MC14526B
Presettable 4-Bit Down
Counters
The MC14526B binary counter is constructed with MOS P−channel
and N−channel enhancement mode devices in a monolithic structure.
This device is presettable, cascadable, synchronous down counter
with a decoded “0” state output for divide−by−N applications. In
single stage applications the “0” output is applied to the Preset Enable
input. The Cascade Feedback input allows cascade divide−by−N
operation with no additional gates required. The Inhibit input allows
disabling of the pulse counting function. Inhibit may also be used as
a negative edge clock.
This complementary MOS counter can be used in frequency
synthesizers, phase−locked loops, and other frequency division
applications requiring low power dissipation and/or high noise
immunity.
http://onsemi.com
1
SOIC−16 WB
DW SUFFIX
CASE 751G
MARKING DIAGRAM
Features
• Supply Voltage Range = 3.0 Vdc to 18 Vdc
• Logic Edge−Clocked Design: Incremented on Positive Transition of
•
•
•
Clock or Negative Transition of Inhibit
Asynchronous Preset Enable
Capable of Driving Two Low−Power TTL Loads or One Low−Power
Schottky TTL Load Over the Rated Temperature Range
This Device is Pb−Free and is RoHS Compliant
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
DC Supply Voltage Range
VDD
−0.5 to +18.0
V
Input or Output Voltage Range
(DC or Transient)
Vin,
Vout
−0.5 to VDD + 0.5
V
Iin, Iout
±10
mA
PD
500
mW
Operating Temperature Range
TA
−55 to +125
°C
Storage Temperature Range
Tstg
−65 to +150
°C
Lead Temperature
(8−Second Soldering)
TL
260
°C
Input or Output Current
(DC or Transient) per Pin
Power Dissipation per Package (Note 1)
14526B
AWLYWWG
1
A
WL, L
YY, Y
WW, W
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 8 of this data sheet.
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. Temperature Derating: “D/DW” Package: –7.0 mW/_C From 65_C To 125_C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high−impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS ≤ (Vin or Vout) ≤ VDD.
Unused inputs must always be tied to an appropriate logic voltage level
(e.g., either VSS or VDD). Unused outputs must be left open.
© Semiconductor Components Industries, LLC, 2014
July, 2014 − Rev. 8
1
Publication Order Number:
MC14526B/D
MC14526B
FUNCTION TABLE
Inputs
Output
Clock
Reset
Inhibit
Preset
Enable
Cascade
Feedback
“0”
X
X
X
H
H
H
X
X
X
L
H
X
L
L
H
L
H
H
Asynchronous reset*
Asynchronous reset
Asynchronous reset
X
L
X
H
X
L
Asynchronous preset
H
L
L
L
L
L
X
X
L
L
Decrement inhibited
Decrement inhibited
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
No change** (inactive edge)
No change** (inactive edge)
Decrement**
Decrement**
H
H
L
Resulting
Function
X = Don’t Care
NOTES:
** Output “0” is low when reset goes high only it PE and CF are low.
** Output “0” is high when reset is low, only if CF is high and count is 0000.
PIN DESCRIPTIONS
other than all zeroes, the “0” output is valid after the rising
edge of Preset Enable (when Cascade Feedback is high). See
the Function Table.
Cascade Feedback (Pin 13) — If the Cascade Feedback
input is high, a high level is generated at the “0” output when
the count is all zeroes. If Cascade Feedback is low, the “0”
output depends on the Preset Enable input level. See the
Function Table.
P0, P1, P2, P3 (Pins 5, 11, 14, 2) — These are the preset
data inputs. P0 is the LSB.
Q0, Q1, Q2, Q3 (Pins 7, 9, 15, 1) — These are the
synchronous counter outputs. Q0 is the LSB.
VSS (Pin 8) — The most negative power supply potential.
This pin is usually ground.
VDD (Pin 16) — The most positive power supply potential.
VDD may range from 3.0 to 18 V with respect to VSS.
Preset Enable (Pin 3) — If Reset is low, a high level on the
Preset Enable input asynchronously loads the counter with
the programmed values on P0, P1, P2, and P3.
Inhibit (Pin 4) — A high level on the Inhibit input pre−
vents the Clock from decrementing the counter. With Clock
(pin 6) held high, Inhibit may be used as a negative edge clock
input.
Clock (Pin 6) — The counter decrements by one for each
rising edge of Clock. See the Function Table for level
requirements on the other inputs.
Reset (Pin 10) — A high level on Reset asynchronously
forces Q0, Q1, Q2, and Q3 low and, if Cascade Feedback is
high, causes the “0” output to go high.
“0” (Pin 12) — The “0” (Zero) output issues a pulse one
clock period wide when the counter reaches terminal count
(Q0 = Q1 = Q2 = Q3 = low) if Cascade Feedback is high and
Preset Enable is low. When presetting the counter to a value
STATE DIAGRAM
MC14526B
0
1
2
3
4
15
5
14
6
13
7
12
11
10
9
http://onsemi.com
2
8
MC14526B
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
VDD
−55°C
25°C
125°C
Symbol
Vdc
Min
Max
Min
Typ
(Note 2)
Max
Min
Max
Unit
VOL
5.0
10
15
−
−
−
0.05
0.05
0.05
−
−
−
0
0
0
0.05
0.05
0.05
−
−
−
0.05
0.05
0.05
Vdc
VOH
5.0
10
15
4.95
9.95
14.95
−
−
−
4.95
9.95
14.95
5.0
10
15
−
−
−
4.95
9.95
14.95
−
−
−
Vdc
5.0
10
15
−
−
−
1.5
3.0
4.0
−
−
−
2.25
4.50
6.75
1.5
3.0
4.0
−
−
−
1.5
3.0
4.0
5.0
10
15
3.5
7.0
11
−
−
−
3.5
7.0
11
2.75
5.50
8.25
−
−
−
3.5
7.0
11
−
−
−
5.0
5.0
10
15
−3.0
−0.64
−1.6
–4.2
−
−
−
−
–2.4
–0.51
–1.3
–3.4
–4.2
–0.88
–2.25
–8.8
−
−
−
−
–1.7
–0.36
–0.9
–2.4
−
−
−
−
IOL
5.0
10
15
0.64
1.6
4.2
−
−
−
0.51
1.3
3.4
0.88
2.25
8.8
−
−
−
0.36
0.9
2.4
−
−
−
mAdc
Input Current
Iin
15
−
±0.1
−
±0.00001
±0.1
−
±1.0
mAdc
Input Capacitance
(Vin = 0)
Cin
−
−
−
−
5.0
7.5
−
−
pF
Quiescent Current
(Per Package)
5.0
10
15
−
−
−
5.0
10
20
−
−
−
0.005
0.010
0.015
5.0
10
20
−
−
−
150
300
600
mAdc
Total Supply Current (Notes 3, 4)
(Dynamic plus Quiescent, Per Package)
(CL = 50 pF on all outputs, all buffers
switching)
5.0
10
15
Characteristic
Output Voltage
Vin = VDD or 0
“0” Level
“1” Level
Vin = 0 or VDD
Output Voltage
Vin = VDD or 0
“0” Level
“1” Level
Vin = 0 or VDD
Input Voltage
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
“0” Level
VIL
Vdc
“1” Level
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Input Voltage
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
“0” Level
VIH
Vdc
“1” Level
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Source
Sink
IOH
mAdc
IT = (1.7 mA/kHz) f + IDD
IT = (3.4 mA/kHz) f + IDD
IT = (5.1 mA/kHz) f + IDD
mAdc
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
3. The formulas given are for the typical characteristics only at 25_C.
4. To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + (CL – 50) Vfk
where: IT is in mA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001.
http://onsemi.com
3
MC14526B
SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25_C) (Note 5)
Characteristic
Output Rise and Fall Time
tTLH, tTHL = (1.5 ns/pF) CL + 25 ns
tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns
tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns
Propagation Delay Time (Inhibit Used as Negative
Edge Clock)
Clock or Inhibit to Q
tPLH, tPHL = (1.7 ns/pF) CL + 465 ns
tPLH, tPHL = (0.66 ns/pF) CL + 197 ns
tPLH, tPHL = (0.5 ns/pF) CL + 135 ns
Clock or Inhibit to “0”
tPLH, tPHL = (1.7 ns/pF) CL + 155 ns
tPLH, tPHL = (0.66 ns/pF) CL + 87 ns
tPLH, tPHL = (0.5 ns/pF) CL + 65 ns
Symbol
VDD
Min
Typ
(Note 6)
Max
5.0
10
15
−
−
−
100
50
40
200
100
80
tTLH,
tTHL
(Figures 4, 5)
Unit
ns
ns
tPLH,
tPHL
(Figures 4, 5, 6)
5.0
10
15
−
−
−
550
225
160
1100
450
320
5.0
10
15
−
−
−
240
130
100
480
260
200
Propagation Delay Time
Pn to Q
tPLH,
tPHL
(Figures 4, 7)
5.0
10
15
−
−
−
260
120
100
520
240
200
ns
Propagation Delay Time
Reset to Q
tPHL
−
−
−
250
110
80
500
220
160
ns
(Figure 8)
5.0
10
15
tPHL,
tPLH
(Figures 4, 9)
5.0
10
15
−
−
−
220
100
80
440
200
160
ns
tw
5.0
10
15
250
100
80
125
50
40
−
−
−
ns
−
−
−
2.0
5.0
6.6
1.5
3.0
4.0
MHz
(Figures 4, 5, 6)
5.0
10
15
tr,
tf
(Figures 5, 6)
5.0
10
15
−
−
−
−
−
−
15
5
4
ms
tsu
5.0
10
15
90
50
40
40
15
10
−
−
−
ns
5.0
10
15
30
30
30
–15
–5
0
−
−
−
ns
5.0
10
15
250
100
80
125
50
40
−
−
−
ns
5.0
10
15
350
250
200
175
125
100
−
−
−
ns
5.0
10
15
10
20
30
–110
–30
–20
−
−
−
ns
Propagation Delay Time
Preset Enable to “0”
Clock or Inhibit Pulse Width
(Figures 5, 6)
Clock Pulse Frequency (with PE = low)
Clock or Inhibit Rise and Fall Time
Setup Time
Pn to Preset Enable
fmax
(Figure 1)
Hold Time
Preset Enable to Pn
th
(Figure 2)
Preset Enable Pulse Width
tw
(Figure 3)
Reset Pulse Width
tw
(Figure 8)
Reset Removal Time
trem
(Figure 8)
5. The formulas given are for the typical characteristics only at 25_C.
6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
http://onsemi.com
4
MC14526B
VOL
VOH
VDD = VGS
VDD = -VGS
CF
PE
P0
P1
P2
P3
RESET
INHIBIT
CLOCK
CF
PE
P0
P1
P2
P3
RESET
INHIBIT
CLOCK
Q0
Q1
Q2
IOH
Q3
“0”
EXTERNAL
POWER
SUPPLY
VSS
Q0
Q1
Q2
IOL
Q3
“0”
EXTERNAL
POWER
SUPPLY
VSS
Figure 1. Typical Output Source
Characteristics Test Circuit
Figure 2. Typical Output Sink
Characteristics Test Circuit
VDD
CF
PE
P0
P1
P2
P3
RESET
INHIBIT
CLOCK
Q0
Q1
Q2
20 ns
CLOCK
TEST POINT
CL
CL
“0”
VSS
PULSE
GENERATOR
CL
Q3
Q or “0”
CL
DEVICE
UNDER
TEST
CL
20 ns
VDD
90%
10%
VSS
VARIABLE
50% DUTY CYCLE
WIDTH
CL*
50%
*Includes all probe and jig capacitance.
Figure 3. Power Dissipation
Figure 4. Test Circuit
http://onsemi.com
5
MC14526B
SWITCHING WAVEFORMS
tr
CLOCK
tf
tf
VDD
90%
50%
10%
tr
VDD
90%
50%
10%
INHIBIT
VSS
VSS
tw
tw
1/fmax
tPLH
ANY Q
OR “0”
1/fmax
tPHL
tPLH
90%
50%
10%
ANY Q
OR “0”
tTLH
tPHL
90%
50%
10%
tTHL
tTLH
Figure 5.
tTHL
Figure 6.
tw
VDD
RESET
50%
VSS
tr
ANY P
tf
tPHL
VDD
90%
50%
10%
ANY Q
VSS
tPLH
50%
tPHL
trem
ANY Q
VDD
50%
CLOCK
50%
VSS
Figure 7.
Figure 8.
VALID
tr
PRESET
ENABLE
tf
VDD
VDD
90%
50%
10%
ANY P
50%
VSS
GND
tPHL
th
tsu
tPLH
VDD
PRESET
ENABLE
“0”
50%
50%
VSS
tw
Figure 9.
Figure 10.
http://onsemi.com
6
MC14526B
MC14526B LOGIC DIAGRAM
(Binary Down Counter)
P0
Q0
5
P1
7
Q1
11
Q2
14
P3
15
Q3
2
1
D R
D RQ
D RQ
D RQ
C
C
C
C
T PE Q
T PE Q
T PE Q
T PE Q
VDD
VDD
CF
P2
9
13
PE
3
INHIBIT
4
12
CLOCK
RESET
10
“0”
6
APPLICATIONS INFORMATION
Divide−By−N, Single Stage
Cascaded, Presettable Divide−By−N
Figure 11 shows a single stage divide−by−N application.
To initialize counting a number, N is set on the parallel
inputs (P0, P1, P2, and P3) and reset is taken high
asynchronously. A zero is forced into the master and slave
of each bit and, at the same time, the “0” output goes high.
Because Preset Enable is tied to the “0” output, preset is
enabled. Reset must be released while the Clock is high so
the slaves of each bit may receive N before the Clock goes
low. When the Clock goes low and Reset is low, the “0”
output goes low (if P0 through P3 are unequal to zero).
The counter downcounts with each rising edge of the
Clock. When the counter reaches the zero state, an output
pulse occurs on “0” which presets N. The propagation delays
from the Clock’s rising and falling edges to the “0” output’s
rising and falling edges are about equal, making the “0”
output pulse approximately equal to that of the Clock pulse.
The Inhibit pin may be used to stop pulse counting. When
this pin is taken high, decrementing is inhibited.
Figure 12 shows a three stage cascade application. Taking
Reset high loads N. Only the first stage’s Reset pin (least
significant counter) must be taken high to cause the preset
for all stages, but all pins could be tied together, as shown.
When the first stage’s Reset pin goes high, the “0” output
is latched in a high state. Reset must be released while Clock
is high and time allowed for Preset Enable to load N into all
stages before Clock goes low.
When Preset Enable is high and Clock is low, time must
be allowed for the zero digits to propagate a Cascade
Feedback to the first non−zero stage. Worst case is from the
most significant bit (M.S.B.) to the L.S.B., when the L.S.B.
is equal to one (i.e. N = 1).
After N is loaded, each stage counts down to zero with
each rising edge of Clock. When any stage reaches zero and
the leading stages (more significant bits) are zero, the “0”
output goes high and feeds back to the preceding stage.
When all stages are zero, the Preset Enable automatically
loads N while the Clock is high and the cycle is renewed.
http://onsemi.com
7
MC14526B
N
VDD
fin
VSS
P0
P1
P2
P3
CF
RESET
INHIBIT
Q0
Q1
Q2
Q3
BUFFER
fin
“0”
N
CLOCK
PE
Figure 11. ÷ N Counter
LSB
N0 N1 N2 N3
P0 P1 P2 P3
fin
P0 P1 P2 P3
Q0 Q1 Q2 Q3
Q0 Q1 Q2 Q3
P0 P1 P2 P3
CLOCK
CLOCK
CLOCK
VSS
MSB
N8 N9 N10 N11
N4 N5 N6 N7
INHIBIT
RESET
CF
“0”
PE
VSS
CF
INHIBIT
RESET
“0”
PE
VSS
INHIBIT
RESET
Q0 Q1 Q2 Q3
VDD
CF
“0”
PE
VDD
LOAD
N
BUFFER
10
KW
VSS
fin
N
Figure 12. 3 Stages Cascaded
ORDERING INFORMATION
Package
Shipping†
MC14526BDWG
SOIC−16 WB
(Pb−Free)
47 Units / Rail
MC14526BDWR2G
SOIC−16 WB
(Pb−Free)
1000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
http://onsemi.com
8
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−16 WB
CASE 751G
ISSUE E
1
SCALE 1:1
DATE 08 OCT 2021
GENERIC
MARKING DIAGRAM*
16
XXXXXXXXXXX
XXXXXXXXXXX
AWLYYWWG
1
XXXXX
A
WL
YY
WW
G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42567B
SOIC−16 WB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative