0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM324_06

LM324_06

  • 厂商:

    ONSEMI(安森美)

  • 封装:

  • 描述:

    LM324_06 - Single Supply Quad Operational Amplifiers - ON Semiconductor

  • 数据手册
  • 价格&库存
LM324_06 数据手册
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Single Supply Quad Operational Amplifiers The LM324 series are low−cost, quad operational amplifiers with true differential inputs. They have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V with quiescent currents about one−fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. Features http://onsemi.com PDIP−14 N SUFFIX CASE 646 14 1 SOIC−14 D SUFFIX CASE 751A • • • • • • • • • • • Short Circuited Protected Outputs True Differential Input Stage Single Supply Operation: 3.0 V to 32 V Low Input Bias Currents: 100 nA Maximum (LM324A) Four Amplifiers Per Package Internally Compensated Common Mode Range Extends to Negative Supply Industry Standard Pinouts ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes Pb−Free Packages are Available 14 1 14 TSSOP−14 DTB SUFFIX CASE 948G 1 PIN CONNECTIONS Out 1 Inputs 1 3 1 2 * 1 ) * ) 14 13 Out 4 Inputs 4 4 12 11 VCC Inputs 2 4 5 6 ) 2 * 3 ) * VEE, GND Inputs 3 10 9 8 Out 2 7 Out 3 (Top View) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. DEVICE MARKING INFORMATION See general marking information in the device marking section on page 12 of this data sheet. © Semiconductor Components Industries, LLC, 2006 October, 2006 − Rev. 20 1 Publication Order Number: LM324/D LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 MAXIMUM RATINGS (TA = + 25°C, unless otherwise noted.) Rating Power Supply Voltages Single Supply Split Supplies Input Differential Voltage Range (Note 1) Input Common Mode Voltage Range Output Short Circuit Duration Junction Temperature (Note 2) Thermal Resistance, Junction−to−Air (Note 3) Case 646 Case 751A Case 948G Symbol VCC VCC, VEE VIDR VICR tSC TJ RqJA Value 32 ±16 ±32 −0.3 to 32 Continuous 150 118 156 190 −65 to +150 2000 200 LM224 LM324, 324A LM2902 LM2902V, NCV2902 (Note 4) TA °C −25 to +85 0 to +70 −40 to +105 −40 to +125 °C °C/W Vdc Vdc Unit Vdc Storage Temperature Range ESD Protection at any Pin Human Body Model Machine Model Operating Ambient Temperature Range Tstg Vesd °C V Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Split Power Supplies. 2. For supply voltages less than 32 V, the absolute maximum input voltage is equal to the supply voltage. 3. All RqJA measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active. 4. NCV2902 is qualified for automitive use. http://onsemi.com 2 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.) LM224 Characteristics Input Offset Voltage VCC = 5.0 V to 30 V VICR = 0 V to VCC −1.7 V, VO = 1.4 V, RS = 0 W TA = 25°C TA = Thigh (Note 5) TA = Tlow (Note 5) Average Temperature Coefficient of Input Offset Voltage TA = Thigh to Tlow (Notes 5 and 7) Input Offset Current TA = Thigh to Tlow (Note 5) Average Temperature Coefficient of Input Offset Current TA = Thigh to Tlow (Notes 5 and 7) Input Bias Current TA = Thigh to Tlow (Note 5) Input Common Mode Voltage Range (Note 6) VCC = 30 V TA = +25°C TA = Thigh to Tlow (Note 5) Differential Input Voltage Range Large Signal Open Loop Voltage Gain RL = 2.0 kW, VCC = 15 V, for Large VO Swing TA = Thigh to Tlow (Note 5) Channel Separation 10 kHz ≤ f ≤ 20 kHz, Input Referenced Common Mode Rejection, RS ≤ 10 kW Power Supply Rejection CS VIDR AVOL 50 100 − 25 100 − 25 100 − 25 100 − 25 100 − 0 0 − − − − 28.3 28 VCC 0 0 − − − − 28.3 28 VCC 0 0 − − − − 28.3 28 VCC 0 0 − − − − 24.3 24 VCC 0 0 − − − − 24.3 24 VCC V V/mV IIB − − −90 − −150 −300 − − −45 − −100 −200 − − −90 − −250 −500 − − −90 − −250 −500 − − −90 − −250 −500 nA IIO − − − 3.0 − 10 30 100 − − − − 5.0 − 10 30 75 300 − − − 5.0 − 10 50 150 − − − − 5.0 − 10 50 200 − − − − 5.0 − 10 50 200 − nA DVIO/DT Symbol VIO Min Typ Max Min LM324A Typ Max Min LM324 Typ Max Min LM2902 Typ Max LM2902V/NCV2902 Min Typ Max Unit mV − − − − 2.0 − − 7.0 5.0 7.0 7.0 − − − − − 2.0 − − 7.0 3.0 5.0 5.0 30 − − − − 2.0 − − 7.0 7.0 9.0 9.0 − − − − − 2.0 − − 7.0 7.0 10 10 − − − − − 2.0 − − 7.0 7.0 13 10 − mV/°C DIIO/DT pA/°C VICR V 25 − − −120 − − 15 − − −120 − − 15 − − −120 − − 15 − − −120 − − 15 − − −120 − − dB CMR 70 85 − 65 70 − 65 70 − 50 70 − 50 70 − dB PSR 65 100 − 65 100 − 65 100 − 50 100 − 50 100 − dB 5. LM224: Tlow = −25°C, Thigh = +85°C LM324/LM324A: Tlow = 0°C, Thigh = +70°C LM2902: Tlow = −40°C, Thigh = +105°C LM2902V & NCV2902: Tlow = −40°C, Thigh = +125°C NCV2902 is qualified for automotive use. 6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. 7. Guaranteed by design. http://onsemi.com 3 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = GND, TA = 25°C, unless otherwise noted.) LM224 Characteristics Output Voltage − High Limit (TA = Thigh to Tlow) (Note 8) VCC = 5.0 V, RL = 2.0 kW, TA = 25°C VCC = 30 V RL = 2.0 kW VCC = 30 V RL = 10 kW Output Voltage − Low Limit, VCC = 5.0 V, RL = 10 kW, TA = Thigh to Tlow (Note 8) Output Source Current (VID = +1.0 V, VCC = 15 V) TA = 25°C TA = Thigh to Tlow (Note 8) Output Sink Current (VID = −1.0 V, VCC = 15 V) TA = 25°C TA = Thigh to Tlow (Note 8) (VID = −1.0 V, VO = 200 mV, TA = 25°C) Output Short Circuit to Ground (Note 9) Power Supply Current (TA = Thigh to Tlow) (Note 8) VCC = 30 V VO = 0 V, RL = ∞ VCC = 5.0 V, VO = 0 V, RL = ∞ ISC IO − 10 20 − 10 20 − 10 20 − 10 20 − 10 20 − VOL Symbol VOH Min Typ Max Min LM324A Typ Max Min LM324 Typ Max Min LM2902 Typ Max LM2902V/NCV2902 Min Typ Max Unit V 3.3 26 27 − 3.5 − 28 5.0 − − − 20 3.3 26 27 − 3.5 − 28 5.0 − − − 20 3.3 26 27 − 3.5 − 28 5.0 − − − 20 3.3 22 23 − 3.5 − 24 5.0 − − − 100 3.3 22 23 − 3.5 − 24 5.0 − − − 100 mV IO + 20 10 40 20 − − 20 10 40 20 − − 20 10 40 20 − − 20 10 40 20 − − 20 10 40 20 − − mA mA 5.0 12 8.0 50 − − 5.0 12 8.0 50 − − 5.0 12 8.0 50 − − 5.0 − 8.0 − − − 5.0 − 8.0 − − − mA − 40 60 − 40 60 − 40 60 − 40 60 − 40 60 mA ICC − − − − 3.0 1.2 − − 1.4 0.7 3.0 1.2 − − − − 3.0 1.2 − − − − 3.0 1.2 − − − − 3.0 1.2 mA 8. LM224: Tlow = −25°C, Thigh = +85°C LM324/LM324A: Tlow = 0°C, Thigh = +70°C LM2902: Tlow = −40°C, Thigh = +105°C LM2902V & NCV2902: Tlow = −40°C, Thigh = +125°C NCV2902 is qualified for automotive use. 9. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is VCC −1.7 V, but either or both inputs can go to +32 V without damage, independent of the magnitude of VCC. http://onsemi.com 4 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Bias Circuitry Common to Four Amplifiers VCC Q14 Q13 Q19 5.0 pF 40 k Q12 25 + Q18 Inputs Q9 − Q2 Q3 Q4 Q17 Q21 Q6 Q5 Q8 Q26 Q10 2.0 k VEE/GND Q7 Q1 Q25 2.4 k Q20 Q11 Q23 Q22 Output Q15 Q16 Q24 Figure 1. Representative Circuit Diagram (One−Fourth of Circuit Shown) http://onsemi.com 5 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 CIRCUIT DESCRIPTION The LM324 series is made using four internally compensated, two−stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single−ended converter. The second stage consists of a standard current source load amplifier stage. 3.0 V to VCC(max) 1 2 3 4 VEE VCC VCC = 15 Vdc RL = 2.0 kW TA = 25°C 1.0 V/DIV 5.0 ms/DIV Figure 2. Large Signal Voltage Follower Response Each amplifier is biased from an internal−voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection. VCC 1 2 3 4 1.5 V to VEE(max) 1.5 V to VCC(max) Single Supply VEE/GND Split Supplies Figure 3. 70 60 GAIN MARGIN (dB) 50 40 30 20 10 0 1.0 10 100 1000 LOAD CAPACITANCE (pF) Gain Margin Phase Margin 70 60 PHASE MARGIN (°) 50 40 30 20 10 0 10000 Figure 4. Gain and Phase Margin http://onsemi.com 6 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 20 A VOL LARGE−SIGNAL , OPEN LOOP VOLTAGE GAIN (dB) 18 ± V , INPUT VOLTAGE (V) I 16 14 12 10 8.0 6.0 4.0 2.0 0 Negative Positive 120 100 80 60 40 20 0 −20 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 1.0 10 100 1.0 k 10 k 100 k 1.0 M ± VCC/VEE, POWER SUPPLY VOLTAGES (V) f, FREQUENCY (Hz) VCC = 15 V VEE = GND TA = 25°C Figure 5. Input Voltage Range Figure 6. Open Loop Frequency 14 VOR, OUTPUT VOLTAGE RANGE (Vpp ) VO , OUTPUT VOLTAGE (mV) 12 10 8.0 6.0 4.0 2.0 0 1.0 10 100 f, FREQUENCY (kHz) 1000 RL = 2.0 kW VCC = 15 V VEE = GND Gain = −100 RI = 1.0 kW RF = 100 kW 550 500 450 400 350 300 250 200 0 0 1.0 2.0 3.0 4.0 t, TIME (ms) VCC = 30 V VEE = GND TA = 25°C CL = 50 pF 5.0 6.0 7.0 8.0 Input Output Figure 7. Large−Signal Frequency Response Figure 8. Small−Signal Voltage Follower Pulse Response (Noninverting) 2.4 I CC , POWER SUPPLY CURRENT (mA) 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0 0 5.0 10 15 20 25 VCC, POWER SUPPLY VOLTAGE (V) 30 35 I IB, INPUT BIAS CURRENT (nA) TA = 25°C RL = R 90 80 70 0 2.0 4.0 6.0 8.0 10 12 14 16 VCC, POWER SUPPLY VOLTAGE (V) 18 20 Figure 9. Power Supply Current versus Power Supply Voltage Figure 10. Input Bias Current versus Power Supply Voltage http://onsemi.com 7 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 50 k R1 5.0 k VCC VCC R2 − LM324 + 1/4 10 k Vref VO Vref = R1 R2 1 V 2 CC R − VCC 1/4 MC1403 LM324 + VO 1 fo = 2 p RC C For: fo = 1.0 kHz R = 16 kW C = 0.01 mF 2.5 V R C VO = 2.5 V 1+ Figure 11. Voltage Reference Figure 12. Wien Bridge Oscillator e1 + LM324 − a R1 1/4 1 CR R2 R VOH R1 − Vref 1/4 Hysteresis + LM324 − 1/4 VO VO R1 LM324 + 1 CR R eo Vin VOL b R1 − e2 LM324 + 1/4 VinL Vref VinH R1 (V − V ) + Vref VinL = R1 + R2 OL ref VinH = H= R1 (VOH − Vref) + Vref R1 + R2 R1 (VOH − VOL) R1 + R2 eo = C (1 + a + b) (e2 − e1) Figure 13. High Impedance Differential Amplifier Figure 14. Comparator with Hysteresis R R Vin C1 R2 − C R − LM324 + Vref Bandpass Output R2 R1 − LM324 + Vref Where: Where: 1/4 1/4 100 k C 100 k − LM324 + R3 Vref 1/4 1 fo =2 p RC R1 = QR R1 R2 = TBP R3 = TN R2 C1 = 10C For: For: For: For: fo = 1.0 kHz Q = 10 TBP = 1 TN = 1 R C R1 R2 R3 = 160 kW = 0.001 mF = 1.6 MW = 1.6 MW = 1.6 MW Vref = 1 V 2 CC LM324 + 1/4 Vref C1 Notch Output T BP = Center Frequency Gain TN = Passband Notch Gain Figure 15. Bi−Quad Filter http://onsemi.com 8 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 Vref = Vref 1 V 2 CC + LM324 − 1/4 Triangle Wave Output R3 75 k R1 100 k Vref Rf f= R1 + RC 4 CRf R1 if R3 = R2 R1 R2 + R1 R2 300 k + LM324 − 1/4 VCC C Square Wave Output R1 Vin R2 Vref C R3 − LM324 + 1 Vref = 2 VCC 1/4 CO VO CO = 10 C C Figure 16. Function Generator Figure 17. Multiple Feedback Bandpass Filter Given: fo = center frequency A(fo) = gain at center frequency Choose value fo, C Then: R3 = R1 = R2 = Q p fo C R3 2 A(fo) R1 R3 4Q2 R1 − R3 Qo fo BW < 0.1 For less than 10% error from operational amplifier, where fo and BW are expressed in Hz. If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters. http://onsemi.com 9 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ORDERING INFORMATION Device LM224D LM224DG LM224DR2 LM224DR2G LM224DTB LM224DTBG LM224DTBR2 LM224DTBR2G LM224N LM224NG LM324D LM324DG LM324DR2 LM324DR2G LM324DTB LM324DTBG LM324DTBR2 LM324DTBR2G LM324N LM324NG LM324AD LM324ADG LM324ADR2 LM324ADR2G LM324ADTB LM324ADTBG LM324ADTBR2 LM324ADTBR2G LM324AN LM324ANG 0°C to +70°C −25°C to +85°C Operating Temperature Range Package SOIC−14 SOIC−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) TSSOP−14* TSSOP−14* TSSOP−14* TSSOP−14* PDIP−14 PDIP−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) TSSOP−14* TSSOP−14* TSSOP−14* TSSOP−14* PDIP−14 PDIP−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) TSSOP−14* TSSOP−14* TSSOP−14* TSSOP−14* PDIP−14 PDIP−14 (Pb−Free) 25 Units/Rail 2500/Tape & Reel 55 Units/Rail 25 Units/Rail 2500/Tape & Reel 55 Units/Rail 25 Units/Rail 2500/Tape & Reel 55 Units/Rail Shipping † 96 Units/Tube 2500/Tape & Reel 96 Units/Tube 2500/Tape & Reel 96 Units/Tube 2500/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 10 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ORDERING INFORMATION (continued) Device LM2902D LM2902DG LM2902DR2 LM2902DR2G LM2902DTB LM2902DTBG LM2902DTBR2 LM2902DTBR2G LM2902N LM2902NG LM2902VD LM2902VDG LM2902VDR2 LM2902VDR2G LM2902VDTB LM2902VDTBG LM2902VDTBR2 LM2902VDTBR2G LM2902VN LM2902VNG NCV2902DR2 NCV2902DR2G NCV2902DTBR2G −40°C to +125°C −40°C to +105°C Operating Temperature Range Package SOIC−14 SOIC−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) TSSOP−14* TSSOP−14* TSSOP−14* TSSOP−14* PDIP−14 PDIP−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) TSSOP−14* TSSOP−14* TSSOP−14* TSSOP−14* PDIP−14 PDIP−14 (Pb−Free) SOIC−14 SOIC−14 (Pb−Free) TSSOP−14* 2500/Tape & Reel 25 Units/Rail 2500/Tape & Reel 55 Units/Rail 25 Units/Rail 2500/Tape & Reel 55 Units/Rail Shipping † 96 Units/Tube 2500/Tape & Reel 96 Units/Tube 2500/Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 11 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 MARKING DIAGRAMS PDIP−14 N SUFFIX CASE 646 14 LM324AN AWLYYWWG 1 1 14 LMx24N AWLYYWWG 1 SOIC−14 D SUFFIX CASE 751A 14 LM324ADG AWLYWW 1 1 14 LMx24DG AWLYWW 1 14 LM2902DG AWLYWW 1 14 LM2902VDG AWLYWW 14 LM2902N AWLYYWWG 1 14 LM2902VN AWLYYWWG * TSSOP−14 DTB SUFFIX CASE 948G 14 x24 ALYWG G 1 1 14 324A ALYWG G 1 14 2902 ALYWG G 1 14 2902 V ALYWG G x = 2 or 3 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) *This marking diagram also applies to NCV2902. http://onsemi.com 12 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 PACKAGE DIMENSIONS PDIP−14 CASE 646−06 ISSUE P 14 8 B 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 −−− 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 −−− 10 _ 0.38 1.01 A F N −T− SEATING PLANE L C H G D 14 PL K M J M DIM A B C D F G H J K L M N 0.13 (0.005) http://onsemi.com 13 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 PACKAGE DIMENSIONS SOIC−14 CASE 751A−03 ISSUE H − A− 14 8 − B− P 7 PL 0.25 (0.010) M B M 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. G C −T− SEATING PLANE R X 45 _ F D 14 PL 0.25 (0.010) K M M S J TB A S DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 SOLDERING FOOTPRINT* 7X 7.04 1 0.58 14X 14X 1.52 1.27 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 14 LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 PACKAGE DIMENSIONS TSSOP−14 CASE 948G−01 ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U S M TU S V S N 2X L/2 14 8 0.25 (0.010) M L PIN 1 IDENT. 1 7 B − U− N F DETAIL E K K1 J J1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.50 0.60 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.020 0.024 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ 0.15 (0.006) T U S A −V− SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE D G H DETAIL E SOLDERING FOOTPRINT* 7.06 1 0.36 14X 14X 1.26 *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 15 ÉÉÉ ÇÇÇ ÉÉÉ ÇÇÇ 0.65 PITCH DIMENSIONS: MILLIMETERS LM324, LM324A, LM224, LM2902, LM2902V, NCV2902 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative http://onsemi.com 16 LM324/D
LM324_06 价格&库存

很抱歉,暂时无法提供与“LM324_06”相匹配的价格&库存,您可以联系我们找货

免费人工找货