0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC10EP52DTR2G

MC10EP52DTR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP8

  • 描述:

    IC FF D-TYPE SNGL 1BIT 8TSSOP

  • 数据手册
  • 价格&库存
MC10EP52DTR2G 数据手册
3.3V/5V ECL Differential Data and Clock D Flip‐Flop MC10EP52, MC100EP52 Description www.onsemi.com 8 8 1 1 SOIC−8 NB TSSOP−8 DFN8 D SUFFIX DT SUFFIX MN SUFFIX CASE 751−07 CASE 948R−02 CASE 506AA MARKING DIAGRAMS* 8 Features • • • • • • • • 330 ps Typical Propagation Delay Maximum Frequency = u 4 GHz Typical PECL Mode: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode: VCC = 0 V with VEE = −3.0 V to −5.5 V Open Input Default State Safety Clamp on Inputs Q Output Will Default LOW with Inputs Open or at VEE These Devices are Pb-Free, Halogen Free and are RoHS Compliant 1 8 8 1 HP52 ALYW  KEP52 ALYW  1 SOIC−8 NB 3OM  The MC10EP/100EP52 is a differential data, differential clock D flip-flop. The device is pin and functionally equivalent to the EL52 device. Data enters the master portion of the flip−flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EP52 allow the device to also be used as a negative edge triggered device. The EP52 employs input clamping circuitry so that under open input conditions (pulled down to VEE) the outputs of the device will remain stable. The 100 Series contains temperature compensation. KP52 ALYW  1 TSSOP−8 4 DFN8 H = MC10 L = Wafer Lot K = MC100 Y = Year 3O = MC100 W = Work Week M = Date Code  = Pb−Free Package A = Assembly Location (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION Device MC10EP52DTG MC100EP52DG MC100EP52DR2G MC100EP52DTG MC100EP52DTR2G MC100EP52MNR4G Package Shipping† TSSOP−8 (Pb-Free) SOIC−8 NB (Pb-Free) SOIC−8 NB (Pb-Free) 100 Units / Tube 98 Units / Tube 2500 Tape & Reel 100 Units / Tube TSSOP−8 (Pb-Free) TSSOP−8 (Pb-Free) DFN8 (Pb-Free) 2500 Tape & Reel 1000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2016 April, 2021 − Rev. 9 1 Publication Order Number: MC10EP52/D MC10EP52, MC100EP52 D D 1 2 8 D 7 Table 1. PIN DESCRIPTION VCC Q Flip-Flop CLK 3 6 Q CLK 4 5 VEE FUNCTION PIN CLK*, CLK* ECL Clock Inputs D*, D* ECL Data Input Q, Q ECL Data Outputs VCC Positive Supply VEE Negative Supply EP (DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open. * Pins will default LOW when left open. Figure 1. 8-Lead Pinout (Top View) and Logic Diagram Table 2. TRUTH TABLE D CLK Q L H Z Z L H Z = LOW to HIGH Transition Table 3. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 kW Internal Input Pullup Resistor N/A ESD Protection Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Pb-Free Pkg SOIC−8 NB TSSOP−8 DFN8 Level 1 Level 3 Level 1 Flammability Rating Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count 155 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. www.onsemi.com 2 MC10EP52, MC100EP52 Table 4. MAXIMUM RATINGS Symbol Rating Unit VCC PECL Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 6 V VEE NECL Mode Power Supply VCC = 0 V −6 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 −6 V Iout Output Current Continuous Surge 50 100 mA IBB VBB Sink/Source ±0.5 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm SOIC−8 NB SOIC−8 NB 190 130 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board SOIC−8 NB 41 to 44 °C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm TSSOP−8 TSSOP−8 185 140 °C/W qJC Thermal Resistance (Junction-to-Case) Standard Board TSSOP−8 41 to 44 °C/W qJA Thermal Resistance (Junction-to-Ambient) 0 lfpm 500 lfpm DFN8 DFN8 129 84 °C/W qJC Thermal Resistance (Junction-to-Case) (Note 2) DFN8 35 to 40 °C/W Tsol Wave Solder (Pb-Free) < 2 to 3 sec @ 260°C 265 °C VI ≤ VCC VI ≥ VEE Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. JEDEC standard multilayer board − 2S2P (2 signal, 2 power) Table 5. 10EP DC CHARACTERISTICS, PECL (VCC = 3.3 V, VEE = 0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 34 44 20 35 45 20 37 47 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 2) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single-Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single-Ended) 1365 1690 1430 1755 1490 1815 mV Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) 2.0 3.3 2.0 3.3 2.0 3.3 V 150 mA VIHCMR IIH Input HIGH Current IIL Input LOW Current 150 0.5 150 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V. 2. All loading with 50 W to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. www.onsemi.com 3 MC10EP52, MC100EP52 Table 6. 10EP DC CHARACTERISTICS, PECL (VCC = 5.0 V, VEE = 0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 34 44 20 35 45 20 37 47 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 2) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single-Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single-Ended) 3065 3390 3130 3455 3190 3515 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) 2.0 5.0 2.0 5.0 2.0 5.0 V 150 mA IIH Input HIGH Current IIL Input LOW Current 150 150 0.5 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V. 2. All loading with 50 W to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 7. 10EP DC CHARACTERISTICS, NECL (VCC = 0 V, VEE = −5.5 V to −3.0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 34 44 20 35 45 20 37 47 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) −1135 −1010 −885 −1070 −945 −820 −1010 −885 −760 mV VOL Output LOW Voltage (Note 2) −1935 −1810 −1685 −1870 −1745 −1620 −1810 −1685 −1560 mV VIH Input HIGH Voltage (Single-Ended) −1210 −885 −1145 −820 −1085 −760 mV VIL Input LOW Voltage (Single-Ended) −1935 −1610 −1870 −1545 −1810 −1485 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) 0.0 V 150 mA IIH Input HIGH Current IIL Input LOW Current VEE+2.0 0.0 VEE+2.0 150 0.5 0.0 VEE+2.0 150 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. 2. All loading with 50 W to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. www.onsemi.com 4 MC10EP52, MC100EP52 Table 8. 100EP DC CHARACTERISTICS, PECL (VCC = 3.3 V, VEE = 0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 34 44 20 35 45 20 37 47 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 2) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single-Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single-Ended) 1355 1675 1355 1675 1355 1675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) 2.0 3.3 2.0 3.3 2.0 3.3 V 150 mA IIH Input HIGH Current IIL Input LOW Current 150 0.5 150 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V. 2. All loading with 50 W to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 9. 100EP DC CHARACTERISTICS, PECL (VCC = 5.0 V, VEE = 0 V (Note 1)) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 34 44 20 35 45 20 37 47 mA Output HIGH Voltage (Note 2) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 2) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single-Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single-Ended) 3055 3375 3055 3375 3055 3375 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) 2.0 5.0 2.0 5.0 2.0 5.0 V 150 mA Symbol Characteristic IEE Power Supply Current VOH IIH Input HIGH Current IIL Input LOW Current 150 0.5 150 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V. 2. All loading with 50 W to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. www.onsemi.com 5 MC10EP52, MC100EP52 Table 10. 100EP DC CHARACTERISTICS, NECL (VCC = 0 V, VEE = −5.5 V to −3.0 V (Note 1)) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 34 44 20 35 45 20 37 47 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) −1145 −1020 −895 −1145 −1020 −895 −1145 −1020 −895 mV VOL Output LOW Voltage (Note 2) −1945 −1820 −1695 −1945 −1820 −1695 −1945 −1820 −1695 mV VIH Input HIGH Voltage (Single-Ended) −1225 −880 −1225 −880 −1225 −880 mV VIL Input LOW Voltage (Single-Ended) −1945 −1625 −1945 −1625 −1945 −1625 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) 0.0 V 150 mA IIH Input HIGH Current IIL Input LOW Current VEE+2.0 0.0 VEE+2.0 0.0 150 0.5 VEE+2.0 150 0.5 0.5 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Input and output parameters vary 1:1 with VCC. 2. All loading with 50 W to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 11. AC CHARACTERISTICS (VCC = 0 V; VEE = −3.0 V to −5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 1)) −40°C Characteristic Symbol VOUTpp tPLH, tPHL tS tH tJITTER VPP tr tf Output Voltage Amplitude @ 3.0 GHz (Figure 2) Min Typ 630 750 Propagation Delay to Output Differential CLK, CLK−> Q, Q 250 Setup Time Hold Time 50 0 Output Rise/Fall Times (20%−80%) Q, Q Max Min Typ 610 730 85°C Max Min Typ 520 640 Max Unit GHz ps CLOCK Random Jitter (RMS) (Figure 2) Input Voltage Swing (Differential Configuration) 25°C 300 350 280 330 380 50 0 0.2 1 150 800 1200 70 110 170 310 360 410 50 0 0.2 1 150 800 1200 80 120 180 ps 0.2 1 ps 150 800 1200 mV 90 130 200 ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. www.onsemi.com 6 MC10EP52, MC100EP52 0.9 5V VOUTpp (mV) 0.8 3.3 V 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 FREQUENCY (MHz) Figure 2. Fmax Typical Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 2.0 V Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices) Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPS I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. www.onsemi.com 7 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS DFN8 2x2, 0.5P CASE 506AA ISSUE F DATE 04 MAY 2016 1 SCALE 4:1 D PIN ONE REFERENCE 2X 0.10 C 2X 0.10 C A B L1 ÇÇ ÇÇ ÇÇ DETAIL A E OPTIONAL CONSTRUCTIONS ÉÉ ÇÇ ÉÉ ÇÇ EXPOSED Cu TOP VIEW A DETAIL B 0.10 C NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 . 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L L DIM A A1 A3 b D D2 E E2 e K L L1 ÉÉ ÉÉ ÇÇ A3 MOLD CMPD A1 DETAIL B 0.08 C (A3) NOTE 4 SIDE VIEW DETAIL A ALTERNATE CONSTRUCTIONS A1 C D2 8X 4 1 SEATING PLANE RECOMMENDED SOLDERING FOOTPRINT* L 5 8 e/2 e 8X 0.90 b 0.05 C 8X 0.50 2.30 1 0.10 C A B 8X 0.30 NOTE 3 BOTTOM VIEW 0.50 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. GENERIC MARKING DIAGRAM* 1 1.30 PACKAGE OUTLINE E2 K MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.20 0.30 2.00 BSC 1.10 1.30 2.00 BSC 0.70 0.90 0.50 BSC 0.30 REF 0.25 0.35 −−− 0.10 XXMG G XX = Specific Device Code M = Date Code G = Pb−Free Device *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. DOCUMENT NUMBER: DESCRIPTION: 98AON18658D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. DFN8, 2.0X2.0, 0.5MM PITCH PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2016 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK 8 1 SCALE 1:1 −X− DATE 16 FEB 2011 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N X 45 _ SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X J S 8 8 1 1 IC 4.0 0.155 XXXXX A L Y W G IC (Pb−Free) = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package XXXXXX AYWW 1 1 Discrete XXXXXX AYWW G Discrete (Pb−Free) XXXXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 1.270 0.050 SCALE 6:1 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 8 8 XXXXX ALYWX G XXXXX ALYWX 1.52 0.060 0.6 0.024 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 7.0 0.275 DIM A B C D G H J K M N S mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−8 NB CASE 751−07 ISSUE AK DATE 16 FEB 2011 STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 14: PIN 1. N−SOURCE 2. N−GATE 3. P−SOURCE 4. P−GATE 5. P−DRAIN 6. P−DRAIN 7. N−DRAIN 8. N−DRAIN STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP 8 CASE 948R−02 ISSUE A DATE 04/07/2000 SCALE 2:1 8x 0.15 (0.006) T U 0.10 (0.004) S 2X L/2 L 8 5 1 PIN 1 IDENT 0.15 (0.006) T U K REF T U S V 4 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S 0.25 (0.010) B −U− A −V− S M M F DETAIL E C 0.10 (0.004) −T− SEATING PLANE D −W− G DETAIL E DOCUMENT NUMBER: DESCRIPTION: 98AON00236D TSSOP 8 DIM A B C D F G K L M MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0_ 6_ INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0_ 6_ Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC10EP52DTR2G 价格&库存

很抱歉,暂时无法提供与“MC10EP52DTR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货