0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM2902VNG

LM2902VNG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    DIP14

  • 描述:

    IC GP OPAMP 4 CIRCUIT 14DIP

  • 数据手册
  • 价格&库存
LM2902VNG 数据手册
DATA SHEET www.onsemi.com Single Supply Quad Operational Amplifiers 1 LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 The LM324 series are low−cost, quad operational amplifiers with true differential inputs. They have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V with quiescent currents about one−fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. • • Short Circuited Protected Outputs True Differential Input Stage Single Supply Operation: 3.0 V to 32 V Low Input Bias Currents: 100 nA Maximum (LM324A) Four Amplifiers Per Package Internally Compensated Common Mode Range Extends to Negative Supply Industry Standard Pinouts ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant © Semiconductor Components Industries, LLC, 2016 October, 2021 − Rev. 31 1 1 TSSOP−14 DTB SUFFIX CASE 948G SOIC−14 D SUFFIX CASE 751A PIN CONNECTIONS Out 1 1 14 2 13 Inputs 1 3 VCC * 1 ) 4 * ) Inputs 4 11 5 10 6 ) 2 * 3 ) * VEE, GND Inputs 3 9 8 7 Out 4 12 4 Inputs 2 Out 2 Features • • • • • • • • • 14 14 Out 3 (Top View) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 11 of this data sheet. Publication Order Number: LM324/D LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 MAXIMUM RATINGS (TA = + 25°C, unless otherwise noted.) Symbol Value VCC VCC, VEE 32 ±16 Input Differential Voltage Range (Note 1) VIDR ±32 Vdc Input Common Mode Voltage Range VICR −0.3 to 32 Vdc tSC Continuous Rating Power Supply Voltages Single Supply Split Supplies Unit Vdc Output Short Circuit Duration Junction Temperature TJ 150 °C RJA 118 156 190 °C/W Storage Temperature Range Tstg −65 to +150 °C Operating Ambient Temperature Range TA Thermal Resistance, Junction−to−Air (Note 2) Case 646 Case 751A Case 948G LM224 LM324, LM324A, LM324E LM2902, LM2902E LM2902V, NCV2902 (Note 3) °C −25 to +85 0 to +70 −40 to +105 −40 to +125 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Split Power Supplies. 2. All RJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active. 3. NCV2902 is qualified for automitive use. ESD RATINGS Rating ESD Protection at any Pin (Human Body Model − HBM, Machine Model − MM) NCV2902 (Note 3) LM324E, LM2902E LM324DG/DR2G, LM2902DG/DR2G All Other Devices www.onsemi.com 2 HBM MM Unit 2000 2000 200 2000 200 200 100 200 V V V V LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.) LM224 Characteristics Symbol Input Offset Voltage VCC = 5.0 V to 30 V VICR = 0 V to VCC −1.7 V, VO = 1.4 V, RS = 0  VIO Min Typ LM324A Max Min Typ LM324, LM324E Max Min Typ Max LM2902, LM2902E LM2902V/NCV2902 Min Min Typ Max Typ Max Unit mV TA = 25°C − 2.0 5.0 − 2.0 3.0 − 2.0 7.0 − 2.0 7.0 − 2.0 7.0 TA = Thigh (Note 4) − − 7.0 − − 5.0 − − 9.0 − − 10 − − 13 TA = Tlow (Note 4) − − 7.0 − − 5.0 − − 9.0 − − 10 − − 10 VIO/T − 7.0 − − 7.0 30 − 7.0 − − 7.0 − − 7.0 − V/°C Input Offset Current TA = Thigh to Tlow (Note 4) IIO − − 3.0 − 30 100 − − 5.0 − 30 75 − − 5.0 − 50 150 − − 5.0 − 50 200 − − 5.0 − 50 200 nA Average Temperature Coefficient of Input Offset Current IIO/T − 10 − − 10 300 − 10 − − 10 − − 10 − pA/°C IIB − − −90 − −150 −300 − − −45 − −100 −200 − − −90 − −250 −500 − − −90 − −250 −500 − − −90 − −250 −500 nA Average Temperature Coefficient of Input Offset Voltage TA = Thigh to Tlow (Notes 4 and 6) TA = Thigh to Tlow (Notes 4 and 6) Input Bias Current TA = Thigh to Tlow (Note 4) Input Common Mode Voltage Range (Note 5) VICR V VCC = 30 V TA = +25°C 0 − 28.3 0 − 28.3 0 − 28.3 0 − 28.3 0 − 28.3 TA = Thigh to Tlow (Note 4) 0 − 28 0 − 28 0 − 28 0 − 28 0 − 28 − − VCC − − VCC − − VCC − − VCC − − VCC Differential Input Voltage Range VIDR Large Signal Open Loop Voltage Gain AVOL V V/mV RL = 2.0 k, VCC = 15 V, for Large VO Swing 50 100 − 25 100 − 25 100 − 25 100 − 25 100 − TA = Thigh to Tlow (Note 4) 25 − − 15 − − 15 − − 15 − − 15 − − CS − −120 − − −120 − − −120 − − −120 − − −120 − dB Common Mode Rejection, RS ≤ 10 k CMR 70 85 − 65 70 − 65 70 − 50 70 − 50 70 − dB Power Supply Rejection PSR 65 100 − 65 100 − 65 100 − 50 100 − 50 100 − dB Channel Separation 10 kHz ≤ f ≤ 20 kHz, Input Referenced 4. LM224: Tlow = −25°C, Thigh = +85°C LM324/LM324A/LM324E: Tlow = 0°C, Thigh = +70°C LM2902/LM2902E: Tlow = −40°C, Thigh = +105°C LM2902V & NCV2902: Tlow = −40°C, Thigh = +125°C NCV2902 is qualified for automotive use. 5. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. 6. Guaranteed by design. www.onsemi.com 3 LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.) LM224 Characteristics Output Voltage − High Limit Symbol Min Typ LM324A Max Min Typ LM324, LM324E Max Min Typ Max LM2902, LM2902E LM2902V/NCV2902 Min Min Typ Max Typ Max VOH V VCC = 5.0 V, RL = 2.0 k, TA = 25°C 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − 3.3 3.5 − VCC = 30 V RL = 2.0 k (TA = Thigh to Tlow) (Note 7) 26 − − 26 − − 26 − − 26 − − 26 − − VCC = 30 V RL = 10 k (TA = Thigh to Tlow) (Note 7) 27 28 − 27 28 − 27 28 − 27 28 − 27 28 − − 5.0 20 − 5.0 20 − 5.0 20 − 5.0 100 − 5.0 100 Output Voltage − Low Limit, VCC = 5.0 V, RL = 10 k, TA = Thigh to Tlow (Note 7) VOL Output Source Current (VID = +1.0 V, VCC = 15 V) IO + Unit mV mA TA = 25°C 20 40 − 20 40 − 20 40 − 20 40 − 20 40 − TA = Thigh to Tlow (Note 7) 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − TA = Thigh to Tlow (Note 7) 5.0 8.0 − 5.0 8.0 − 5.0 8.0 − 5.0 8.0 − 5.0 8.0 − (VID = −1.0 V, VO = 200 mV, TA = 25°C) 12 50 − 12 50 − 12 50 − − − − − − − A − 40 60 − 40 60 − 40 60 − 40 60 − 40 60 mA Output Sink Current (VID = −1.0 V, VCC = 15 V) TA = 25°C IO − Output Short Circuit to Ground (Note 8) ISC Power Supply Current (TA = Thigh to Tlow) (Note 7) ICC mA mA VCC = 30 V VO = 0 V, RL = ∞ − − 3.0 − 1.4 3.0 − − 3.0 − − 3.0 − − 3.0 VCC = 5.0 V, VO = 0 V, RL = ∞ − − 1.2 − 0.7 1.2 − − 1.2 − − 1.2 − − 1.2 7. LM224: Tlow = −25°C, Thigh = +85°C LM324/LM324A/LM324E: Tlow = 0°C, Thigh = +70°C LM2902/LM2902E: Tlow = −40°C, Thigh = +105°C LM2902V & NCV2902: Tlow = −40°C, Thigh = +125°C NCV2902 is qualified for automotive use. 8. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 4 LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 Output Bias Circuitry Common to Four Amplifiers VCC Q15 Q16 Q22 Q14 Q13 40 k Q19 5.0 pF Q12 Q24 25 Q23 + Q20 Q18 Inputs Q11 Q9 - Q21 Q17 Q6 Q2 Q25 Q7 Q5 Q1 Q8 Q3 Q4 2.4 k Q10 Q26 2.0 k VEE/GND Figure 1. Representative Circuit Diagram (One−Fourth of Circuit Shown) www.onsemi.com 5 LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 CIRCUIT DESCRIPTION The LM324 series is made using four internally compensated, two−stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single−ended converter. The second stage consists of a standard current source load amplifier stage. 3.0 V to VCC(max) 1.0 V/DIV VCC = 15 Vdc RL = 2.0 k TA = 25°C 5.0 s/DIV Figure 2. Large Signal Voltage Follower Response Each amplifier is biased from an internal−voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection. VCC VCC 1 1 1.5 V to VCC(max) 2 2 3 3 1.5 V to VEE(max) 4 4 VEE Single Supply Split Supplies VEE/GND Figure 3. 70 70 Phase Margin 60 50 50 40 40 30 30 Gain Margin 20 20 10 10 0 1.0 1000 10 100 LOAD CAPACITANCE (pF) Figure 4. Gain and Phase Margin www.onsemi.com 6 0 10000 PHASE MARGIN (°) GAIN MARGIN (dB) 60 LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 20 120 A VOL, LARGE-SIGNAL OPEN LOOP VOLTAGE GAIN (dB) ± V , INPUT VOLTAGE (V) I 18 16 14 12 10 Negative 8.0 Positive 6.0 4.0 2.0 0 80 60 40 20 0 -20 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 1.0 10 100 1.0 k 10 k 1.0 M 100 k ± VCC/VEE, POWER SUPPLY VOLTAGES (V) f, FREQUENCY (Hz) Figure 5. Input Voltage Range Figure 6. Open Loop Frequency 14 550 RL = 2.0 k VCC = 15 V VEE = GND Gain = -100 RI = 1.0 k RF = 100 k 12 10 8.0 VO , OUTPUT VOLTAGE (mV) VOR , OUTPUT VOLTAGE RANGE (V pp ) VCC = 15 V VEE = GND TA = 25°C 100 6.0 4.0 2.0 500 Input 450 Output 400 350 300 250 VCC = 30 V VEE = GND TA = 25°C CL = 50 pF 200 0 1.0 10 100 0 1000 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 f, FREQUENCY (kHz) t, TIME (s) Figure 7. Large−Signal Frequency Response Figure 8. Small−Signal Voltage Follower Pulse Response (Noninverting) 8.0 TA = 25°C RL = R 2.1 I IB , INPUT BIAS CURRENT (nA) I CC , POWER SUPPLY CURRENT (mA) 2.4 1.8 1.5 1.2 0.9 0.6 0.3 0 0 5.0 10 15 20 25 VCC, POWER SUPPLY VOLTAGE (V) 30 90 80 70 35 0 Figure 9. Power Supply Current versus Power Supply Voltage 2.0 4.0 6.0 8.0 10 12 14 16 VCC, POWER SUPPLY VOLTAGE (V) Figure 10. Input Bias Current versus Power Supply Voltage www.onsemi.com 7 18 20 LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 50 k R1 5.0 k VCC VCC R2 10 k 1/4 MC1403 2.5 V 1/4 Vref = VO = 2.5 V 1 + 1/4 R R1 R2 C Hysteresis VOH - a R1 1/4 eo LM324 + 1/4 VO Vref + Vin LM324 - 1/4 1 CR LM324 + VinH = R - 100 k C C R 1/4 - LM324 + 100 k 1/4 Vref 1/4 LM324 + Vref Bandpass Output R3 Vref R1 - 8 Vref = 1 V 2 CC C1 = 10C For:fo=1.0 kHz For:Q= 10 For:TBP= 1 For:TN= 1 Notch Output Where:TBP=Center Frequency Gain Where:TN=Passband Notch Gain Figure 15. Bi−Quad Filter www.onsemi.com R1 = QR R1 R2 = TBP C1 1/4 LM324 + Vref 1 fo =2  RC R3 = TN R2 - LM324 + Vref VinH Figure 14. Comparator with Hysteresis R R2 VinL R1 (VOH - VOL) R1 + R2 R R2 VOL R1 (VOH - Vref) + Vref R1 + R2 H= Figure 13. High Impedance Differential Amplifier C1 VO R1 (VOL - Vref) + Vref VinL = R1 + R2 eo = C (1 + a + b) (e2 - e1) Vin For: fo = 1.0 kHz R = 16 k C = 0.01 F R R1 b R1 e2 C Figure 12. Wien Bridge Oscillator LM324 - R1 R R2 1 CR + 1 fo = 2  RC 1 V 2 CC Figure 11. Voltage Reference e1 VO LM324 + VO LM324 + VCC - Vref - R C R1 R2 R3 = 160 k = 0.001 F = 1.6 M = 1.6 M = 1.6 M LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 Vref = Vref 1 V 2 CC Triangle Wave Output + R2 300 k R3 1/4 LM324 - VCC + 1/4 75 k LM324 - R1 100 k Vref C C Square Wave Output R1 R1 + RC 4 CRf R1 - Vin Vref R2 R1 R2 + R1 Figure 16. Function Generator VO LM324 + R2 if R3 = CO 1/4 Rf f = C R3 CO = 10 C 1 Vref = 2 VCC Figure 17. Multiple Feedback Bandpass Filter Given:fo=center frequency A(fo)=gain at center frequency Choose value fo, C Then: R3 = Q  fo C R1 = R3 2 A(fo) R2 = R1 R3 4Q2 R1 - R3 For less than 10% error from operational amplifier, Qo fo BW where fo and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. www.onsemi.com 9 < 0.1 LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 ORDERING INFORMATION Package Shipping† SOIC−14 (Pb−Free) 2500/Tape & Reel TSSOP−14 (Pb−Free) 2500/Tape & Reel LM324DR2G SOIC−14 (Pb−Free) 2500/Tape & Reel LM324EDR2G SOIC−14 (Pb−Free) 2500/Tape & Reel TSSOP−14 (Pb−Free) 2500/Tape & Reel SOIC−14 (Pb−Free) 2500/Tape & Reel TSSOP−14 (Pb−Free) 2500/Tape & Reel SOIC−14 (Pb−Free) 2500/Tape & Reel SOIC−14 (Pb−Free) 2500/Tape & Reel TSSOP−14 (Pb−Free) 2500/Tape & Reel SOIC−14 (Pb−Free) 2500/Tape & Reel TSSOP−14 (Pb−Free) 2500/Tape & Reel Device LM224DR2G LM224DTBR2G LM324DTBR2G Operating Temperature Range −25°C to +85°C 0°C to +70°C LM324ADR2G LM324ADTBR2G LM2902DR2G LM2902EDR2G −40°C to +105°C LM2902DTBR2G LM2902VDR2G LM2902VDTBR2G NCV2902DR2G* −40°C to +125°C SOIC−14 (Pb−Free) NCV2902DTBR2G* TSSOP−14 (Pb−Free) 2500/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. www.onsemi.com 10 LM324, LM324A, LM324E, LM224, LM2902, LM2902E, LM2902V, NCV2902 MARKING DIAGRAMS SOIC−14 D SUFFIX CASE 751A 14 14 14 14 LMx24DG AWLYWW LM324ADG AWLYWW 1 LM2902DG AWLYWW 1 1 14 14 LM2902VDG AWLYWW 1 LMx24EG AWLYWW LM2902EG AWLYWW 1 1 TSSOP−14 DTB SUFFIX CASE 948G 14 1 14 14 14 x24 324A 2902 ALYWG G ALYWG G ALYWG G 1 1 2902 V ALYWG G 1 x = 2 or 3 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) *This marking diagram also applies to NCV2902. www.onsemi.com 11 * MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS PDIP−14 CASE 646−06 ISSUE S 1 SCALE 1:1 D A 14 8 E H E1 1 NOTE 8 7 b2 c B TOP VIEW END VIEW WITH LEADS CONSTRAINED NOTE 5 A2 A NOTE 3 L SEATING PLANE A1 C D1 e M eB END VIEW 14X b SIDE VIEW 0.010 M C A M B M NOTE 6 DATE 22 APR 2015 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3. 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. 5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. 7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. 8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS). DIM A A1 A2 b b2 C D D1 E E1 e eB L M INCHES MIN MAX −−−− 0.210 0.015 −−−− 0.115 0.195 0.014 0.022 0.060 TYP 0.008 0.014 0.735 0.775 0.005 −−−− 0.300 0.325 0.240 0.280 0.100 BSC −−−− 0.430 0.115 0.150 −−−− 10 ° MILLIMETERS MIN MAX −−− 5.33 0.38 −−− 2.92 4.95 0.35 0.56 1.52 TYP 0.20 0.36 18.67 19.69 0.13 −−− 7.62 8.26 6.10 7.11 2.54 BSC −−− 10.92 2.92 3.81 −−− 10 ° GENERIC MARKING DIAGRAM* 14 XXXXXXXXXXXX XXXXXXXXXXXX AWLYYWWG STYLES ON PAGE 2 1 XXXXX A WL YY WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DOCUMENT NUMBER: DESCRIPTION: 98ASB42428B PDIP−14 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com PDIP−14 CASE 646−06 ISSUE S DATE 22 APR 2015 STYLE 1: PIN 1. COLLECTOR 2. BASE 3. EMITTER 4. NO CONNECTION 5. EMITTER 6. BASE 7. COLLECTOR 8. COLLECTOR 9. BASE 10. EMITTER 11. NO CONNECTION 12. EMITTER 13. BASE 14. COLLECTOR STYLE 2: CANCELLED STYLE 3: CANCELLED STYLE 4: PIN 1. DRAIN 2. SOURCE 3. GATE 4. NO CONNECTION 5. GATE 6. SOURCE 7. DRAIN 8. DRAIN 9. SOURCE 10. GATE 11. NO CONNECTION 12. GATE 13. SOURCE 14. DRAIN STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. NO CONNECTION 5. SOURCE 6. DRAIN 7. GATE 8. GATE 9. DRAIN 10. SOURCE 11. NO CONNECTION 12. SOURCE 13. DRAIN 14. GATE STYLE 6: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 7: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE STYLE 8: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 9: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE STYLE 10: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE STYLE 12: PIN 1. COMMON CATHODE 2. COMMON ANODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. COMMON ANODE 7. COMMON CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42428B PDIP−14 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−14 NB CASE 751A−03 ISSUE L 14 1 SCALE 1:1 D DATE 03 FEB 2016 A B 14 8 A3 E H L 1 0.25 B M DETAIL A 7 13X M b 0.25 M C A S B S 0.10 X 45 _ M A1 e DETAIL A h A C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 6.50 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 14 14X 1.18 XXXXXXXXXG AWLYWW 1 1 1.27 PITCH XXXXX A WL Y WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−14 CASE 751A−03 ISSUE L DATE 03 FEB 2016 STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 2: CANCELLED STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−14 WB CASE 948G ISSUE C 14 DATE 17 FEB 2016 1 SCALE 2:1 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S DETAIL E K A −V− K1 J J1 ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE H G D DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 −−− 1.20 −−− 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ GENERIC MARKING DIAGRAM* 14 SOLDERING FOOTPRINT XXXX XXXX ALYWG G 7.06 1 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: 98ASH70246A DESCRIPTION: TSSOP−14 WB A L Y W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
LM2902VNG 价格&库存

很抱歉,暂时无法提供与“LM2902VNG”相匹配的价格&库存,您可以联系我们找货

免费人工找货