MC100EPT26
3.3V 1:2 Fanout Differential
LVPECL/LVDS to LVTTL
Translator
Description
The MC100EPT26 is a 1:2 Fanout Differential LVPECL/LVDS to
LVTTL translator. Because LVPECL (Positive ECL) or LVDS levels are
used only +3.3 V and ground are required. The small outline 8-lead
package and the 1:2 fanout design of the EPT26 makes it ideal for
applications which require the low skew duplication of a signal in a
tightly packed PC board.
The VBB output allows the EPT26 to be used in a Single-Ended
input mode. In this mode the VBB output is tied to the D0 input for a
non-inverting buffer or the D0 input for an inverting buffer. If used,
the VBB pin should be bypassed to ground with > 0.01ĂmF capacitor.
For a Single-Ended direct connection, use an external voltage
reference source such as a resistor divider. Do not use VBB for a
Single-Ended direct connection or port to another device.
Features
•
•
•
•
•
•
•
•
www.onsemi.com
8
1
SOIC−8 NB
TSSOP−8
DFN8
D SUFFIX
DT SUFFIX
MN SUFFIX
CASE 751−07 CASE 948R−02 CASE 506AA
MARKING DIAGRAMS*
8
1
1.4 ns Typical Propagation Delay
Maximum Frequency = > 275 MHz Typical
8
1
8
KPT26
ALYW
G
1
SOIC−8 NB
The 100 Series Contains Temperature Compensation
A
L
Y
W
M
G
Operating Range: VCC = 3.0 V to 3.6 V with GND = 0 V
24 mA TTL outputs
Q Outputs Will Default LOW with Inputs Open or at VEE
VBB Output
These Devices are Pb-Free, Halogen Free and are RoHS Compliant
KA26
ALYWG
G
1
4
3W MG
G
TSSOP−8
DFN8
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Date Code
= Pb-Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
ORDERING INFORMATION
Package
Shipping†
MC100EPT26DG
Device
SOIC−8 NB
(Pb-Free)
98 Units/Tube
MC100EPT26DR2G
SOIC−8 NB
(Pb-Free)
2500 Tape & Reel
MC100EPT26DTG
TSSOP−8
(Pb-Free)
100 Tape & Reel
MC100RPT26DTR2G
TSSOP−8
(Pb-Free)
2500 Tape & Reel
MC100EPT26MNR4G
DFN8
(Pb-Free)
1000 Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer
to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 2016
August, 2016 − Rev. 17
1
Publication Order Number:
MC100EPT26/D
MC100EPT26
Table 1. PIN DESCRIPTION
NC
D
1
8
2
7
VCC
Pin
Q0
LVTTL
D
VBB
3
4
6
5
LVPECL
Q1
Function
Q0, Q1
LVTTL Outputs
D0**, D1**
Differential LVPECL Inputs Pair
VCC
Positive Supply
VBB
Output Reference Voltage
GND
Ground
NC
No Connect
EP
(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND)
or leave unconnected, floating open.
GND
** Pins will default to VCC/2 when left open.
(Top View)
Figure 1. 8-Lead Pinout and Logic Diagram
Table 2. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor
50 kW
Internal Input Pullup Resistor
50 kW
ESD Protection
Human Body Model
Machine Model
Charged Device Model
> 1.5 kV
> 100 V
> 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)
SOIC−8 NB
TSSOP−8
DFN8
Flammability Rating
Pb-Free Pkg
Level 1
Level 3
Level 1
Oxygen Index: 28 to 34
Transistor Count
UL 94 V−0 @ 0.125 in
117 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
www.onsemi.com
2
MC100EPT26
Table 3. MAXIMUM RATINGS
Symbol
Parameter
Condition 1
Rating
Unit
3.8
V
0 to 3.8
V
±0.5
mA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction-to-Ambient)
0 lfpm
500 lfpm
SOIC−8 NB
SOIC−8 NB
190
130
°C/W
qJC
Thermal Resistance (Junction-to-Case)
Standard Board
SOIC−8 NB
41 to 44
°C/W
qJA
Thermal Resistance (Junction-to-Ambient)
0 lfpm
500 lfpm
TSSOP−8
TSSOP−8
185
140
°C/W
qJC
Thermal Resistance (Junction-to-Case)
Standard Board
TSSOP−8
41 to 44
°C/W
qJA
Thermal Resistance (Junction-to-Ambient)
0 lfpm
500 lfpm
DFN8
DFN8
129
84
°C/W
Tsol
Wave Solder (Pb-Free)
265
°C
qJC
Thermal Resistance (Junction-to-Case)
35 to 40
°C/W
VCC
Positive Power Supply
GND = 0 V
VIN
Input Voltage
GND = 0 V
IBB
VBB Sink/Source
TA
Condition 2
VI ≤ VCC
(Note 1)
DFN8
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. JEDEC standard multilayer board − 2S2P (2 signal, 2 power)
Table 4. PECL INPUT DC CHARACTERISTICS (VCC = 3.3 V; GND = 0.0 V (Note 1))
−40°C
Symbol
Characteristic
Min
Typ
25°C
Max
Min
Typ
85°C
Max
Min
Typ
Max
Unit
VIH
Input HIGH Voltage (Single-Ended)
2075
2420
2075
2420
2075
2420
mV
VIL
Input LOW Voltage (Single-Ended)
1355
1675
1355
1675
1355
1675
mV
VBB
Output Voltage Reference
1775
1975
1775
1975
1775
1975
V
3.3
1.2
3.3
1.2
3.3
V
150
mA
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 2)
IIH
Input HIGH Current
IIL
Input LOW Current
D
D
1875
1.2
150
−150
−150
1875
150
−150
−150
−150
−150
1875
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. Input parameters vary 1:1 with VCC.
2. VIHCMR min varies 1:1 with GND, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the
differential input signal.
www.onsemi.com
3
MC100EPT26
Table 5. TTL OUTPUT DC CHARACTERISTICS (VCC = 3.3 V; GND = 0.0 V; TA = −40°C to 85°C)
Characteristic
Symbol
Condition
VOH
Output HIGH Voltage
IOH = −3.0 mA
IOL = 24 mA
Min
Typ
Max
2.4
Unit
V
VOL
Output LOW Voltage
0.5
V
ICCH
Power Supply Current
10
25
35
mA
ICCL
Power Supply Current
15
34
40
mA
IOS
Output Short Circuit Current
−50
−150
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
Table 6. AC CHARACTERISTICS (VCC = 3.0 V to 3.6 V; GND = 0.0 V (Note 1))
−40°C
25°C
Characteristic
Min
Typ
fmax
Maximum Frequency (Figure 2)
275
350
tPLH,
tPHL
Propagation Delay to
Output Differential (Note 2)
1.2
1.2
1.5
1.5
2.0
1.8
tSK+ +
tSK− −
tSKPP
Within Device Skew + +
Within Device Skew − −
Device-to-Device Skew (Note 3)
15
20
100
tJITTER
Random Clock Jitter (RMS) (Figure 2)
@ ≤ 200 MHz
@ > 200 MHz
Symbol
VPP
tr
tf
Max
85°C
Min
Typ
275
350
Max
Min
Typ
275
350
1.2
1.2
1.5
1.5
2.0
1.8
60
85
500
15
20
100
6
20
30
275
Max
1.3
1.2
1.7
1.5
2.2
1.8
ns
60
85
500
20
30
100
85
85
500
ps
6
40
30
275
6
170
30
275
Input Voltage Swing (Differential Configuration)
150
800
1200
150
800
1200
150
800
1200
Output Rise/Fall Times
(0.8 V−2.0 V)
330
600
950
330
600
950
330
650
950
Q, Q
Unit
MHz
ps
mV
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. Measured with a 750 mV 50% duty-cycle clock source. RL = 500 W to GND and CL = 20 pF to GND. Refer to Figure 3.
2. Reference (VCC = 3.3 V ± 5%; GND = 0 V)
3. Skews are measured between outputs under identical transitions.
VOL 0.5 V
VOH
8
VOH (V)
2.0
JITTER
4
1.0
0.0
0
100
200
FREQUENCY (MHz)
Figure 2. Typical VOH / Jitter versus Frequency (255C)
www.onsemi.com
4
0
300
RANDOM CLOCK JITTER (ps RMS)
12
3.0
MC100EPT26
APPLICATION
TTL RECEIVER
CHARACTERISTIC TEST
*CL includes
fixture
capacitance
CL *
RL
AC TEST LOAD
GND
Figure 3. TTL Output Loading Used for Device Evaluation
Resource Reference of Application Notes
AN1405/D
− ECL Clock Distribution Techniques
AN1406/D
− Designing with PECL (ECL at +5.0 V)
AN1503/D
− ECLinPSt I/O SPiCE Modeling Kit
AN1504/D
− Metastability and the ECLinPS Family
AN1568/D
− Interfacing Between LVDS and ECL
AN1672/D
− The ECL Translator Guide
AND8001/D
− Odd Number Counters Design
AND8002/D
− Marking and Date Codes
AND8020/D
− Termination of ECL Logic Devices
AND8066/D
− Interfacing with ECLinPS
AND8090/D
− AC Characteristics of ECL Devices
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
www.onsemi.com
5
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
DFN8 2x2, 0.5P
CASE 506AA
ISSUE F
DATE 04 MAY 2016
1
SCALE 4:1
D
PIN ONE
REFERENCE
2X
0.10 C
2X
0.10 C
A
B
L1
ÇÇ
ÇÇ
ÇÇ
DETAIL A
E
OPTIONAL
CONSTRUCTIONS
ÉÉ
ÇÇ
ÉÉ
ÇÇ
EXPOSED Cu
TOP VIEW
A
DETAIL B
0.10 C
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994 .
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
L
L
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
L1
ÉÉ
ÉÉ
ÇÇ
A3
MOLD CMPD
A1
DETAIL B
0.08 C
(A3)
NOTE 4
SIDE VIEW
DETAIL A
ALTERNATE
CONSTRUCTIONS
A1
C
D2
8X
4
1
SEATING
PLANE
RECOMMENDED
SOLDERING FOOTPRINT*
L
5
8
e/2
e
8X
0.90
b
0.05 C
8X
0.50
2.30
1
0.10 C A B
8X
0.30
NOTE 3
BOTTOM VIEW
0.50
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
GENERIC
MARKING DIAGRAM*
1
1.30
PACKAGE
OUTLINE
E2
K
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.20
0.30
2.00 BSC
1.10
1.30
2.00 BSC
0.70
0.90
0.50 BSC
0.30 REF
0.25
0.35
−−−
0.10
XXMG
G
XX = Specific Device Code
M = Date Code
G
= Pb−Free Device
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
DOCUMENT NUMBER:
DESCRIPTION:
98AON18658D
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
DFN8, 2.0X2.0, 0.5MM PITCH
PAGE 1 OF 1
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2016
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AK
8
1
SCALE 1:1
−X−
DATE 16 FEB 2011
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
0.25 (0.010)
M
Y
M
1
4
−Y−
K
G
C
N
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
S
X
J
S
8
8
1
1
IC
4.0
0.155
XXXXX
A
L
Y
W
G
IC
(Pb−Free)
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
XXXXXX
AYWW
1
1
Discrete
XXXXXX
AYWW
G
Discrete
(Pb−Free)
XXXXXX = Specific Device Code
A
= Assembly Location
Y
= Year
WW
= Work Week
G
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
1.270
0.050
SCALE 6:1
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
8
8
XXXXX
ALYWX
G
XXXXX
ALYWX
1.52
0.060
0.6
0.024
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT*
7.0
0.275
DIM
A
B
C
D
G
H
J
K
M
N
S
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
STYLES ON PAGE 2
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42564B
SOIC−8 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
SOIC−8 NB
CASE 751−07
ISSUE AK
DATE 16 FEB 2011
STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. COLLECTOR
4. EMITTER
5. EMITTER
6. BASE
7. BASE
8. EMITTER
STYLE 2:
PIN 1. COLLECTOR, DIE, #1
2. COLLECTOR, #1
3. COLLECTOR, #2
4. COLLECTOR, #2
5. BASE, #2
6. EMITTER, #2
7. BASE, #1
8. EMITTER, #1
STYLE 3:
PIN 1. DRAIN, DIE #1
2. DRAIN, #1
3. DRAIN, #2
4. DRAIN, #2
5. GATE, #2
6. SOURCE, #2
7. GATE, #1
8. SOURCE, #1
STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
7. ANODE
8. COMMON CATHODE
STYLE 5:
PIN 1. DRAIN
2. DRAIN
3. DRAIN
4. DRAIN
5. GATE
6. GATE
7. SOURCE
8. SOURCE
STYLE 6:
PIN 1. SOURCE
2. DRAIN
3. DRAIN
4. SOURCE
5. SOURCE
6. GATE
7. GATE
8. SOURCE
STYLE 7:
PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd
STYLE 8:
PIN 1. COLLECTOR, DIE #1
2. BASE, #1
3. BASE, #2
4. COLLECTOR, #2
5. COLLECTOR, #2
6. EMITTER, #2
7. EMITTER, #1
8. COLLECTOR, #1
STYLE 9:
PIN 1. EMITTER, COMMON
2. COLLECTOR, DIE #1
3. COLLECTOR, DIE #2
4. EMITTER, COMMON
5. EMITTER, COMMON
6. BASE, DIE #2
7. BASE, DIE #1
8. EMITTER, COMMON
STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT
4. GROUND
5. GROUND
6. BIAS 2
7. INPUT
8. GROUND
STYLE 11:
PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1
STYLE 12:
PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 14:
PIN 1. N−SOURCE
2. N−GATE
3. P−SOURCE
4. P−GATE
5. P−DRAIN
6. P−DRAIN
7. N−DRAIN
8. N−DRAIN
STYLE 15:
PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON
STYLE 16:
PIN 1. EMITTER, DIE #1
2. BASE, DIE #1
3. EMITTER, DIE #2
4. BASE, DIE #2
5. COLLECTOR, DIE #2
6. COLLECTOR, DIE #2
7. COLLECTOR, DIE #1
8. COLLECTOR, DIE #1
STYLE 17:
PIN 1. VCC
2. V2OUT
3. V1OUT
4. TXE
5. RXE
6. VEE
7. GND
8. ACC
STYLE 18:
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE
STYLE 19:
PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1
STYLE 20:
PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3
4. CATHODE 4
5. CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6
STYLE 22:
PIN 1. I/O LINE 1
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND
STYLE 23:
PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT
STYLE 24:
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE
STYLE 25:
PIN 1. VIN
2. N/C
3. REXT
4. GND
5. IOUT
6. IOUT
7. IOUT
8. IOUT
STYLE 26:
PIN 1. GND
2. dv/dt
3. ENABLE
4. ILIMIT
5. SOURCE
6. SOURCE
7. SOURCE
8. VCC
STYLE 29:
PIN 1. BASE, DIE #1
2. EMITTER, #1
3. BASE, #2
4. EMITTER, #2
5. COLLECTOR, #2
6. COLLECTOR, #2
7. COLLECTOR, #1
8. COLLECTOR, #1
STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
3. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
6. SOURCE 1/DRAIN 2
7. SOURCE 1/DRAIN 2
8. GATE 1
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42564B
SOIC−8 NB
STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN
STYLE 28:
PIN 1. SW_TO_GND
2. DASIC_OFF
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 2 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
TSSOP 8
CASE 948R−02
ISSUE A
DATE 04/07/2000
SCALE 2:1
8x
0.15 (0.006) T U
0.10 (0.004)
S
2X
L/2
L
8
5
1
PIN 1
IDENT
0.15 (0.006) T U
K REF
T U
S
V
4
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
S
0.25 (0.010)
B
−U−
A
−V−
S
M
M
F
DETAIL E
C
0.10 (0.004)
−T− SEATING
PLANE
D
−W−
G
DETAIL E
DOCUMENT NUMBER:
DESCRIPTION:
98AON00236D
TSSOP 8
DIM
A
B
C
D
F
G
K
L
M
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.80
1.10
0.05
0.15
0.40
0.70
0.65 BSC
0.25
0.40
4.90 BSC
0_
6_
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.031
0.043
0.002
0.006
0.016
0.028
0.026 BSC
0.010
0.016
0.193 BSC
0_
6_
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative