of output
Tfilt
1
1.5
change.
tSU;DAT
SM0CK(P22)
• See Fig. 8.
SM0DA(P23)
tSU;DATx
SM0CK(P22)
SM0DA(P23)
1
• Specified as the time up to
2.0 to 5.5
the beginning of output
1.5Tfilt
change.
tF
SM0CK(P22)
• See Fig. 8.
SM0DA(P23)
tF
SM0CK(P22)
SM0DA(P23)
• When SMIIC register control
bits PSLW=1, P5V=1
Output
• When SMIIC register control
bits PSLW=1, P5V=0
Tfilt
1tSCL-
2.0 to 5.5
300
5
20+0.1Cb
250
3
20+0.1Cb
250
ns
• When SM0CK and SM0DA
port outputs are placed in
fast mode
3.0 to 5.5
100
• Cb≤400pF
Note 4-4-1: These specifications are theoretical values. Margins must be allowed according to the actual operating
conditions.
Note 4-4-2: Tfilt denotes the value that is determined by the values of register SMIC0BRG, bits 7 and 6 (BRP1, BRP0)
and the system clock frequency.
BRP1
BRP0
Tfilt
0
0
tCYC×1
0
1
tCYC×2
1
0
tCYC×3
1
1
tCYC×4
Set up (BPR1, BPR0) so that Tfilt falls within the following range:
250ns ≥ Tfilt > 140ns
Note 4-4-3: Cb denotes the total capacitance (in pF) of the loads connected to each bus. Cb ≤ 400pF
Note 4-4-4: The standard clock mode refers to a mode that is entered by configuring SMIC0BRG within the following
ranges:
250ns ≥ Tfilt > 140ns
BRDQ (bit 5) = 1
SCL frequency setting ≤ 100kHz
The high-speed clock mode refers to a mode that is entered by configuring SMIC0BRG as follows:
250ns ≥ Tfilt > 140ns
BRDQ (bit 5) = 0
SCL frequency setting ≤ 400kHz
No.A1954-21/31
LC88F85D0A
UART0 Operating Conditions at Ta = -20 to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Parameter
Transfer rate
Symbol
UBR0
Pin/Remarks
Conditions
U0RX(P14),
U0TX(P15),
U0BRG(P07)
Specification
VDD[V]
min
2.0 to 5.5
typ
max
4
unit
8
tBGCYC
Note 4-5: tBGCYC denotes 1 period of the baudrate clock source.
UART2 Operating Conditions at Ta = -20 to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Parameter
Transfer rate
Symbol
UBR2
Pin/Remarks
Conditions
U2RX(P16),
Specification
VDD[V]
min
2.0 to 5.5
U2TX(P17)
typ
max
8
unit
4096
tBGCYC
Note 4-6: tBGCYC denotes 1 period of the baudrate clock source.
Pulse Input Conditions at Ta = -20 to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Parameter
Symbol
tPIL(2)
Pin/Remarks
RESB
Conditions
Resettable.
Specification
VDD[V]
min
2.0 to 5.5
typ
max
unit
μs
10
AD Converter Characteristics at Ta = -20 to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
12-bits AD Conversion Mode
Parameter
Symbol
Pin/Remarks
Resolution
NAD
AN0(P20),
Absolute accuracy
ETAD
AN1(P21),
Conversion time
TCAD12
Analog input
VAIN
Conditions
Specification
VDD[V]
min
2.9 to 5.5
typ
max
unit
12
bit
(Note 6-1)
2.9 to 5.5
Conversion time is calculated.
4.5 to 5.5
27
209
AN8(P00) to
2.9 to 5.5
67
209
AN15(P07)
2.9 to 5.5
VSS
VDD
AN2(P22),
AN3(P23),
voltage range
Analog port input
IAINH
VAIN=VDD
2.9 to 5.5
current
IAINL
VAIN=VSS
2.9 to 5.5
±16
1
-1
LSB
μs
V
μA
• Conversion time calculation method: TCAD12= ((52/(AD division ratio))+2) × tCYC
8-bits AD Conversion Mode
Parameter
Symbol
Pin/Remarks
Resolution
NAD
AN0(P20),
Absolute accuracy
ETAD
AN1(P21),
Conversion time
TCAD8
Analog input
VAIN
AN2(P22),
Conditions
Specification
VDD[V]
min
2.9 to 5.5
(Note 6-1)
Conversion time is calculated.
typ
max
unit
8
bit
±1.5
2.9 to 5.5
4.5 to 5.5
17
129
AN8(P00) to
2.9 to 5.5
42
129
AN15(P07)
2.9 to 5.5
VSS
VDD
AN3(P23),
voltage range
Analog port input
IAINH
VAIN=VDD
2.9 to 5.5
current
IAINL
VAIN=VSS
2.9 to 5.5
1
-1
LSB
μs
V
μA
• Conversion time calculation method: TCAD8= ((32/(AD division ratio))+2) × tCYC
Note 6-1: The quantization error (±1/2LSB) is excluded from the absolute accuracy.
Note 6-2: The conversion time refers to the interval from the time a conversion starting instruction is issued till the time
the complete digital value against the analog input value is loaded in the result register.
The conversion time is twice the normal value when one of the following conditions occurs:
• The first AD conversion is executed in the 12-bit AD conversion mode after a system reset.
• The first AD conversion is executed after the AD conversion mode is switched from 8-bit to 12-bit AD
conversion mode.
No.A1954-22/31
LC88F85D0A
Consumption Current Characteristics at Ta = -20 to +75°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Parameter
Normal mode
Symbol
IDDOP(1)
consumption
current
IDDOP(2)
Pin/
VDD
Specification
Conditions
Remarks
VDD[V]
• FOSC0=32.768kHz
LCD
• System clock set to FOSC0 side
display
• Internal RC oscillation stopped
ON
• FOSC1=0Hz (oscillation stopped)
(Note 7-1)
• Frequency division ratio set to 1/1
LCD
• Normal XT mode
display
IDDOP(4)
[No panel load]
OFF
IDDOP(5)
• FOSC0=32.768kHz
LCD
• System clock set to FOSC0 side
display
• Internal RC oscillation stopped
ON
IDDOP(3)
IDDOP(6)
• FOSC1=0Hz (oscillation stopped)
• Frequency division ratio set to 1/1
LCD
• Low power XT mode
display
IDDOP(8)
[No panel load]
OFF
IDDOP(9)
• FmCF=10MHz ceramic oscillator
IDDOP(7)
min
typ
max
2.0 to 5.5
87
170
2.0 to 3.6
44
110
2.0 to 5.5
75
155
2.0 to 3.6
35
95
2.0 to 5.5
53
100
2.0 to 3.6
35
65
2.0 to 5.5
48
92
2.0 to 3.6
31
55
4.5 to 5.5
8.4
15.2
4.5 to 5.5
7.6
14.7
3.0 to 4.5
5.8
11
4.5 to 5.5
3.6
5.5
2.2 to 4.5
2.2
4.7
2.0 to 5.5
2.2
5.6
2.0 to 3.6
1.2
3.6
2.0 to 5.5
1.5
2.6
2.0 to 3.6
1.0
2.5
2.0 to 5.5
100
187
unit
μA
• FOSC0=0Hz (oscillation stopped)
• System clock set to 10MHz side
• Internal RC oscillation stopped
• Frequency division ratio set to 1/1
IDDOP(10)
• FmCF=8MHz ceramic oscillator oscillator
• FOSC0=0Hz (oscillation stopped)
IDDOP(11)
• System clock set to 8MHz side
• Internal RC oscillation stopped
• Frequency division ratio set to 1/1
IDDOP(12)
• FmCF=4MHz ceramic oscillator
• FOSC0=0Hz (oscillation stopped)
IDDOP(13)
• System clock set to 4MHz
• Internal RC oscillation stopped
• Frequency division ratio set to 1/2
IDDOP(14)
• System clock set to internal RC side
• Internal RC oscillation oscillated
IDDOP(15)
• FOSC0=0Hz (oscillation stopped)
• FOSC1=0Hz (oscillation stopped)
• Frequency division ratio set to 1/1
IDDOP(16)
mA
• FOSC1=1MHz RCR1=470kΩ
• System clock set to FOSC1 side
• Internal RC oscillation stopped
IDDOP(17)
• FOSC0=0Hz (oscillation stopped)
• Frequency division ratio set to 1/1
*Ta=0 to 60°C
IDDOP(18)
• FOSC0=64kHz RCR0=910kΩ
• System clock set to FOSC0 side
• Internal RC oscillation stopped
IDDOP(19)
μA
• FOSC1=0Hz (oscillation stopped)
• Frequency division ratio set to 1/1
2.0 to 3.6
62
120
*Ta=0 to 60°C
Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up
resistors.
Continued on next page.
No.A1954-23/31
LC88F85D0A
Continued from preceding page.
Parameter
HALT mode
Symbol
IDDHALT(1)
consumption
current
IDDHALT(2)
Pin/
VDD
Specification
Conditions
Remarks
VDD[V]
HALT mode
LCD
• FOSC0=32.768kHz
display
• System clock set to FOSC0 side
ON
• Internal RC oscillation stopped
(Note 7-2)
IDDHALT(3)
IDDHALT(4)
• FOSC1=0Hz (oscillation stopped)
LCD
• Frequency division ratio set to 1/1
display
• Normal XT mode
OFF
[No panel load]
IDDHALT(5)
IDDHALT(6)
HALT mode
LCD
• FOSC0=32.768kHz
display
• System clock set to FOSC0 side
ON
• Internal RC oscillation stopped
IDDHALT(7)
IDDHALT(8)
• FOSC1=0Hz (oscillation stopped)
LCD
• Frequency division ratio set to 1/1
display
• Low power XT mode
OFF
[No panel load]
IDDHALT(9)
min
typ
max
2.0 to 5.5
45
110
2.0 to 3.6
16
50
2.0 to 5.5
36
90
2.0 to 3.6
7.8
51
2.0 to 5.5
15.5
53
2.0 to 3.6
12
30
2.0 to 5.5
6.5
40
2.0 to 3.6
4
30
4.5 to 5.5
2.0
3.4
4.5 to 5.5
1.7
2.9
3.0 to 4.5
1.2
2.1
4.5 to 5.5
0.7
1.2
unit
μA
HALT mode
• FmCF=10MHz ceramic oscillator
• FOSC0=0Hz (oscillation stopped)
• System clock set to 10MHz side
• Internal RC oscillation stopped
• Frequency division ratio set to 1/1
IDDHALT(10)
HALT mode
• FmCF=8MHz ceramic oscillator
• Internal RC oscillation stopped
IDDHALT(11)
• FOSC0=0Hz (oscillation stopped)
• System clock set to 8MHz side
• Internal RC oscillation stopped
• Frequency division ratio set to 1/1
IDDHALT(12)
HALT mode
• FmCF=4MHz ceramic oscillator
• FOSC0=0Hz (oscillation stopped)
IDDHALT(13)
mA
• System clock set to 4MHz side
• Internal RC oscillation stopped
2.2 to 4.5
0.3
0.85
2.0 to 5.5
0.7
1.3
2.0 to 3.6
0.3
0.6
2.0 to 5.5
0.2
0.5
2.0 to 3.6
0.1
0.3
2.0 to 5.5
20
60
• Frequency division ratio set to 1/2
IDDHALT(14)
HALT mode
• System clock set to internal RC side
• Internal RC oscillation oscillated
IDDHALT(15)
• FOSC0=0Hz (oscillation stopped)
• FOSC1=0Hz (oscillation stopped)
• Frequency division ratio set to 1/1
IDDHALT(16)
HALT mode
• FOSC1=1MHz RCR1=470kΩ
• System clock set to FOSC1 side
IDDHALT(17)
• Internal RC oscillation stopped
• FOSC0=0Hz (oscillation stopped)
• Frequency division ratio set to 1/1
*Ta=0 to 60°C
IDDHALT(18)
HALT mode
• FOSC0=64kHz RCR0=910kΩ
• System clock set to FOSC0 side
IDDHALT(19)
μA
• Internal RC oscillation stopped
• FOSC1=0Hz (oscillation stopped)
• Frequency division ratio set to 1/1
2.0 to 3.6
10
40
*Ta=0 to 60°C
Note 7-2: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up
resistors.
Continued on next page.
No.A1954-24/31
LC88F85D0A
Continued from preceding page.
Parameter
Symbol
HOLD mode
IDDHOLD(1)
consumption
Pin/
VDD
HOLDX mode
VDD[V]
HOLD mode
• CF1=VDD or open (external clock mode)
IDDHOLD(2)
current
Specification
Conditions
Remarks
IDDHOLD(3)
HOLDX mode
• CF1=VDD or open (external clock mode)
consumption
current
• FOSC0=32.768kHz
IDDHOLD(4)
• Normal XT mode
IDDHOLD(5)
HOLDX mode
• CF1=VDD or open (external clock mode)
• FOSC0=32.768kHz
IDDHOLD(6)
• Low power XT mode
min
typ
max
2.0 to 5.5
0.08
35
2.0 to 3.6
0.02
25
2.0 to 5.5
30
65
2.0 to 3.6
5
55
2.0 to 5.5
0.6
35
2.0 to 3.6
0.4
25
unit
μA
Note 7-3: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up
resistors.
F-ROM Writing Characteristics at Ta = +10°C to +55°C, VSS = LCDVSS0 = LCDVSS1 = 0V
Parameter
Symbol
Onboard writing
IDDFW(1)
current
Writing time
Pin/
VDD
Specification
Conditions
Remarks
VDD[V]
• Excluding power dissipation
in the microcontroller block
min
typ
max
unit
3.0 to 5.5
15
mA
tFW(1)
• 512-/1K-byte erase operation
3.0 to 5.5
30
ms
tFW(2)
• 2-byte writing operation
3.0 to 5.5
60
μs
Characteristics of a Sample OSC1 System Clock Oscillation Circuit
Sample main system clock oscillation circuit characteristics
Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our
designated oscillation characteristics evaluation board and external components with circuit constant values with which
the oscillator vendor confirmed normal and stable oscillation.
Table 1 Characteristics of the Main System Clock Oscillation Circuit that Uses a Ceramic Oscillator
Nominal
Frequency
Circuit Constant
Vendor Name
10MHz
8MHz
MURATA
Oscillator Name
Operating
Oscillation
Voltage
Stabilization Time
C3
C4
Rf
Rd2
Range
typ
max
[pF]
[pF]
[Ω]
[Ω]
[V]
[ms]
[ms]
CSTCE10M0G52-R0
(10)
(10)
OPEN
150
2.4 to 5.5
0.02
0.5
CSTCE8M00G52-R0
(10)
(10)
OPEN
470
2.4 to 5.5
0.02
0.5
CSTCR4M00G53-R0
(15)
(15)
OPEN
1.5K
2.2 to 5.5
0.02
0.5
CSTCR4M00G53095-R0
(15)
(15)
OPEN
1.5K
2.0 to 5.5
0.02
0.5
Manufacturing
Co., Ltd.
4MHz
Remarks
C1 and C2
integrated type
C1 and C2
integrated type
C1 and C2
integrated type
C1 and C2
integrated type
The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after VDD
exceeds its lower limit operating voltage (see Figure 4).
No.A1954-25/31
LC88F85D0A
Characteristics of a Sample Subsystem Clock Oscillation Circuit
Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our
designated oscillation characteristics evaluation board and external components with circuit constant values with which
the oscillator vendor confirmed normal and stable oscillation.
Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit that uses a Crystal Oscillator (*5)
Nominal
Frequency
Vendor Name
Name
SSP-T7-F
32.768kHz
(*1)
Seiko Instruments (*2)
Circuit Constant
Resonator
VT-200-F
SSP-T7-FL
VT-200-FL
Operating
Oscillation
Voltage
Stabilization Time
C3
C4
Rf2
Rd2
Range
typ
max
[pF]
[pF]
[Ω]
[Ω]
[V]
[s]
[s]
18
22
OPEN
750K
2.0 to 5.5
1.4
3
2
3
OPEN
0
2.0 to 5.5
0.8
3
Remarks
CL=12.5pF (*3)
Normal XT mode
CL=4.4pF(*4)
Low power XT mode
(*1) Normal XT mode (*3) or low power XT mode (*4) should be selected for the sub-system clock oscillator circuit.
(*2) Contact Seiko Instruments, Inc., (http://www.sii-crystal.com) for further information about the use of the
resonator.
(*3) When considering the use of normal XT mode, use an resonator that has a large load capacitance.
(*4) When considering the use of low power XT mode, use a resonator that has a small load capacitance. The
applicable CL value of 4.4pF makes it possible to achieve a high time accuracy for the subclock oscillator as well
as high-speed oscillation startup and low power dissipation. In addition to this value, 6.0pF and 7.0pF also fall
within the applicable CL value range.
(*5) A sample PCB trace pattern for a Seiko Instrument resonator is shown below.
(Note 1) The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized
after an instruction for starting the subclock oscillator circuit is issued or the time interval that is required for
the oscillation to get stabilized after the HOLD mode is released (see Figure 4).
(Note 2) The circuit constants shown are the reference values that are provided by the resonator vendor for evaluation.
To make final verification of the oscillation characteristics on production boards, call the resonator vendor for
evaluation on printed circuit boards.
(Note 3) When using an oscillator circuit, observe the following wiring precautions to avoid the possible adverse
influence of wiring capacitance, especially in low power XT mode:
• Place the components that are involved in oscillation as close to the resonator as possible with the shortest
possible traces as the oscillation characteristics are subject to the variation of trace patterns.
• Do not take a signal directly from the oscillator circuit.
• Do not place the oscillator circuit in the vicinity of any lines that carry large current.
• Exercise extreme care in the wiring method when using low power XT mode.
No.A1954-26/31
LC88F85D0A
Rf2
Rf1
CF2
CF1
XT1
XT2
Rd1
C1
C2
CF
Rd2
C3
C4
X’tal
Figure 1 CF Oscillator Circuit
Figure 2 XT Oscillator Circuit
0.5VDD
Figure 3 AC Timing Measurement Point
VDD
Operating VDD
lower limit
0V
Power supply
Reset time
RESB
Internal RC oscillation
tmsCF
CF1, CF2
tmsX’tal
XT1, XT2
Operating mode
Unpredictable
Reset
Initialization instruction executed
User instruction executed
Reset Time and Oscillation Stabilization Time
No.A1954-27/31
LC88F85D0A
HOLD release
No HOLD release signal
HOLD release signal valid
Interrupt operation
Internal RC oscillator
tmsCF
CF1, CF2
tmsX’tal
XT1, XT2
HOLD
State
HALT
Instruction executed
HOLD Reset and Oscillation Stabilization Time
Figure 4 Oscillation Stabilization Time
VDD
RRES
RESB
Note:
Make sure that reset is in effect when power is
turned on. Determine the values of CRES and
RRES so that the reset is in effect for a period of
10μs after the power gets stabilized.
CRES
Figure 5 Reset Circuit
No.A1954-28/31
LC88F85D0A
tSCKHBSY
tSCKHBSY
RUN:
SIOCLK:
DATAIN:
DI0
DI1
DI6
DI7
DI8
DIx
DATAOUT:
DO0
DO1
DO6
DO7
DO8
DOx
Data transfer period
(SIO0, 1 only)
tSCK
SIOCLK:
tSCKL
tSCKH
tsDI
thDI
DATAIN:
tdDO
DATAOUT:
Data transfer period
(SIO0, 1 only)
SIOCLK:
tSCKL
tSCKHA
tsDI
thDI
DATAIN:
tdDO
DATAOUT:
*: Remarks: DIx and DOx are the final communication bits. X = 0 to 32768
Figure 6 Serial I/O Waveforms Examples
tPIL
tPIH
Figure 7 Pulse Input Timing Signal Waveform
No.A1954-29/31
LC88F85D0A
P
S
Sr
P
SDA
tBUF
tHD;STA tR
tF
tHD;STA
tsp
SCK
tLOW
tHD;DAT tHIGH
tSU;DAT
tSU;STO
tSU;STA
S: Start condition
P: Stop condition
Sr: Restart condition
Figure 8 I2C Timing
Note: The oscillation frequency of any RC oscillator using OSC1 or OSC0 varies according to the printed circuit
patterns and components mounted on the board. It also varies greatly according to the shape and form of the
product (chip, plastic package, etc.) and board capacitance. Consequently, the characteristics charts given below
should be used merely as reference values and the resistance value be determined after evaluating them with the
actual product.
Frequency - Resistor
10
5
5
3
3
2
1.0
7
5
2
100
7
5
3
3
2
2
0.1
0
200
400
600
Resistor - kΩ
800
1000
1200
ILC05653
Figure 9 OSC1 Oscillation Frequency vs.
Resistance Characteristics
Ta=25°C, typ
7
Frequency - kHz
Frequency - MHz
7
Frequency - Resistor
1000
Ta=25°C, typ
10
0
200
400
600
Resistor - kΩ
800
1000
1200
ILC05654
Figure 10 OSC0 Oscillation Frequency vs.
Resistance Characteristics
No.A1954-30/31
LC88F85D0A
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical
experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in
which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for
any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the
part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PS No.A1954-31/31