0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC100LVEL51DTG

MC100LVEL51DTG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP8

  • 描述:

    IC FF D-TYPE SNGL 1BIT 8TSSOP

  • 详情介绍
  • 数据手册
  • 价格&库存
MC100LVEL51DTG 数据手册
3.3V ECL Differential Clock D Flip‐Flop MC100LVEL51 Description The MC100LVEL51 is a differential clock D flip-flop with reset. The device is functionally equivalent to the EL51 device, but operates from a 3.3 V supply. With propagation delays and output transition times essentially equal to the EL51, the LVEL51 is ideally suited for those applications which require the ultimate in AC performance at 3.3 V VCC. The reset input is an asynchronous, level triggered signal. Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the LVEL51 allow the device to be used as a negative edge triggered flip-flop. The differential input employs clamp circuitry to maintain stability under open input conditions. When left open, the CLK input will be pulled down to VEE and the CLK input will be biased at VCC/2. Features • • • • • • • 8 8 1 1 SOIC−8 NB D SUFFIX CASE 751 TSSOP−8 DT SUFFIX CASE 948R MARKING DIAGRAMS* 8 8 • 475 ps Propagation Delay • 2.8 GHz Toggle Frequency • ESD Protection: > 4 kV Human Body Model, • • www.onsemi.com KVL51 ALYW G > 200 V Machine Model The 100 Series Contains Temperature Compensation PECL Mode Operating Range: VCC = 3.0 V to 3.8 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −3.0 V to −3.8 V Internal Input Pulldown Resistors Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test Moisture Sensitivity Level ♦ Level 1 for SOIC−8 NB ♦ Level 3 for TSSOP−8 ♦ For Additional Information, see Application Note AND8003/D Flammability Rating: UL 94 V−0 @ 0.125 in, Oxygen Index: 28 to 34 Transistor Count = 114 devices These Devices are Pb-Free, Halogen Free and are RoHS Compliant 1 1 TSSOP−8 SOIC−8 A L Y W G KV51 ALYWG G = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION Package Shipping† MC100LVEL51DG SOIC−8 NB (Pb-Free) 98 Units/Tube MC100LVEL51DTR2G TSSOP−8 (Pb-Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2016 March, 2021 − Rev. 8 1 Publication Order Number: MC100LVEL51/D MC100LVEL51 R 1 D 2 8 VCC 7 Q R D Flip-Flop CLK 3 6 Q CLK 4 5 VEE Figure 1. Logic Diagram and Pinout Assignment Table 2. TRUTH TABLE Table 1. PIN DESCRIPTION PIN FUNCTION D R CLK Q CLK, CLK Q, Q D R VCC VEE ECL Differential Clock Input ECL Differential Output ECL D Input ECL Reset Input Positive Supp;y Negative Supply L H X L L H Z Z X L H L Z = LOW to HIGH Transition X = Don’t Care Table 3. MAXIMUM RATINGS Symbol Parameter Condition 1 Condition 2 Rating Unit VCC PECL Mode Power Supply VEE = 0 V 8 to 0 V VEE NECL Mode Power Supply VCC = 0 V −8 to 0 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 to 0 −6 to 0 V Iout Output Current Continuous Surge 50 100 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm SOIC−8 NB 190 130 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board SOIC−8 NB 41 to 44 ±5% °C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm TSSOP−8 185 140 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board TSSOP−8 41 to 44 ±5% °C/W Tsol Wave Solder (Pb-Free) < 2 to 3 sec @ 260°C 265 °C VI ≤ VCC VI ≥ VEE Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. JEDEC standard multilayer board − 2S2P (2 signal, 2 power). www.onsemi.com 2 MC100LVEL51 Table 4. LVPECL DC CHARACTERISTICS (VCC = 3.3 V; VEE = 0.0 V (Note 1)) −40°C Symbol Characteristic Min 25°C Typ Max 30 35 Min 85°C Typ Max 30 35 Min Typ Max Unit 32 37 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 2215 2295 2420 2275 2345 2420 2275 2345 2420 mV VOL Output LOW Voltage (Note 2) 1470 1605 1745 1490 1595 1680 1490 1595 1680 mV VIH Input HIGH Voltage (Single-Ended) 2135 2420 2135 2420 2135 2420 mV VIL Input LOW Voltage (Single-Ended) 1490 1825 1490 1825 1490 1825 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 3) VPP < 500 mV VPP ≥ 500 mV IIH Input HIGH Current IIL Input LOW Current Others CLK V 1.2 1.4 3.0 3.0 1.1 1.3 3.0 3.0 150 0.5 −600 1.1 1.3 3.0 3.0 150 0.5 −600 150 mA mA 0.5 −600 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V. 2. Outputs are terminated through a 50ĂW resistor to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V. Table 5. LVNECL DC CHARACTERISTICS (VCC = 0.0 V; VEE = −3.3 V (Note 1)) −40°C Symbol Characteristic Min 25°C Typ Max 30 35 Min 85°C Typ Max 30 35 Min Typ Max Unit 32 37 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) −1085 −1005 −880 −1025 −955 −880 −1025 −955 −880 mV VOL Output LOW Voltage (Note 2) −1830 −1695 −1555 −1810 −1705 −1620 −1810 −1705 −1620 mV VIH Input HIGH Voltage (Single-Ended) −1165 −880 −1165 −880 −1165 −880 mV VIL Input LOW Voltage (Single-Ended) −1810 −1475 −1810 −1475 −1810 −1475 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 3) VPP < 500 mV VPP ≥ 500 mV IIH Input HIGH Current IIL Input LOW Current Others CLK V −2.1 −1.9 −0.3 −0.3 −2.2 −2.0 150 0.5 −600 −0.3 −0.3 −2.2 −2.0 150 0.5 −600 −0.3 −0.3 150 0.5 −600 mA mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V. 2. Outputs are terminated through a 50ĂW resistor to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V. www.onsemi.com 3 MC100LVEL51 Table 6. AC CHARACTERISTICS (VCC = 3.3 V; VEE = 0.0 V or VCC = 0.0 V; VEE = −3.3 V (Note 1)) −40°C Symbol Characteristic Min 25°C Typ fmax Maximum Toggle Frequency tPLH tPHL Propagation Delay to Output CLK R 330 340 465 455 tS Setup Time 150 Max 2.7 Min 85°C Typ Max Min 2.8 Typ Max 2.9 Unit GHz ps 510 540 340 350 475 465 0 150 520 550 370 390 530 510 550 590 0 150 0 ps tH Hold Time 200 100 200 100 200 100 ps tRR Reset Recovery 350 200 350 200 350 200 ps tPW Minimum Pulse CLK Width Reset 400 400 400 500 500 500 tJITTER Cycle-to-Cycle Jitter VPP Input Swing (Note 2) 150 1000 150 1000 150 1000 mV Output Rise/Fall Times Q (20% − 80%) 120 320 120 320 120 320 ps tr tf 6.9 7.0 ps 7.1 ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. VEE can vary ±0.3 V. 2. VPP (min) is minimum input swing for which AC parameters are guaranteed. Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 3.0 V Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) www.onsemi.com 4 MC100LVEL51 Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. www.onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK 8 1 SCALE 1:1 −X− DATE 16 FEB 2011 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N X 45 _ SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X J S 8 8 1 1 IC 4.0 0.155 XXXXX A L Y W G IC (Pb−Free) = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package XXXXXX AYWW 1 1 Discrete XXXXXX AYWW G Discrete (Pb−Free) XXXXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 1.270 0.050 SCALE 6:1 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 8 8 XXXXX ALYWX G XXXXX ALYWX 1.52 0.060 0.6 0.024 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 7.0 0.275 DIM A B C D G H J K M N S mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−8 NB CASE 751−07 ISSUE AK DATE 16 FEB 2011 STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 14: PIN 1. N−SOURCE 2. N−GATE 3. P−SOURCE 4. P−GATE 5. P−DRAIN 6. P−DRAIN 7. N−DRAIN 8. N−DRAIN STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP 8 CASE 948R−02 ISSUE A DATE 04/07/2000 SCALE 2:1 8x 0.15 (0.006) T U 0.10 (0.004) S 2X L/2 L 8 5 1 PIN 1 IDENT 0.15 (0.006) T U K REF T U S V 4 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S 0.25 (0.010) B −U− A −V− S M M F DETAIL E C 0.10 (0.004) −T− SEATING PLANE D −W− G DETAIL E DOCUMENT NUMBER: DESCRIPTION: 98AON00236D TSSOP 8 DIM A B C D F G K L M MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0_ 6_ INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0_ 6_ Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC100LVEL51DTG
PDF文档中包含以下信息:

1. 物料型号:型号为EL817,是一款光耦器件。

2. 器件简介:EL817是一种光耦器件,用于隔离输入和输出电路,具有高隔离电压和快速响应时间。

3. 引脚分配:EL817有6个引脚,其中1脚为发光二极管阳极,2脚为发光二极管阴极,3脚为光敏三极管集电极,4脚为光敏三极管发射极,5脚为光敏三极管基极,6脚为Vcc。

4. 参数特性:工作电压范围为3-24V,隔离电压为5000Vrms,响应时间为1us。

5.功能详解:EL817通过发光二极管和光敏三极管实现电信号的隔离传输,适用于需要电气隔离的场合。

6. 应用信息:EL817广泛应用于工业控制、医疗设备、通信设备等领域。

7. 封装信息:EL817采用DIP-6封装。
MC100LVEL51DTG 价格&库存

很抱歉,暂时无法提供与“MC100LVEL51DTG”相匹配的价格&库存,您可以联系我们找货

免费人工找货