MC14012B
Dual 4-Input NAND Gates
The MC14012B dual 4−input NAND gates are constructed with
P−Channel and N−Channel enhancement mode devices in a single
monolithic structure (Complementary MOS). Their primary use is
where low power dissipation and/or high noise immunity is desired.
http://onsemi.com
Features
• Supply Voltage Range = 3.0 Vdc to 18 Vdc
• All Outputs Buffered
• Capable of Driving Two Low−Power TTL Loads or One Low−Power
•
•
•
•
Schottky TTL Load Over the Rated Temperature Range
Double Diode Protection on All Inputs
Pin−for−Pin Replacements for Corresponding CD4000 Series B
Suffix Devices
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
This Device is Pb−Free and is RoHS Compliant
SOIC−14
D SUFFIX
CASE 751A
MARKING DIAGRAM
14
14012BG
AWLYWW
1
MAXIMUM RATINGS (Voltages Referenced to VSS)
Parameter
Value
Unit
−0.5 to +18.0
V
−0.5 to VDD + 0.5
V
Input or Output Current
(DC or Transient) per Pin
± 10
mA
PD
Power Dissipation, per Package
(Note 1)
500
mW
TA
Ambient Temperature Range
−55 to +125
°C
Tstg
Storage Temperature Range
−65 to +150
°C
TL
Lead Temperature
(8−Second Soldering)
260
°C
Symbol
VDD
Vin, Vout
Iin, Iout
DC Supply Voltage Range
Input or Output Voltage Range
(DC or Transient)
A
WL, L
YY, Y
WW, W
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. Temperature Derating: “D/DW” Package: –7.0 mW/_C From 65_C To 125_C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high−impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS ≤ (Vin or Vout) ≤ VDD.
Unused inputs must always be tied to an appropriate logic voltage level
(e.g., either VSS or VDD). Unused outputs must be left open.
© Semiconductor Components Industries, LLC, 2014
July, 2014 − Rev. 11
1
Publication Order Number:
MC14012B/D
MC14012B
MC14012B
Dual 4−Input NAND Gate
OUTA
1
14
VDD
IN 1A
2
13
OUTB
IN 2A
3
12
IN 4B
IN 3A
4
11
IN 3B
IN 4A
5
10
IN 2B
NC
6
9
IN 1B
VSS
7
8
NC
2
3
4
5
9
10
11
12
1
13
NC = 6, 8
VDD = PIN 14
VSS = PIN 7
NC = NO CONNECTION
Figure 1. Pin Assignment
Figure 2. Logic Diagram
ORDERING INFORMATION
Package
Shipping†
MC14012BDG
SOIC−14
(Pb−Free)
55 Units / Rail
NLV14012BDG*
SOIC−14
(Pb−Free)
55 Units / Rail
MC14012BDR2G
SOIC−14
(Pb−Free)
2500 Units / Tape & Reel
NLV14012BDR2G*
SOIC−14
(Pb−Free)
2500 Units / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
http://onsemi.com
2
MC14012B
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
−55_C
Characteristic
Output Voltage
Vin = VDD or 0
Symbol
25_C
VDD
Vdc
Min
Max
Min
Typ
(Note 2)
125_C
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
−
−
−
0.05
0.05
0.05
−
−
−
0
0
0
0.05
0.05
0.05
−
−
−
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
−
−
−
4.95
9.95
14.95
5.0
10
15
−
−
−
4.95
9.95
14.95
−
−
−
Vdc
“0” Level
VIL
5.0
10
15
−
−
−
1.5
3.0
4.0
−
−
−
2.25
4.50
6.75
1.5
3.0
4.0
−
−
−
1.5
3.0
4.0
5.0
10
15
3.5
7.0
11
−
−
−
3.5
7.0
11
2.75
5.50
8.25
−
−
−
3.5
7.0
11
−
−
−
5.0
5.0
10
15
–3.0
–0.64
–1.6
–4.2
−
−
−
−
–2.4
–0.51
–1.3
–3.4
–4.2
–0.88
–2.25
–8.8
−
−
−
−
–1.7
–0.36
–0.9
–2.4
−
−
−
−
IOL
5.0
10
15
0.64
1.6
4.2
−
−
−
0.51
1.3
3.4
0.88
2.25
8.8
−
−
−
0.36
0.9
2.4
−
−
−
mAdc
Input Current
Iin
15
−
±0.1
−
±0.00001
±0.1
−
±1.0
mAdc
Input Capacitance
(Vin = 0)
Cin
−
−
−
−
5.0
7.5
−
−
pF
Quiescent Current
(Per Package)
IDD
5.0
10
15
−
−
−
0.25
0.5
1.0
−
−
−
0.0005
0.0010
0.0015
0.25
0.5
1.0
−
−
−
7.5
15
30
mAdc
IT
5.0
10
15
Vin = 0 or VDD
Input Voltage
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
“1” Level
VIH
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Vdc
Vdc
IOH
Source
Sink
Total Supply Current (Notes 3, 4)
(Dynamic plus Quiescent,
Per Gate, CL = 50 pF)
mAdc
IT = (0.3 mA/kHz) f + IDD/N
IT = (0.6 mA/kHz) f + IDD/N
IT = (0.9 mA/kHz) f + IDD/N
mAdc
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
3. The formulas given are for the typical characteristics only at 25_C.
4. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL − 50) Vfk
where: IT is in mA (per package), CL in pF, V = (VDD − VSS) in volts, f in kHz is input frequency, and k = 0.001 x the number of exercised
gates per package.
http://onsemi.com
3
MC14012B
SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C)
Characteristic
Symbol
Output Rise Time
tTLH = (1.35 ns/pF) CL + 33 ns
tTLH = (0.60 ns/pF) CL + 20 ns
tTLH = (0.40 ns/PF) CL + 20 ns
tTLH
Output Fall Time
tTHL = (1.35 ns/pF) CL + 33 ns
tTHL = (0.60 ns/pF) CL + 20 ns
tTHL = (0.40 ns/pF) CL + 20 ns
tTHL
Propagation Delay Time
tPLH, tPHL = (0.90 ns/pF) CL + 115 ns
tPLH, tPHL = (0.36 ns/pF) CL + 47 ns
tPLH, tPHL = (0.26 ns/pF) CL + 37 ns
VDD
Vdc
Min
Typ
(Note 6)
Max
5.0
10
15
−
−
−
100
50
40
200
100
80
5.0
10
15
−
−
−
100
50
40
200
100
80
5.0
10
15
−
−
−
160
65
50
300
130
100
Unit
ns
ns
tPLH, tPHL
ns
5. The formulas given are for the typical characteristics only at 25_C.
6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
14
20 ns
VDD
20 ns
PULSE
GENERATOR
INPUT
OUTPUT
tPHL
CL
*
7
OUTPUT
INVERTING
*All unused inputs of AND, NAND gates must be connected to VDD.
All unused inputs of OR, NOR gates must be connected to VSS.
90%
50%
10%
tTHL
tPLH
Figure 3. Switching Time Test Circuit and Waveforms
VDD
VDD
2, 9
*
3, 10
VSS
4, 11
5, 12
1, 13
SAME AS
ABOVE
7
*Inverter omitted
VSS
Figure 4. Circuit Schematic − One of Two Gates Shown
http://onsemi.com
4
VOH
tTLH
tPHL
tTLH
14
0V
tPLH
OUTPUT
NON−INVERTING
VSS
VDD
90%
50%
10%
INPUT
90%
50%
10%
tTHL
VOL
VOH
VOL
MC14012B
TYPICAL B−SERIES GATE CHARACTERISTICS
N−CHANNEL DRAIN CURRENT (SINK)
P−CHANNEL DRAIN CURRENT (SOURCE)
−10
5.0
ID , DRAIN CURRENT (mA)
ID , DRAIN CURRENT (mA)
−9.0
4.0
TA = −55°C
3.0
−40°C
+85°C +25°C
2.0
+125°C
1.0
−8.0
TA = −55°C
−7.0
−40°C
−6.0
−5.0
+25°C
+85°C
−4.0
−3.0
+125°C
−2.0
−1.0
0
0
0
1.0
2.0
3.0
4.0
0
5.0
VDS, DRAIN−TO−SOURCE VOLTAGE (Vdc)
Figure 5. VGS = 5.0 Vdc
−4.0
−5.0
−45
TA = −55°C
16
14
−40°C
12
+25°C
+85°C
10
ID , DRAIN CURRENT (mA)
ID , DRAIN CURRENT (mA)
−3.0
−50
18
+125°C
8.0
6.0
−40
−35
TA = −55°C
−30
−25
+ 25°C
−20
+85°C
+125°C
−10
2.0
−5.0
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
0
0
10
−1.0 −2.0 −3.0 −4.0 −5.0 −6.0 −7.0 −8.0 −9.0 −10
VDS, DRAIN−TO−SOURCE VOLTAGE (Vdc)
VDS, DRAIN−TO−SOURCE VOLTAGE (Vdc)
Figure 7. VGS = 10 Vdc
Figure 8. VGS = − 10 Vdc
- 100
45
- 90
40
- 80
ID , DRAIN CURRENT (mA)
50
TA = −55°C
35
30
−40°C
25
+25°C
20
+85°C
+125°C
15
−40°C
−15
4.0
0
ID , DRAIN CURRENT (mA)
−2.0
Figure 6. VGS = − 5.0 Vdc
20
10
5.0
0
−1.0
VDS, DRAIN−TO−SOURCE VOLTAGE (Vdc)
- 70
- 60
TA = −55°C
- 50
−40°C
+25°C
- 40
+85°C
- 30
+125°C
- 20
- 10
0
2.0
4.0
6.0
8.0
10
12
14
16
18
0
20
0
VDS, DRAIN-TO-SOURCE VOLTAGE (Vdc)
Figure 9. VGS = 15 Vdc
−2.0 −4.0 −6.0 −8.0 −10 −12 −14 −16 −18 −20
VDS, DRAIN-TO-SOURCE VOLTAGE (Vdc)
Figure 10. VGS = − 15 Vdc
These typical curves are not guarantees, but are design aids.
Caution: The maximum rating for output current is 10 mA per pin.
http://onsemi.com
5
MC14012B
V out , OUTPUT VOLTAGE (Vdc)
V out , OUTPUT VOLTAGE (Vdc)
VOLTAGE TRANSFER CHARACTERISTICS
SINGLE INPUT NAND, AND
MULTIPLE INPUT NOR, OR
5.0
4.0
SINGLE INPUT NOR, OR
MULTIPLE INPUT NAND, AND
3.0
2.0
1.0
0
0
SINGLE INPUT NAND, AND
MULTIPLE INPUT NOR, OR
10
8.0
SINGLE INPUT NOR, OR
MULTIPLE INPUT NAND, AND
6.0
4.0
2.0
0
1.0
0
2.0
3.0
4.0
5.0
Vin, INPUT VOLTAGE (Vdc)
2.0
4.0
6.0
8.0
10
Vin, INPUT VOLTAGE (Vdc)
Figure 11. VDD = 5.0 Vdc
DC NOISE MARGIN
SINGLE INPUT NAND, AND
MULTIPLE INPUT NOR, OR
16
V out , OUTPUT VOLTAGE (Vdc)
Figure 12. VDD = 10 Vdc
The DC noise margin is defined as the input voltage range
from an ideal “1” or “0” input level which does not produce
output state change(s). The typical and guaranteed limit
values of the input values VIL and VIH for the output(s) to
be at a fixed voltage VO are given in the Electrical
Characteristics table. VIL and VIH are presented graphically
in Figure 11.
Guaranteed minimum noise margins for both the “1” and
“0” levels =
1.0 V with a 5.0 V supply
2.0 V with a 10.0 V supply
2.5 V with a 15.0 V supply
14
12
SINGLE INPUT NOR, OR
MULTIPLE INPUT NAND, A
10
8.0
6.0
4.0
2.0
0
0
2.0
4.0
6.0
8.0
10
Vin, INPUT VOLTAGE (Vdc)
Figure 13. VDD = 15 Vdc
VDD
Vout
Vout
VO
VO
VO
VO
VDD
VDD
VDD
0
Vin
0
VIL
Vin
VIL
VIH
VIH
VSS = 0 VOLTS DC
(a) Inverting Function
(b) Non−Inverting Function
Figure 14. DC Noise Immunity
http://onsemi.com
6
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−14 NB
CASE 751A−03
ISSUE L
14
1
SCALE 1:1
D
DATE 03 FEB 2016
A
B
14
8
A3
E
H
L
1
0.25
B
M
DETAIL A
7
13X
M
b
0.25
M
C A
S
B
S
0.10
X 45 _
M
A1
e
DETAIL A
h
A
C
SEATING
PLANE
DIM
A
A1
A3
b
D
E
e
H
h
L
M
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.19
0.25
0.35
0.49
8.55
8.75
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
INCHES
MIN
MAX
0.054 0.068
0.004 0.010
0.008 0.010
0.014 0.019
0.337 0.344
0.150 0.157
0.050 BSC
0.228 0.244
0.010 0.019
0.016 0.049
0_
7_
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT*
6.50
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER
SIDE.
14
14X
1.18
XXXXXXXXXG
AWLYWW
1
1
1.27
PITCH
XXXXX
A
WL
Y
WW
G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
14X
0.58
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
STYLES ON PAGE 2
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42565B
SOIC−14 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
SOIC−14
CASE 751A−03
ISSUE L
DATE 03 FEB 2016
STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 2:
CANCELLED
STYLE 3:
PIN 1. NO CONNECTION
2. ANODE
3. ANODE
4. NO CONNECTION
5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE
STYLE 4:
PIN 1. NO CONNECTION
2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
8. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 5:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 6:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
6. CATHODE
7. CATHODE
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE
STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
12. COMMON ANODE
13. ANODE/CATHODE
14. ANODE/CATHODE
STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42565B
SOIC−14 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 2 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative