0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC14557BDW

MC14557BDW

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOIC16_300MIL

  • 描述:

    IC SHIFT REGISTER 1-64BIT 16SOIC

  • 详情介绍
  • 数据手册
  • 价格&库存
MC14557BDW 数据手册
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. MC14557B 1-to-64 Bit Variable Length Shift Register The MC14557B is a static clocked serial shift register whose length may be programmed to be any number of bits between 1 and 64. The number of bits selected is equal to the sum of the subscripts of the enabled Length Control inputs (L1, L2, L4, L8, L16, and L32) plus one. Serial data may be selected from the A or B data inputs with the A/B select input. This feature is useful for recirculation purposes. A Clock Enable (CE) input is provided to allow gating of the clock or negative edge clocking capability. The device can be effectively used for variable digital delay lines or simply to implement odd length shift registers. • 1−64 Bit Programmable Length • Q and Q Serial Buffered Outputs • Asynchronous Master Reset • All Inputs Buffered • No Limit On Clock Rise and Fall Times • Supply Voltage Range = 3.0 Vdc to 18 Vdc • Capable of Driving Two Low−power TTL Loads or one Low−power Schottky TTL Load Over the Rated Temperature Range • These Devices are Pb−Free and are RoHS Compliant Parameter MARKING DIAGRAMS 16 MC14557BCP AWLYYWWG 16 1 PDIP−16 P SUFFIX CASE 648 1 16 14557B AWLYYWWG MAXIMUM RATINGS (Voltages Referenced to VSS) Symbol http://onsemi.com Value Unit −0.5 to +18.0 V −0.5 to VDD + 0.5 V VDD DC Supply Voltage Range Vin, Vout Input or Output Voltage Range (DC or Transient) Iin, Iout Input or Output Current (DC or Transient) per Pin ±10 mA PD Power Dissipation, per Package (Note 2) 500 mW TA Ambient Temperature Range −55 to +125 °C Tstg Storage Temperature Range −65 to +150 °C TL Lead Temperature (8−Second Soldering) 260 °C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Vin and Vout should be constrained to the range VSS v (Vin or Vout) v VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. 2. Temperature Derating: Plastic “P and D/DW” Packages: – 7.0 mW/°C From 65°C To 125°C 1 SO−16 WB DW SUFFIX CASE 751G 1 16 MC14557B ALYWG SOEIAJ−16 F SUFFIX CASE 966 A WL, L YY, Y WW, W G 1 = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. © Semiconductor Components Industries, LLC, 2011 June, 2011 − Rev. 6 1 Publication Order Number: MC14557B/D 6 7 3 4 5 A/B 9 SELECT B A RESET CLOCK CE Figure 1. Logic Diagram http://onsemi.com 2 2 L1 1 L2 C C R L16 1 BIT R R 16 BIT L32 C 13 2 BIT R 32 BIT 12 C C L8 14 C 1 BIT 8 BIT R R 4 BIT Q Q VDD = PIN 16 VSS = PIN 8 11 10 L4 15 C R MC14557B MC14557B L2 1 16 VDD L1 2 15 L4 RESET 3 14 L8 CLOCK 4 13 L16 CE 5 12 L32 B 6 11 Q A 7 10 Q VSS 8 9 3 4 5 6 7 9 2 1 15 14 13 12 A/B SEL RESET CLOCK CE B A A/B SELECT L1 L2 L4 L8 L16 L32 Q 10 Q 11 VDD = PIN 16 VSS = PIN 8 Figure 2. Pin Assignment Figure 3. Block Diagram TRUTH TABLE LENGTH SELECT TRUTH TABLE Inputs Output L32 L16 L8 L4 L2 L1 Register Length CE Q 0 0 B 0 1 0 A 0 0 1 B 0 1 1 A 1 X X 0 0 0 0 0 0    1 1    1 1 1 1 0 0 0 0 0 0    0 0    1 1 1 1 0 0 0 0 0 0    0 0    1 1 1 1 0 0 0 0 1 1    0 0    1 1 1 1 0 0 1 1 0 0    0 0    0 0 1 1 0 1 0 1 0 1    0 1    0 1 0 1 1 Bit 2 Bits 3 Bits 4 Bits 5 Bits 6 Bits    33 Bits 34 Bits    61 Bits 62 Bits 63 Bits 64 Bits Rst A/B 0 Clock X 0 Q is the output of the first selected shift register stage. X = Don’t Care NOTE: http://onsemi.com 3 Length equals the sum of the binary length control subscripts plus one. MC14557B ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) − 55°C Symbol VOL VOH VIL VIH Vin = 0 or VDD Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) 125°C VDD Vdc Min Max Min Typ (Note 3) “0” Level 5.0 10 15 − − − 0.05 0.05 0.05 − − − 0 0 0 0.05 0.05 0.05 − − − 0.05 0.05 0.05 Vdc “1” Level 5.0 10 15 4.95 9.95 14.95 − − − 4.95 9.95 14.95 5.0 10 15 − − − 4.95 9.95 14.95 − − − Vdc 5.0 10 15 − − − 1.5 3.0 4.0 − − − 2.25 4.50 6.75 1.5 3.0 4.0 − − − 1.5 3.0 4.0 5.0 10 15 3.5 7.0 11 − − − 3.5 7.0 11 2.75 5.50 8.25 − − − 3.5 7.0 11 − − − Source 5.0 5.0 10 15 –3.0 –0.64 –1.6 –4.2 − − − − –2.4 –0.51 –1.3 –3.4 –4.2 –0.88 –2.25 –8.8 − − − − –1.7 –0.36 –0.9 –2.4 − − − − Sink 5.0 10 15 0.64 1.6 4.2 − − − 0.51 1.3 3.4 0.88 2.25 8.8 − − − 0.36 0.9 2.4 − − − Characteristic Output Voltage Vin = VDD or 0 25°C “0” Level “1” Level Max Min Max Unit Vdc Vdc mAdc IOH Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) IOL (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Iin Input Current 15 − ± 0.1 − ± 0.00001 ± 0.1 − ± 1.0 mAdc Cin Input Capacitance (Vin = 0) − − − − 5.0 7.5 − − pF IDD Quiescent Current (Per Package) 5.0 10 15 − − − 5.0 10 20 − − − 0.010 0.020 0.030 5.0 10 20 − − − 150 300 600 mAdc IT Total Supply Current (Notes 4, 5) (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) 5.0 10 15 IT = (1.75 mA/kHz) f + IDD IT = (3.50 mA/kHz) f + IDD IT = (5.25 mA/kHz) f + IDD mAdc 3. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. 4. The formulas given are for the typical characteristics only at 25°C. 5. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL – 50) Vfk where: IT is in mA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001. http://onsemi.com 4 MC14557B ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ SWITCHING CHARACTERISTICS (Note 6) (CL = 50 pF, TA = 25°C) Characteristic Symbol VDD Min Typ (Note 7) Max Unit tTLH, tTHL Rise and Fall Time, Q or Q Output tTLH, tTHL = (1.5 ns/pF) CL + 25 ns tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns 5 10 15 − − − 100 50 40 200 100 80 ns tPLH, tPHL Propagation Delay, Clock or CE to Q or Q tPLH, tPHL = (1.7 ns/pF) CL + 215 ns tPLH, tPHL = (0.66 ns/pF) CL + 97 ns tPLH, tPHL = (0.5 ns/pF) CL + 65 ns 5 10 15 − − − 300 130 90 600 260 180 tPLH, tPHL Propagation Delay, Reset to Q or Q tPLH, tPHL = (1.7 ns/pF) CL + 215 ns tPLH, tPHL = (0.66 ns/pF) CL + 97 ns tPLH, tPHL = (0.5 ns/pF) CL + 70 ns 5 10 15 − − − 300 130 95 600 260 190 tWH(cl) Pulse Width, Clock 5 10 15 200 100 75 95 45 35 − − − ns tWH(rst) Pulse Width, Reset 5 10 15 300 140 100 150 70 50 − − − ns fcl Clock Frequency (50% Duty Cycle) 5 10 15 − − − 3.0 7.5 13.0 1.7 5.0 6.7 MHz tsu Setup Time, A or B to Clock or CE Worst case condition: L1 = L2 = L4 = L8 = L16 = L32 = VSS (Register Length = 1) 5 10 15 700 290 145 350 130 85 − − − 5 10 15 400 165 60 45 5 0 − − − 5 10 15 200 100 10 –150 –60 –50 − − − 5 10 15 400 185 85 50 25 22 − − − ns ns ns Best case condition: L32 = VDD, L1 through L16 = Don’t Care (Any register length from 33 to 64) th ns Hold Time, Clock or CE to A or B Best case condition: L1 = L2 = L4 = L8 = L16 = L32 = VSS (Register Length = 1) Worst case condition: L32 = VDD, L1 through L16 = Don’t Care (Any register length from 33 to 64) tr, tf Rise and Fall Time, Clock 5 10 15 − tr, tf Rise and Fall Time, Reset or CE 5 10 15 − − − − − − 15 5 4 ms trem Removal Time, Reset to Clock or CE 5 10 15 160 80 70 80 40 35 − − − ns No Limit 6. The formulas given are for the typical characteristics only at 25°C. 7. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. http://onsemi.com 5 MC14557B VDD 50% CLOCK tWH(cl) VSS 1/fcl VDD 50% A INPUT VSS trem tsu VDD th 50% VSS RESET 1−bit length: CE = 0 Q A/B = 1 L1 = L2 = L4 = L8 = L16 = L32 = 0 tTHL tTLH PWR VOH 90% 50% 10% tPLH tPHL tPHL VOL Figure 4. Timing Diagram ORDERING INFORMATION Package Shipping† MC14557BFELG SOEIAJ−16 (Pb−Free) 2000 / Tape & Reel MC14557BDWR2G SO−16 (WB) 1000 / Tape & Reel MC14557BCPG PDIP−16 (Pb−Free) 500 Units / Rail MC14557BDWG SO−16 (WB) 47 Units / Rail Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 6 MC14557B PACKAGE DIMENSIONS PDIP−16 P SUFFIX CASE 648−08 ISSUE T NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. −A− 16 9 1 8 B F C L S −T− H SEATING PLANE K G D M J 16 PL 0.25 (0.010) T A M M DIM A B C D F G H J K L M S INCHES MIN MAX 0.740 0.770 0.250 0.270 0.145 0.175 0.015 0.021 0.040 0.70 0.100 BSC 0.050 BSC 0.008 0.015 0.110 0.130 0.295 0.305 0_ 10 _ 0.020 0.040 MILLIMETERS MIN MAX 18.80 19.55 6.35 6.85 3.69 4.44 0.39 0.53 1.02 1.77 2.54 BSC 1.27 BSC 0.21 0.38 2.80 3.30 7.50 7.74 0_ 10 _ 0.51 1.01 SO−16 WB DW SUFFIX CASE 751G−03 ISSUE C A D 9 1 h X 45 _ MILLIMETERS DIM MIN MAX A 2.35 2.65 A1 0.10 0.25 B 0.35 0.49 C 0.23 0.32 D 10.15 10.45 E 7.40 7.60 e 1.27 BSC H 10.05 10.55 h 0.25 0.75 L 0.50 0.90 q 0_ 7_ 8 16X M 14X e T A S B S L A 0.25 B B A1 H E 0.25 8X M B M 16 q SEATING PLANE T NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C http://onsemi.com 7 MC14557B PACKAGE DIMENSIONS SOEIAJ−16 CASE 966−01 ISSUE A 16 LE 9 Q1 E HE 1 M_ L 8 Z DETAIL P D e VIEW P A DIM A A1 b c D E e HE L LE M Q1 Z A1 b 0.13 (0.005) c M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). 0.10 (0.004) MILLIMETERS MIN MAX --2.05 0.05 0.20 0.35 0.50 0.10 0.20 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 _ 0_ 0.70 0.90 --0.78 INCHES MIN MAX --0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 _ 0_ 0.028 0.035 --0.031 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC14557B/D
MC14557BDW
物料型号为MC14557B,这是一款1至64位可变长度的移位寄存器。

器件简介包括静态时钟控制、可编程长度、异步主复位、所有输入缓冲、无时钟上升/下降时间限制等特点。

引脚分配包括数据输入A/B、时钟、时钟使能、复位、长度控制输入等。

参数特性涉及供电电压范围3.0Vdc至18Vdc,能够驱动两个低功耗TTL负载或一个低功耗肖特基TTL负载。

功能详解包括可变数字延迟线或实现奇数长度移位寄存器的应用。

应用信息指出该器件可用于数字延迟线或实现奇数长度移位寄存器。

封装信息包括PDIP-16、SO-16和SOEIAJ-16等封装类型。
MC14557BDW 价格&库存

很抱歉,暂时无法提供与“MC14557BDW”相匹配的价格&库存,您可以联系我们找货

免费人工找货