0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC33078DR2G

MC33078DR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOIC8_150MIL

  • 描述:

    低噪声双/四路运算放大器

  • 数据手册
  • 价格&库存
MC33078DR2G 数据手册
MC33078, MC33079, NCV33078, NCV33079 Operational Amplifiers, Low Noise, Dual and Quad The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance. The MC33078/9 family offers both dual and quad amplifier versions and is available in the plastic DIP and SOIC packages (P and D suffixes). http://onsemi.com MARKING DIAGRAMS DUAL 8 MC33078P AWL YYWWG PDIP−8 P SUFFIX CASE 626 8 1 1 Features • • • • • • • • • • • • • 8 Dual Supply Operation: $5.0 V to $18 V Low Voltage Noise: 4.5 nV/ ǸHz Low Input Offset Voltage: 0.15 mV Low T.C. of Input Offset Voltage: 2.0 mV/°C Low Total Harmonic Distortion: 0.002% High Gain Bandwidth Product: 16 MHz High Slew Rate: 7.0 V/ms High Open Loop AC Gain: 800 @ 20 kHz Excellent Frequency Stability Large Output Voltage Swing: +14.1 V/ −14.6 V ESD Diodes Provided on the Inputs NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant Q4 Q3 Q9 Q5 Neg Pos J1 Amplifier Biasing D3 Q11 R7 C2 Q8 Q3 D4 Z1 Q1 R1 D2 C1 R3 1 1 33078 ALYW G QUAD 14 PDIP−14 P SUFFIX CASE 646 14 1 MC33079P AWLYYWWG 1 14 14 1 SOIC−14 D SUFFIX CASE 751A MC33079DG AWLYWW 1 R4 Q7 R6 A WL, L YY, Y WW, W G or G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package C3 R9 Q6 Q2 8 VCC R2 D1 SOIC−8 D SUFFIX CASE 751 Q10 Q12 Vout ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. R5 VEE Figure 1. Representative Schematic Diagram (Each Amplifier) © Semiconductor Components Industries, LLC, 2011 November, 2011 − Rev. 9 1 Publication Order Number: MC33078/D MC33078, MC33079, NCV33078, NCV33079 PIN CONNECTIONS Output 1 DUAL QUAD CASE 626/751 CASE 646/751A 1 8 VCC 1 + 2 Inputs 1 VEE 3 7 Output 2 2 + 4 Output 1 Inputs 1 6 VCC Inputs 2 5 Inputs 2 (Dual, Top View) Output 2 1 14 2 13 * 1 3 ) * ) 12 4 4 11 5 ) 10 3 * 9 )2 6 * Output 4 7 8 Inputs 4 VEE Inputs 3 Output 3 (Quad, Top View) MAXIMUM RATINGS Rating Symbol Value Unit VS +36 V Input Differential Voltage Range VIDR Note 1 V Input Voltage Range VIR Note 1 V Output Short Circuit Duration (Note 2) tSC Indefinite sec Supply Voltage (VCC to VEE) Maximum Junction Temperature TJ +150 °C Storage Temperature Tstg −60 to +150 °C ESD Protection at any Pin MC33078/NCV33078 MC33079/NCV33079 − Human Body Model − Machine Model − Human Body Model − Machine Model Vesd 600 200 550 150 V Maximum Power Dissipation PD Note 2 mW Operating Temperature Range TA −40 to +85 °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2). http://onsemi.com 2 MC33078, MC33079, NCV33078, NCV33079 DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.) Symbol Characteristics |VIO| Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V) (MC33078) TA = +25°C TA = −40° to +85°C (MC33079) TA = +25°C TA = −40° to +85°C Average Temperature Coefficient of Input Offset Voltage RS = 10 W, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh DVIO/DT Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = −40° to +85°C IIB Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = −40° to +85°C IIO Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V) VICR Large Signal Voltage Gain (VO = $10 V, RL = 2.0 kW) TA = +25°C TA = −40° to +85°C AVOL Min Typ Max − − − − 0.15 − 0.15 − 2.0 3.0 2.5 3.5 − 2.0 − − − 300 − 750 800 − − 25 − 150 175 ±13 ±14 − Unit mV mV/°C nA nA V dB 90 85 110 − − − Output Voltage Swing (VID = $1.0V) RL = 600 W RL = 600 W RL = 2.0 kW RL = 2.0 kW RL = 10 kW RL = 10 kW VO+ VO− VO+ VO− VO+ VO− − − +13.2 − +13.5 − +10.7 −11.9 +13.8 −13.7 +14.1 −14.6 − − − −13.2 − −14 V Common Mode Rejection (Vin = ±13V) CMR 80 100 − dB Power Supply Rejection (Note 3) VCC/VEE = +15 V/ −15 V to +5.0 V/ −5.0 V PSR 80 105 − dB +15 −20 +29 −37 − − − − − − 4.1 − 8.4 − 5.0 5.5 10 11 Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink ISC Power Supply Current (VO = 0 V, All Amplifiers) (MC33078) TA = +25°C (MC33078) TA = −40° to +85°C (MC33079) TA = +25°C (MC33079) TA = −40° to +85°C ID 3. Measured with VCC and VEE differentially varied simultaneously. http://onsemi.com 3 mA mA MC33078, MC33079, NCV33078, NCV33079 AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.) Symbol Min Typ Max Unit SR 5.0 7.0 − V/ms GBW 10 16 − MHz Unity Gain Bandwidth (Open Loop) BW − 9.0 − MHz Gain Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF Am − − −11 −6.0 − − Phase Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF fm − − 55 40 − − Characteristics Slew Rate (Vin = −10 V to +10 V, RL = 2.0 kW, CL = 100 pF AV = +1.0) Gain Bandwidth Product (f = 100 kHz) Deg CS − −120 − dB Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD $ 1.0%) BWp − 120 − kHz Total Harmonic Distortion (RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD − 0.002 − % Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| − 37 − W Differential Input Resistance (VCM = 0 V) Rin − 175 − kW Differential Input Capacitance (VCM = 0 V) Cin − 12 − pF Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz) en − 4.5 − nV/ √ Hz Equivalent Input Noise Current (f = 1.0 kHz) in − 0.5 − Hz √ pA/ P, D MAXIMUM POWER DISSIPATION (mW) Channel Separation (f = 20 Hz to 20 kHz) dB 2400 800 2000 I, IB INPUT BIAS CURRENT (nA) MC33078P & MC33079P 1600 MC33079D 1200 800 MC33078D 400 0 -55 -40 -20 VCM = 0 V TA = 25°C 600 400 200 0 0 20 40 60 80 100 120 140 160 TA, AMBIENT TEMPERATURE (°C) 0 Figure 2. Maximum Power Dissipation versus Temperature 10 15 VCC, | VEE |, SUPPLY VOLTAGE (V) 20 Figure 3. Input Bias Current versus Supply Voltage 1000 2.0 VCC = +15 V VEE = -15 V VCM = 0 V 800 V, IO INPUT OFFSET VOLTAGE (mV) I, IB INPUT BIAS CURRENT (nA) 5.0 600 400 200 0 -55 -25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 VCC = +15 V VEE = -15 V RS = 10 W 1.0 VCM = 0 V AV = +1 Unit 2 0 Figure 4. Input Bias Current versus Temperature Unit 3 -1.0 -2.0 -55 125 Unit 1 -25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 Figure 5. Input Offset Voltage versus Temperature http://onsemi.com 4 I, IB INPUT BIAS CURRENT (nA) 600 VCC = +15 V VEE = -15 V TA = 25°C 500 400 300 200 100 0 -15 -10 -5.0 0 5.0 10 15 VCM, COMMON MODE VOLTAGE (V) V ICR , INPUT COMMON MODE VOLTAGE RANGE (V) MC33078, MC33079, NCV33078, NCV33079 VCC -0 VCC -0.5 +VCM VCC -1.5 Voltage Range VEE +1.5 VEE +1.0 -VCM VEE +0.5 VEE +0 -55 VCC = +15 V VEE = -15 V 25°C VCC -5.0 125°C VEE +5.0 125°C 25°C VEE +3.0 -55°C VEE +1.0 7.0 4.0 3.0 2.0 100 ±15 V 4.0 VCM = 0 V RL = ∞ VO = 0 V ±10 V ±5.0 V MC33079 ±15 V ±10 V MC33078 ±5.0 V ±4.0 V -25 Supply Voltages 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 50 VCC = +15 V VEE = -15 V RL < 100 W VID = 1.0 V Sink 40 Source 30 20 10 -55 Figure 9. Output Short Circuit Current versus Temperature 3.0 1.0 0 -55 75 Figure 8. Output Saturation Voltage versus Load Resistance to Ground 2.0 6.0 5.0 50 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 1.0 9.0 8.0 25 RL, LOAD RESISTANCE TO GROUND (kW) 0 10 I, CC SUPPLY CURRENT (mA) | I|, SC OUTPUT SHORT CIRCUIT CURRENT (mA) VCC -3.0 0 Figure 7. Input Common Mode Voltage Range versus Temperature CMR, COMMON MODE REJECTION (dB) Vsat , OUTPUT SATURATION VOLTAGE (V) -55°C -25 TA, AMBIENT TEMPERATURE (°C) Figure 6. Input Bias Current versus Common Mode Voltage VCC -1.0 VCC = +3.0 V to +15 V VEE = -3.0 V to -15 V DVIO = 5.0 mV VO = 0 V VCC -1.0 100 D VCM 140 120 CMR = 20Log 100 80 60 40 Figure 10. Supply Current versus Temperature ADM + D VCM D VO D VO × ADM VCC = +15 V VEE = -15 V VCM = 0 V DVCM = ±1.5 V TA = 25°C 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M Figure 11. Common Mode Rejection versus Frequency http://onsemi.com 5 125 160 20 100 125 -25 10 M MC33078, MC33079, NCV33078, NCV33079 DVO/ADM +PSR = 20Log 120 DVO/ADM -PSR = 20Log DVCC DVCC DVCC +PSR 100 GWB, GAIN BANDWIDTH PRODUCT (MHz) PSR, POWER SUPPLY REJECTION (dB) 140 - ADM DVO + 80 -PSR VEE 60 40 VCC = +15 V VEE = -15 V TA = 25°C 20 0 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 30 20 10 0 0 10 M 1.0 M RL = 10 kW CL = 0 pF f = 100 kHz TA = 25°C 20 20 20 TA = 25°C 15 VO , OUTPUT VOLTAGE (Vp) GWB, GAIN BANDWIDTH PRODUCT (MHz) 15 Figure 13. Gain Bandwidth Product versus Supply Voltage 15 10 VCC = +15 V VEE = -15 V f = 100 kHz RL = 10 kW CL = 0 pF 5.0 0 -55 -25 RL = 10 kW RL = 2.0 kW 5.0 0 -5.0 RL = 2.0 kW -10 RL = 10 kW -15 0 25 50 75 100 -20 125 VO 0 A, VOL OPEN LOOP VOLTAGE GAIN (dB) 30 25 20 VCC = +15 V VCC = -15 V RL = 2.0 kW AV = +1.0 THD ≤ 1.0% TA = 25°C 5.0 10 100 1.0 k 10 k 100 k 10 15 20 Figure 15. Maximum Output Voltage versus Supply Voltage 35 10 5.0 VCC |VEE| , SUPPLY VOLTAGE (V) Figure 14. Gain Bandwidth Product versus Temperature 15 VO + 10 TA, AMBIENT TEMPERATURE (°C) VO, OUTPUT VOLTAGE (Vpp ) 10 VCC |VEE| , SUPPLY VOLTAGE (V) Figure 12. Power Supply Rejection versus Frequency 0 5.0 1.0 M 110 100 90 80 10 M RL = 2.0 kW f ≤ 10 Hz DVO = 2/3 (VCC -VEE) TA = 25°C 0 f, FREQUENCY (Hz) 5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V) Figure 16. Output Voltage versus Frequency Figure 17. Open Loop Voltage Gain versus Supply Voltage http://onsemi.com 6 20 110 50 105 | Z|, Ω O OUTPUT IMPEDANCE () VCC = +15 V VEE = -15 V RL = 2.0 kW f ≤ 10 Hz DVO = -10 V to +10 V 100 95 90 -55 -25 0 25 50 75 CS, CHANNEL SEPARATION (dB) 20 10 AV = 1000 125 AV = 10 100 k Figure 19. Output Impedance versus Frequency Drive Channel VCC = +15 V VEE = -15 V RL = 2.0 KW DVOD = 20 Vpp TA = 25°C MC33078 140 MC33079 100 W 10 kW - 120 VOM + 100 W 100 10 100 DVOA CS = 20 Log 1.0 k f, FREQUENCY (Hz) DVOM 10 k VCC = +15 V VEE = -15 V VO = 1.0 Vrms TA = 25°C 0.1 VO + 2.0 kW 0.001 10 100 k 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k Figure 21. Total Harmonic Distortion versus Frequency 10 SR, SLEW RATE (V/μs) AV = 100 RA 0.05 Vin Vin = 2/3 (VCC -VEE) TA = 25°C 9.0 AV = 1000 0.1 + 10 kW VO 2.0 kW AV = 10 AV = 1.0 0.005 - 0.01 1.0 0.01 10 M 1.0 Figure 20. Channel Separation versus Frequency VCC = +15 V VEE = -15 V 0.5 f = 2.0 kHz TA = 25°C AV = 1.0 1.0 M Figure 18. Open Loop Voltage Gain versus Temperature Measurement Channel THD, TOTAL HARMONIC DISTORTION (%) 10 k AV = 100 f, FREQUENCY (Hz) 150 110 30 TA, AMBIENT TEMPERATURE (°C) 160 130 100 VCC = +15 V VEE = -15 V VO = 0 V TA = 25°C 40 0 1.0 k THD, TOTAL HARMONIC DISTORTION (%) A, VOL OPEN LOOP VOLTAGE GAIN (dB) MC33078, MC33079, NCV33078, NCV33079 Falling 8.0 7.0 Rising 6.0 5.0 4.0 - 3.0 DVin 2.0 + VO 2.0 kW 1.0 0.001 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 VO, OUTPUT VOLTAGE (Vrms) 8.0 0 9.0 4 Figure 22. Total Harmonic Distortion versus Output Voltage 6 8 10 14 12 16 VCC |VEE| , SUPPLY VOLTAGE (V) 18 Figure 23. Slew Rate versus Supply Voltage http://onsemi.com 7 20 MC33078, MC33079, NCV33078, NCV33079 Falling Rising 6.0 DVin 4.0 2.0 -55 -25 VO + 2.0 kW 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 120 100 40 135 20 Phase 25°C 20 -55°C 30 8.0 125°C 125°C 6.0 40 50 4.0 VCC = +15 V VEE = -15 V VO = 0 V 0 e, nV/ √ Hz n INPUT REFERRED NOISE VOLTAGE () 1 25°C -55°C 60 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M 10 DVin 125°C VO + 25°C CL -55°C 60 40 VCC = +15 V VEE = -15 V DVin = 100 mV 20 0 10 70 1000 100 100 1.0 k 10 k CL, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF) Figure 26. Open Loop Gain Margin and Phase Margin versus Load Capacitance Figure 27. Overshoot versus Output Load Capacitance 10 VCC = +15 V VEE = -15 V TA = 25°C 50 30 20 10 8.0 5.0 Voltage 3.0 2.0 Current 100 180 10 M Gain 100 80 1.0 10 80 1.0 k 10 k 0.1 100 k Vn, REFERRED NOISE VOLTAGE (nV/ √ Hz) 2.0 100 - os, OVERSHOOT (%) CL 10 10 φ m, PHASE MARGIN (DEGREES) VO + 2.0 kW 10 100 in, INPUT REFERRED NOISE CURRENT ( pA/ √ Hz ) A, m OPEN LOOP GAIN MARGIN (dB) 12 Vin 90 Gain Figure 25. Voltage Gain and Phase versus Frequency 0 - Phase 60 Figure 24. Slew Rate versus Temperature 14 45 80 0 1.0 125 0 VCC = +15 V VEE = -15 V RL = 2.0 kW TA = 25°C φ, EXCESS PHASE (DEGREES) VCC = +15 V VEE = -15 V DVin = 20 V 8.0 SR, SLEW RATE (V/s) μ A, VOL OPEN LOOP VOLTAGE GAIN (dB) 10 1000 100 VCC = +15 V VEE = -15 V f = 1.0 kHz TA = 25°C Vn(total) = Ǹ(inRs)2 ) en2 ) 4KTRS 10 1.0 10 100 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz) RS, SOURCE RESISTANCE (W) Figure 28. Input Referred Noise Voltage and Current versus Frequency Figure 29. Total Input Referred Noise Voltage versus Source Resistance http://onsemi.com 8 MC33078, MC33079, NCV33078, NCV33079 14 Am, GAIN MARGIN (dB) 12 60 Gain 10 R1 8.0 R2 6.0 4.0 2.0 0 50 Phase - 40 VO + φ m , PHASE MARGIN (DEGREES) 70 30 VCC = +15 V VEE = -15 V RT = R1 +R2 AV = +100 VO = 0 V TA = 25°C 20 10 10 100 1.0 k 10 k 0 100 k RT, DIFFERENTIAL SOURCE RESISTANCE (W) V, O OUTPUT VOLTAGE (5.0 V/DIV) V, O OUTPUT VOLTAGE (5.0 V/DIV) Figure 30. Phase Margin and Gain Margin versus Differential Source Resistance VCC = +15 V VEE = -15 V AV = -1.0 RL = 2.0 kW CL = 100 pF TA = 25°C t, TIME (2.0 ms/DIV) t, TIME (2.0 ms/DIV) Figure 32. Non−inverting Amplifier Slew Rate e, n INPUT NOISE VOLTAGE (100 nV/DIV) Figure 31. Inverting Amplifier Slew Rate V, O OUTPUT VOLTAGE (5.0 V/DIV) VCC = +15 V VEE = -15 V AV = +1.0 RL = 2.0 kW CL = 100 pF TA = 25°C VCC = +15 V VEE = -15 V RL = 2.0 kW CL = 100 pF AV = +1.0 TA = 25°C t, TIME (200 ms/DIV) VCC = +15 V VEE = -15 V BW = 0.1 Hz to 10 Hz TA = 25°C t, TIME (1.0 sec/DIV) Figure 33. Non−inverting Amplifier Overshoot Figure 34. Low Frequency Noise Voltage versus Time http://onsemi.com 9 MC33078, MC33079, NCV33078, NCV33079 0.1 mF 10 W 100 kW 2.0 kW + D.U.T. + 1/2 4.7 mF 4.3 kW Scope ×1 Rin = 1.0 MW MC33078 100 kW Voltage Gain = 50,000 22 mF 2.2 mF 110 kW 24.3 kW 0.1 mF Note: All capacitors are non−polarized. Figure 35. Voltage Noise Test Circuit (0.1 Hz to 10 Hzp−p) ORDERING INFORMATION Device Package MC33078DG MC33078DR2G 98 Units / Rail SOIC−8 (Pb−Free) NCV33078DR2G* MC33078P Shipping† 2500 / Tape & Reel PDIP−8 50 Units / Rail MC33078PG PDIP−8 (Pb−Free) MC33079DG SOIC−14 (Pb−Free) 55 Units / Rail MC33079DR2G NCV33079DR2G* SOIC−14 (Pb−Free) 2500 / Tape & Reel MC33079P PDIP−14 MC33079PG PDIP−14 (Pb−Free) 25 Units / Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV devices are qualified for automotive use. http://onsemi.com 10 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS PDIP−8 CASE 626−05 ISSUE P DATE 22 APR 2015 SCALE 1:1 D A E H 8 5 E1 1 4 NOTE 8 b2 c B END VIEW TOP VIEW WITH LEADS CONSTRAINED NOTE 5 A2 A e/2 NOTE 3 L SEATING PLANE A1 C D1 M e 8X SIDE VIEW b 0.010 eB END VIEW M C A M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3. 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. 5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. 7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. 8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS). DIM A A1 A2 b b2 C D D1 E E1 e eB L M INCHES MIN MAX −−−− 0.210 0.015 −−−− 0.115 0.195 0.014 0.022 0.060 TYP 0.008 0.014 0.355 0.400 0.005 −−−− 0.300 0.325 0.240 0.280 0.100 BSC −−−− 0.430 0.115 0.150 −−−− 10 ° MILLIMETERS MIN MAX −−− 5.33 0.38 −−− 2.92 4.95 0.35 0.56 1.52 TYP 0.20 0.36 9.02 10.16 0.13 −−− 7.62 8.26 6.10 7.11 2.54 BSC −−− 10.92 2.92 3.81 −−− 10 ° NOTE 6 GENERIC MARKING DIAGRAM* STYLE 1: PIN 1. AC IN 2. DC + IN 3. DC − IN 4. AC IN 5. GROUND 6. OUTPUT 7. AUXILIARY 8. VCC XXXXXXXXX AWL YYWWG XXXX A WL YY WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DOCUMENT NUMBER: DESCRIPTION: 98ASB42420B PDIP−8 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS PDIP−14 CASE 646−06 ISSUE S 1 SCALE 1:1 D A 14 8 E H E1 1 NOTE 8 7 b2 c B TOP VIEW END VIEW WITH LEADS CONSTRAINED NOTE 5 A2 A NOTE 3 L SEATING PLANE A1 C D1 e M eB END VIEW 14X b SIDE VIEW 0.010 M C A M B M NOTE 6 DATE 22 APR 2015 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3. 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. 5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. 7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. 8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS). DIM A A1 A2 b b2 C D D1 E E1 e eB L M INCHES MIN MAX −−−− 0.210 0.015 −−−− 0.115 0.195 0.014 0.022 0.060 TYP 0.008 0.014 0.735 0.775 0.005 −−−− 0.300 0.325 0.240 0.280 0.100 BSC −−−− 0.430 0.115 0.150 −−−− 10 ° MILLIMETERS MIN MAX −−− 5.33 0.38 −−− 2.92 4.95 0.35 0.56 1.52 TYP 0.20 0.36 18.67 19.69 0.13 −−− 7.62 8.26 6.10 7.11 2.54 BSC −−− 10.92 2.92 3.81 −−− 10 ° GENERIC MARKING DIAGRAM* 14 XXXXXXXXXXXX XXXXXXXXXXXX AWLYYWWG STYLES ON PAGE 2 1 XXXXX A WL YY WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DOCUMENT NUMBER: DESCRIPTION: 98ASB42428B PDIP−14 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com PDIP−14 CASE 646−06 ISSUE S DATE 22 APR 2015 STYLE 1: PIN 1. COLLECTOR 2. BASE 3. EMITTER 4. NO CONNECTION 5. EMITTER 6. BASE 7. COLLECTOR 8. COLLECTOR 9. BASE 10. EMITTER 11. NO CONNECTION 12. EMITTER 13. BASE 14. COLLECTOR STYLE 2: CANCELLED STYLE 3: CANCELLED STYLE 4: PIN 1. DRAIN 2. SOURCE 3. GATE 4. NO CONNECTION 5. GATE 6. SOURCE 7. DRAIN 8. DRAIN 9. SOURCE 10. GATE 11. NO CONNECTION 12. GATE 13. SOURCE 14. DRAIN STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. NO CONNECTION 5. SOURCE 6. DRAIN 7. GATE 8. GATE 9. DRAIN 10. SOURCE 11. NO CONNECTION 12. SOURCE 13. DRAIN 14. GATE STYLE 6: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 7: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE STYLE 8: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 9: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE STYLE 10: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE STYLE 12: PIN 1. COMMON CATHODE 2. COMMON ANODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. COMMON ANODE 7. COMMON CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42428B PDIP−14 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK 8 1 SCALE 1:1 −X− DATE 16 FEB 2011 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N X 45 _ SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X J S 8 8 1 1 IC 4.0 0.155 XXXXX A L Y W G IC (Pb−Free) = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package XXXXXX AYWW 1 1 Discrete XXXXXX AYWW G Discrete (Pb−Free) XXXXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 1.270 0.050 SCALE 6:1 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 8 8 XXXXX ALYWX G XXXXX ALYWX 1.52 0.060 0.6 0.024 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 7.0 0.275 DIM A B C D G H J K M N S mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−8 NB CASE 751−07 ISSUE AK DATE 16 FEB 2011 STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 14: PIN 1. N−SOURCE 2. N−GATE 3. P−SOURCE 4. P−GATE 5. P−DRAIN 6. P−DRAIN 7. N−DRAIN 8. N−DRAIN STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−14 NB CASE 751A−03 ISSUE L 14 1 SCALE 1:1 D DATE 03 FEB 2016 A B 14 8 A3 E H L 1 0.25 B M DETAIL A 7 13X M b 0.25 M C A S B S 0.10 X 45 _ M A1 e DETAIL A h A C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 6.50 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 14 14X 1.18 XXXXXXXXXG AWLYWW 1 1 1.27 PITCH XXXXX A WL Y WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−14 CASE 751A−03 ISSUE L DATE 03 FEB 2016 STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 2: CANCELLED STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC33078DR2G 价格&库存

很抱歉,暂时无法提供与“MC33078DR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MC33078DR2G
  •  国内价格
  • 1+0.80080
  • 10+0.73920
  • 100+0.67760
  • 1000+0.61600

库存:809801

MC33078DR2G
  •  国内价格
  • 5+1.18066
  • 50+0.94274
  • 150+0.84089
  • 500+0.71367
  • 2500+0.65708
  • 5000+0.62306

库存:12275

MC33078DR2G
  •  国内价格
  • 5+0.88881
  • 20+0.80898
  • 100+0.72914
  • 500+0.64931
  • 1000+0.61205
  • 2000+0.58544

库存:5514