0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MBR1100

MBR1100

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    DO-41(DO-204AL)

  • 描述:

    DIODE SCHOTTKY 100V 1A AXIAL

  • 数据手册
  • 价格&库存
MBR1100 数据手册
MBR1100 Axial Lead Rectifier These rectifiers employ the Schottky Barrier principle in a large area metal−to−silicon power diode. State−of−the−art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low−voltage, high−frequency inverters, free wheeling diodes, and polarity protection diodes. SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE, 100 VOLTS Features • • • • • • • • • www.onsemi.com Low Reverse Current Low Stored Charge, Majority Carrier Conduction Low Power Loss/High Efficiency Highly Stable Oxide Passivated Junction Guard−Ring for Stress Protection Low Forward Voltage 175°C Operating Junction Temperature High Surge Capacity These Devices are Pb−Free and are RoHS Compliant DO−41 AXIAL LEAD CASE 59 STYLE 1 Mechanical Characteristics: • Case: Epoxy, Molded • Weight: 0.4 Gram (Approximately) • Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable • Lead Temperature for Soldering Purposes: • MARKING DIAGRAM 260°C Max. for 10 Seconds Polarity: Cathode Indicated by Polarity Band A MBR1100 YYWW G G MAXIMUM RATINGS Rating Symbol Value Unit VRRM VRWM VR 100 V Average Rectified Forward Current (VR(equiv) ≤ 0.2 VR (dc), RqJA = 50°C/W, P.C. Board Mounting, [see Note 3], TA = 120°C) IO 1.0 A Peak Repetitive Forward Current (VR(equiv) ≤ 0.2 VR (dc), RqJA = 50°C/W, P.C. Board Mounting, [see Note 3], TA = 110°C) IFRM 2.0 A Non−Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) IFSM Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage Operating and Storage Junction Temperature Range (Note 1) Voltage Rate of Change (Rated VR) ORDERING INFORMATION 50 A TJ, Tstg −65 to +175 °C dv/dt 10 V/ns Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. The heat generated must be less than the thermal conductivity from Junction−to−Ambient: dPD/dTJ < 1/RqJA. © Semiconductor Components Industries, LLC, 2016 February, 2016 − Rev. 7 A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package (Note: Microdot may be in either location) 1 Package Shipping† MBR1100G Axial Lead (Pb−Free) 1000 Units/Bag MBR1100RLG Axial Lead (Pb−Free) 5000/Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. Publication Order Number: MBR1100/D MBR1100 THERMAL CHARACTERISTICS (See Note 4) Characteristic Symbol Max Unit RqJA See Note 3 °C/W Symbol Max Unit Thermal Resistance, Junction−to−Ambient ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted) Characteristic Maximum Instantaneous Forward Voltage (Note 2) (iF = 1 A, TL = 25°C) (iF = 1 A, TL = 100°C) VF Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2) (TL = 25°C) (TL = 100°C) iR mA 0.5 5.0 Pulse Test: Pulse Width = 300 ms, Duty Cycle ≤ 2.0%. 20 1K 400 200 100 40 20 10 10 TJ = 150°C 5.0 IR , REVERSE CURRENT ( mA) i F, INSTANTANEOUS FORWARD CURRENT (AMPS) 2. V 0.79 0.69 100°C 2.0 25°C 1.0 0.5 0.2 0.1 0.05 TJ = 150°C 125°C 100°C 4.0 2.0 1.0 0.4 0.2 0.1 0.04 0.02 0.01 0.02 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 0 10 20 30 40 50 60 70 90 80 vF, INSTANTANEOUS VOLTAGE (VOLTS) VR, REVERSE VOLTAGE (VOLTS) Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current { 100 4.0 3.0 dc 2.0 SQUARE WAVE 1.0 0 0 20 40 60 80 100 120 140 160 180 200 PF(AV) , AVERAGE POWER DISSIPATION (WATTS) IF(AV) , AVERAGE FORWARD CURRENT (AMPS) { The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR. 4.0 3.0 SQUARE WAVE dc 2.0 1.0 0 0 1.0 2.0 3.0 4.0 TA, AMBIENT TEMPERATURE (°C) IF(AV), AVERAGE FORWARD CURRENT (AMPS) Figure 3. Current Derating (Mounting Method 3 per Note 3) Figure 4. Power Dissipation www.onsemi.com 2 5.0 MBR1100 NOTE 4 — THERMAL CIRCUIT MODEL: (For heat conduction through the leads) 150 C, CAPACITANCE (pF) 100 90 80 70 60 50 RqS(A) RqL(A) RqJ(A) TA(A) TJ = 25°C fTEST = 1 MHz RqL(K) RqJ(K) RqS(K) TA(K) PD TL(A) TC(A) TJ TC(K) TL(K) 40 30 Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify: 20 15 0 10 30 20 40 50 60 70 80 90 100 VR, REVERSE VOLTAGE (VOLTS) Figure 5. Typical Capacitance TA = Ambient Temperature TC = Case Temperature TL = Lead Temperature TJ = Junction Temperature RqS = Thermal Resistance, Heat Sink to Ambient RqL = Thermal Resistance, Lead to Heat Sink RqJ = Thermal Resistance, Junction to Case PD = Power Dissipation NOTE 3 — MOUNTING DATA: Data shown for thermal resistance junction−to−ambient (RqJA) for the mounting shown is to be used as a typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured. (Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are: RqL = 100°C/W/in typically and 120°C/W/in maximum. RqJ = 36°C/W typically and 46°C/W maximum. Typical Values for RqJA in Still Air Lead Length, L (in) Mounting Method 1/8 1/4 1/2 3/4 1 52 65 72 85 °C/W 2 67 80 87 100 °C/W 3 — L Mounting Method 2 L Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 5) Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss: it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage. Mounting Method 3 ÉÉ ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ ÉÉ ÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉ L NOTE 5 — HIGH FREQUENCY OPERATION: °C/W 50 Mounting Method 1 P.C. Board with 1−1/2″ x 1−1/2″ copper surface. RqJA P.C. Board with 1−1/2″ x 1−1/2″ copper surface. L = 3/8″ BOARD GROUND PLANE L www.onsemi.com 3 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS AXIAL LEAD CASE 59−10 ISSUE U DATE 15 FEB 2005 B K STYLE 1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO−41 OUTLINE SHALL APPLY 4. POLARITY DENOTED BY CATHODE BAND. 5. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION. D STYLE 2 F A SCALE 1:1 POLARITY INDICATOR OPTIONAL AS NEEDED (SEE STYLES) F K DIM A B D F K INCHES MIN MAX 0.161 0.205 0.079 0.106 0.028 0.034 −−− 0.050 1.000 −−− MILLIMETERS MIN MAX 4.10 5.20 2.00 2.70 0.71 0.86 −−− 1.27 25.40 −−− GENERIC MARKING DIAGRAM* STYLE 1: PIN 1. CATHODE (POLARITY BAND) 2. ANODE STYLE 2: NO POLARITY A xxx xxx YYWW STYLE 1 xxx A YY WW A xxx xxx YYWW STYLE 2 = Specific Device Code = Assembly Location = Year = Work Week *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DOCUMENT NUMBER: DESCRIPTION: 98ASB42045B AXIAL LEAD Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MBR1100 价格&库存

很抱歉,暂时无法提供与“MBR1100”相匹配的价格&库存,您可以联系我们找货

免费人工找货