MC33078, MC33079,
NCV33078, NCV33079
Operational Amplifiers, Low
Noise, Dual and Quad
The MC33078/9 series is a family of high quality monolithic
amplifiers employing Bipolar technology with innovative high
performance concepts for quality audio and data signal processing
applications. This family incorporates the use of high frequency PNP
input transistors to produce amplifiers exhibiting low input voltage
noise with high gain bandwidth product and slew rate. The all NPN
output stage exhibits no deadband crossover distortion, large output
voltage swing, excellent phase and gain margins, low open loop high
frequency output impedance and symmetrical source and sink AC
frequency performance.
The MC33078/9 family offers both dual and quad amplifier
versions and is available in the plastic DIP and SOIC packages (P and
D suffixes).
http://onsemi.com
MARKING
DIAGRAMS
DUAL
8
MC33078P
AWL
YYWWG
PDIP−8
P SUFFIX
CASE 626
8
1
1
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
8
Dual Supply Operation: $5.0 V to $18 V
Low Voltage Noise: 4.5 nV/ ǸHz
Low Input Offset Voltage: 0.15 mV
Low T.C. of Input Offset Voltage: 2.0 mV/°C
Low Total Harmonic Distortion: 0.002%
High Gain Bandwidth Product: 16 MHz
High Slew Rate: 7.0 V/ms
High Open Loop AC Gain: 800 @ 20 kHz
Excellent Frequency Stability
Large Output Voltage Swing: +14.1 V/ −14.6 V
ESD Diodes Provided on the Inputs
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
Q4
Q3
Q9
Q5
Neg
Pos
J1 Amplifier
Biasing
D3
Q11
R7
C2
Q8
Q3
D4
Z1
Q1
R1
D2
C1
R3
1
1
33078
ALYW
G
QUAD
14
PDIP−14
P SUFFIX
CASE 646
14
1
MC33079P
AWLYYWWG
1
14
14
1
SOIC−14
D SUFFIX
CASE 751A
MC33079DG
AWLYWW
1
R4
Q7
R6
A
WL, L
YY, Y
WW, W
G or G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
C3 R9
Q6
Q2
8
VCC
R2
D1
SOIC−8
D SUFFIX
CASE 751
Q10
Q12
Vout
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
R5
VEE
Figure 1. Representative Schematic Diagram
(Each Amplifier)
© Semiconductor Components Industries, LLC, 2011
November, 2011 − Rev. 9
1
Publication Order Number:
MC33078/D
MC33078, MC33079, NCV33078, NCV33079
PIN CONNECTIONS
Output 1
DUAL
QUAD
CASE 626/751
CASE 646/751A
1
8 VCC
1
+
2
Inputs 1
VEE
3
7 Output 2
2
+
4
Output 1
Inputs 1
6
VCC
Inputs 2
5
Inputs 2
(Dual, Top View)
Output 2
1
14
2
13
*
1
3 )
*
) 12
4
4
11
5
) 10
3
*
9
)2
6 *
Output 4
7
8
Inputs 4
VEE
Inputs 3
Output 3
(Quad, Top View)
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+36
V
Input Differential Voltage Range
VIDR
Note 1
V
Input Voltage Range
VIR
Note 1
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
sec
Supply Voltage (VCC to VEE)
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
−60 to +150
°C
ESD Protection at any Pin
MC33078/NCV33078
MC33079/NCV33079
− Human Body Model
− Machine Model
− Human Body Model
− Machine Model
Vesd
600
200
550
150
V
Maximum Power Dissipation
PD
Note 2
mW
Operating Temperature Range
TA
−40 to +85
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2).
http://onsemi.com
2
MC33078, MC33079, NCV33078, NCV33079
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.)
Symbol
Characteristics
|VIO|
Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V)
(MC33078) TA = +25°C
TA = −40° to +85°C
(MC33079) TA = +25°C
TA = −40° to +85°C
Average Temperature Coefficient of Input Offset Voltage
RS = 10 W, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh
DVIO/DT
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = −40° to +85°C
IIB
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = −40° to +85°C
IIO
Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V)
VICR
Large Signal Voltage Gain (VO = $10 V, RL = 2.0 kW)
TA = +25°C
TA = −40° to +85°C
AVOL
Min
Typ
Max
−
−
−
−
0.15
−
0.15
−
2.0
3.0
2.5
3.5
−
2.0
−
−
−
300
−
750
800
−
−
25
−
150
175
±13
±14
−
Unit
mV
mV/°C
nA
nA
V
dB
90
85
110
−
−
−
Output Voltage Swing (VID = $1.0V)
RL = 600 W
RL = 600 W
RL = 2.0 kW
RL = 2.0 kW
RL = 10 kW
RL = 10 kW
VO+
VO−
VO+
VO−
VO+
VO−
−
−
+13.2
−
+13.5
−
+10.7
−11.9
+13.8
−13.7
+14.1
−14.6
−
−
−
−13.2
−
−14
V
Common Mode Rejection (Vin = ±13V)
CMR
80
100
−
dB
Power Supply Rejection (Note 3)
VCC/VEE = +15 V/ −15 V to +5.0 V/ −5.0 V
PSR
80
105
−
dB
+15
−20
+29
−37
−
−
−
−
−
−
4.1
−
8.4
−
5.0
5.5
10
11
Output Short Circuit Current (VID = 1.0 V, Output to Ground)
Source
Sink
ISC
Power Supply Current (VO = 0 V, All Amplifiers)
(MC33078) TA = +25°C
(MC33078) TA = −40° to +85°C
(MC33079) TA = +25°C
(MC33079) TA = −40° to +85°C
ID
3. Measured with VCC and VEE differentially varied simultaneously.
http://onsemi.com
3
mA
mA
MC33078, MC33079, NCV33078, NCV33079
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
SR
5.0
7.0
−
V/ms
GBW
10
16
−
MHz
Unity Gain Bandwidth (Open Loop)
BW
−
9.0
−
MHz
Gain Margin (RL = 2.0 kW)
CL = 0 pF
CL = 100 pF
Am
−
−
−11
−6.0
−
−
Phase Margin (RL = 2.0 kW)
CL = 0 pF
CL = 100 pF
fm
−
−
55
40
−
−
Characteristics
Slew Rate (Vin = −10 V to +10 V, RL = 2.0 kW, CL = 100 pF AV = +1.0)
Gain Bandwidth Product (f = 100 kHz)
Deg
CS
−
−120
−
dB
Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD $ 1.0%)
BWp
−
120
−
kHz
Total Harmonic Distortion
(RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)
THD
−
0.002
−
%
Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz)
|ZO|
−
37
−
W
Differential Input Resistance (VCM = 0 V)
Rin
−
175
−
kW
Differential Input Capacitance (VCM = 0 V)
Cin
−
12
−
pF
Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz)
en
−
4.5
−
nV/ √ Hz
Equivalent Input Noise Current (f = 1.0 kHz)
in
−
0.5
−
Hz √ pA/
P,
D MAXIMUM POWER DISSIPATION (mW)
Channel Separation (f = 20 Hz to 20 kHz)
dB
2400
800
2000
I,
IB INPUT BIAS CURRENT (nA)
MC33078P & MC33079P
1600
MC33079D
1200
800
MC33078D
400
0
-55 -40 -20
VCM = 0 V
TA = 25°C
600
400
200
0
0
20 40 60 80 100 120 140 160
TA, AMBIENT TEMPERATURE (°C)
0
Figure 2. Maximum Power Dissipation
versus Temperature
10
15
VCC, | VEE |, SUPPLY VOLTAGE (V)
20
Figure 3. Input Bias Current versus
Supply Voltage
1000
2.0
VCC = +15 V
VEE = -15 V
VCM = 0 V
800
V,
IO INPUT OFFSET VOLTAGE (mV)
I,
IB INPUT BIAS CURRENT (nA)
5.0
600
400
200
0
-55
-25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
VCC = +15 V
VEE = -15 V
RS = 10 W
1.0 VCM = 0 V
AV = +1
Unit 2
0
Figure 4. Input Bias Current versus Temperature
Unit 3
-1.0
-2.0
-55
125
Unit 1
-25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
Figure 5. Input Offset Voltage versus Temperature
http://onsemi.com
4
I,
IB INPUT BIAS CURRENT (nA)
600
VCC = +15 V
VEE = -15 V
TA = 25°C
500
400
300
200
100
0
-15
-10
-5.0
0
5.0
10
15
VCM, COMMON MODE VOLTAGE (V)
V ICR , INPUT COMMON MODE VOLTAGE RANGE (V)
MC33078, MC33079, NCV33078, NCV33079
VCC -0
VCC -0.5
+VCM
VCC -1.5
Voltage
Range
VEE +1.5
VEE +1.0
-VCM
VEE +0.5
VEE +0
-55
VCC = +15 V
VEE = -15 V
25°C
VCC -5.0
125°C
VEE +5.0
125°C
25°C
VEE +3.0
-55°C
VEE +1.0
7.0
4.0
3.0
2.0
100
±15 V
4.0
VCM = 0 V
RL = ∞
VO = 0 V
±10 V
±5.0 V
MC33079
±15 V
±10 V
MC33078
±5.0 V
±4.0 V
-25
Supply Voltages
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
50
VCC = +15 V
VEE = -15 V
RL < 100 W
VID = 1.0 V
Sink
40
Source
30
20
10
-55
Figure 9. Output Short Circuit Current
versus Temperature
3.0
1.0
0
-55
75
Figure 8. Output Saturation Voltage versus
Load Resistance to Ground
2.0
6.0
5.0
50
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
1.0
9.0
8.0
25
RL, LOAD RESISTANCE TO GROUND (kW)
0
10
I,
CC SUPPLY CURRENT (mA)
| I|,
SC OUTPUT SHORT CIRCUIT CURRENT (mA)
VCC -3.0
0
Figure 7. Input Common Mode Voltage
Range versus Temperature
CMR, COMMON MODE REJECTION (dB)
Vsat , OUTPUT SATURATION VOLTAGE (V)
-55°C
-25
TA, AMBIENT TEMPERATURE (°C)
Figure 6. Input Bias Current versus
Common Mode Voltage
VCC -1.0
VCC = +3.0 V to +15 V
VEE = -3.0 V to -15 V
DVIO = 5.0 mV
VO = 0 V
VCC -1.0
100
D VCM
140
120
CMR = 20Log
100
80
60
40
Figure 10. Supply Current versus
Temperature
ADM
+
D VCM
D VO
D VO
× ADM
VCC = +15 V
VEE = -15 V
VCM = 0 V
DVCM = ±1.5 V
TA = 25°C
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
Figure 11. Common Mode Rejection
versus Frequency
http://onsemi.com
5
125
160
20
100
125
-25
10 M
MC33078, MC33079, NCV33078, NCV33079
DVO/ADM
+PSR = 20Log
120
DVO/ADM
-PSR = 20Log
DVCC
DVCC
DVCC
+PSR
100
GWB, GAIN BANDWIDTH PRODUCT (MHz)
PSR, POWER SUPPLY REJECTION (dB)
140
-
ADM
DVO
+
80
-PSR
VEE
60
40
VCC = +15 V
VEE = -15 V
TA = 25°C
20
0
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
30
20
10
0
0
10 M
1.0 M
RL = 10 kW
CL = 0 pF
f = 100 kHz
TA = 25°C
20
20
20
TA = 25°C
15
VO , OUTPUT VOLTAGE (Vp)
GWB, GAIN BANDWIDTH PRODUCT (MHz)
15
Figure 13. Gain Bandwidth Product
versus Supply Voltage
15
10
VCC = +15 V
VEE = -15 V
f = 100 kHz
RL = 10 kW
CL = 0 pF
5.0
0
-55
-25
RL = 10 kW
RL = 2.0 kW
5.0
0
-5.0
RL = 2.0 kW
-10
RL = 10 kW
-15
0
25
50
75
100
-20
125
VO 0
A,
VOL OPEN LOOP VOLTAGE GAIN (dB)
30
25
20
VCC = +15 V
VCC = -15 V
RL = 2.0 kW
AV = +1.0
THD ≤ 1.0%
TA = 25°C
5.0
10
100
1.0 k
10 k
100 k
10
15
20
Figure 15. Maximum Output Voltage
versus Supply Voltage
35
10
5.0
VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 14. Gain Bandwidth Product
versus Temperature
15
VO +
10
TA, AMBIENT TEMPERATURE (°C)
VO, OUTPUT VOLTAGE (Vpp )
10
VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 12. Power Supply Rejection
versus Frequency
0
5.0
1.0 M
110
100
90
80
10 M
RL = 2.0 kW
f ≤ 10 Hz
DVO = 2/3 (VCC -VEE)
TA = 25°C
0
f, FREQUENCY (Hz)
5.0
10
15
VCC |VEE| , SUPPLY VOLTAGE (V)
Figure 16. Output Voltage versus Frequency
Figure 17. Open Loop Voltage Gain
versus Supply Voltage
http://onsemi.com
6
20
110
50
105
| Z|,
Ω
O OUTPUT IMPEDANCE ()
VCC = +15 V
VEE = -15 V
RL = 2.0 kW
f ≤ 10 Hz
DVO = -10 V to +10 V
100
95
90
-55
-25
0
25
50
75
CS, CHANNEL SEPARATION (dB)
20
10
AV = 1000
125
AV = 10
100 k
Figure 19. Output Impedance
versus Frequency
Drive Channel
VCC = +15 V
VEE = -15 V
RL = 2.0 KW
DVOD = 20 Vpp
TA = 25°C
MC33078
140
MC33079
100 W
10 kW
-
120
VOM
+
100 W
100
10
100
DVOA
CS = 20 Log
1.0 k
f, FREQUENCY (Hz)
DVOM
10 k
VCC = +15 V
VEE = -15 V
VO = 1.0 Vrms
TA = 25°C
0.1
VO
+
2.0 kW
0.001
10
100 k
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Figure 21. Total Harmonic Distortion
versus Frequency
10
SR, SLEW RATE (V/μs)
AV = 100
RA
0.05
Vin
Vin = 2/3 (VCC -VEE)
TA = 25°C
9.0
AV = 1000
0.1
+
10 kW
VO
2.0 kW
AV = 10
AV = 1.0
0.005
-
0.01
1.0
0.01
10 M
1.0
Figure 20. Channel Separation
versus Frequency
VCC = +15 V
VEE = -15 V
0.5 f = 2.0 kHz
TA = 25°C
AV = 1.0
1.0 M
Figure 18. Open Loop Voltage Gain
versus Temperature
Measurement Channel
THD, TOTAL HARMONIC DISTORTION (%)
10 k
AV = 100
f, FREQUENCY (Hz)
150
110
30
TA, AMBIENT TEMPERATURE (°C)
160
130
100
VCC = +15 V
VEE = -15 V
VO = 0 V
TA = 25°C
40
0
1.0 k
THD, TOTAL HARMONIC DISTORTION (%)
A,
VOL OPEN LOOP VOLTAGE GAIN (dB)
MC33078, MC33079, NCV33078, NCV33079
Falling
8.0
7.0
Rising
6.0
5.0
4.0
-
3.0
DVin
2.0
+
VO
2.0
kW
1.0
0.001
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
VO, OUTPUT VOLTAGE (Vrms)
8.0
0
9.0
4
Figure 22. Total Harmonic Distortion
versus Output Voltage
6
8
10
14
12
16
VCC |VEE| , SUPPLY VOLTAGE (V)
18
Figure 23. Slew Rate versus Supply Voltage
http://onsemi.com
7
20
MC33078, MC33079, NCV33078, NCV33079
Falling
Rising
6.0
DVin
4.0
2.0
-55
-25
VO
+
2.0
kW
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
120
100
40
135
20
Phase
25°C
20
-55°C
30
8.0
125°C
125°C
6.0
40
50
4.0
VCC = +15 V
VEE = -15 V
VO = 0 V
0
e,
nV/ √ Hz
n INPUT REFERRED NOISE VOLTAGE ()
1
25°C
-55°C
60
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
10
DVin
125°C
VO
+
25°C
CL
-55°C
60
40
VCC = +15 V
VEE = -15 V
DVin = 100 mV
20
0
10
70
1000
100
100
1.0 k
10 k
CL, OUTPUT LOAD CAPACITANCE (pF)
CL, OUTPUT LOAD CAPACITANCE (pF)
Figure 26. Open Loop Gain Margin and
Phase Margin versus Load Capacitance
Figure 27. Overshoot versus Output
Load Capacitance
10
VCC = +15 V
VEE = -15 V
TA = 25°C
50
30
20
10
8.0
5.0
Voltage
3.0
2.0
Current
100
180
10 M
Gain
100
80
1.0
10
80
1.0 k
10 k
0.1
100 k
Vn, REFERRED NOISE VOLTAGE (nV/ √ Hz)
2.0
100
-
os, OVERSHOOT (%)
CL
10
10
φ m, PHASE MARGIN (DEGREES)
VO
+
2.0 kW
10
100
in, INPUT REFERRED NOISE CURRENT ( pA/ √ Hz )
A,
m OPEN LOOP GAIN MARGIN (dB)
12 Vin
90
Gain
Figure 25. Voltage Gain and Phase
versus Frequency
0
-
Phase
60
Figure 24. Slew Rate versus Temperature
14
45
80
0
1.0
125
0
VCC = +15 V
VEE = -15 V
RL = 2.0 kW
TA = 25°C
φ, EXCESS PHASE (DEGREES)
VCC = +15 V
VEE = -15 V
DVin = 20 V
8.0
SR, SLEW RATE (V/s)
μ
A,
VOL OPEN LOOP VOLTAGE GAIN (dB)
10
1000
100
VCC = +15 V
VEE = -15 V
f = 1.0 kHz
TA = 25°C
Vn(total) = Ǹ(inRs)2 ) en2 ) 4KTRS
10
1.0
10
100
1.0 k
10 k
100 k
1.0 M
f, FREQUENCY (Hz)
RS, SOURCE RESISTANCE (W)
Figure 28. Input Referred Noise Voltage and
Current versus Frequency
Figure 29. Total Input Referred Noise Voltage
versus Source Resistance
http://onsemi.com
8
MC33078, MC33079, NCV33078, NCV33079
14
Am, GAIN MARGIN (dB)
12
60
Gain
10
R1
8.0
R2
6.0
4.0
2.0
0
50
Phase
-
40
VO
+
φ m , PHASE MARGIN (DEGREES)
70
30
VCC = +15 V
VEE = -15 V
RT = R1 +R2
AV = +100
VO = 0 V
TA = 25°C
20
10
10
100
1.0 k
10 k
0
100 k
RT, DIFFERENTIAL SOURCE RESISTANCE (W)
V,
O OUTPUT VOLTAGE (5.0 V/DIV)
V,
O OUTPUT VOLTAGE (5.0 V/DIV)
Figure 30. Phase Margin and Gain Margin versus
Differential Source Resistance
VCC = +15 V
VEE = -15 V
AV = -1.0
RL = 2.0 kW
CL = 100 pF
TA = 25°C
t, TIME (2.0 ms/DIV)
t, TIME (2.0 ms/DIV)
Figure 32. Non−inverting Amplifier Slew Rate
e,
n INPUT NOISE VOLTAGE (100 nV/DIV)
Figure 31. Inverting Amplifier Slew Rate
V,
O OUTPUT VOLTAGE (5.0 V/DIV)
VCC = +15 V
VEE = -15 V
AV = +1.0
RL = 2.0 kW
CL = 100 pF
TA = 25°C
VCC = +15 V
VEE = -15 V
RL = 2.0 kW
CL = 100 pF
AV = +1.0
TA = 25°C
t, TIME (200 ms/DIV)
VCC = +15 V
VEE = -15 V
BW = 0.1 Hz to 10 Hz
TA = 25°C
t, TIME (1.0 sec/DIV)
Figure 33. Non−inverting Amplifier Overshoot
Figure 34. Low Frequency Noise Voltage
versus Time
http://onsemi.com
9
MC33078, MC33079, NCV33078, NCV33079
0.1 mF
10 W
100 kW
2.0 kW
+
D.U.T.
+
1/2
4.7 mF
4.3 kW
Scope
×1
Rin = 1.0 MW
MC33078
100 kW
Voltage Gain = 50,000
22 mF
2.2 mF
110 kW
24.3 kW
0.1 mF
Note: All capacitors are non−polarized.
Figure 35. Voltage Noise Test Circuit
(0.1 Hz to 10 Hzp−p)
ORDERING INFORMATION
Device
Package
MC33078DG
MC33078DR2G
98 Units / Rail
SOIC−8
(Pb−Free)
NCV33078DR2G*
MC33078P
Shipping†
2500 / Tape & Reel
PDIP−8
50 Units / Rail
MC33078PG
PDIP−8
(Pb−Free)
MC33079DG
SOIC−14
(Pb−Free)
55 Units / Rail
MC33079DR2G
NCV33079DR2G*
SOIC−14
(Pb−Free)
2500 / Tape & Reel
MC33079P
PDIP−14
MC33079PG
PDIP−14
(Pb−Free)
25 Units / Rail
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NCV devices are qualified for automotive use.
http://onsemi.com
10
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
PDIP−8
CASE 626−05
ISSUE P
DATE 22 APR 2015
SCALE 1:1
D
A
E
H
8
5
E1
1
4
NOTE 8
b2
c
B
END VIEW
TOP VIEW
WITH LEADS CONSTRAINED
NOTE 5
A2
A
e/2
NOTE 3
L
SEATING
PLANE
A1
C
D1
M
e
8X
SIDE VIEW
b
0.010
eB
END VIEW
M
C A
M
B
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS).
DIM
A
A1
A2
b
b2
C
D
D1
E
E1
e
eB
L
M
INCHES
MIN
MAX
−−−−
0.210
0.015
−−−−
0.115 0.195
0.014 0.022
0.060 TYP
0.008 0.014
0.355 0.400
0.005
−−−−
0.300 0.325
0.240 0.280
0.100 BSC
−−−−
0.430
0.115 0.150
−−−−
10 °
MILLIMETERS
MIN
MAX
−−−
5.33
0.38
−−−
2.92
4.95
0.35
0.56
1.52 TYP
0.20
0.36
9.02
10.16
0.13
−−−
7.62
8.26
6.10
7.11
2.54 BSC
−−−
10.92
2.92
3.81
−−−
10 °
NOTE 6
GENERIC
MARKING DIAGRAM*
STYLE 1:
PIN 1. AC IN
2. DC + IN
3. DC − IN
4. AC IN
5. GROUND
6. OUTPUT
7. AUXILIARY
8. VCC
XXXXXXXXX
AWL
YYWWG
XXXX
A
WL
YY
WW
G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42420B
PDIP−8
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
PDIP−14
CASE 646−06
ISSUE S
1
SCALE 1:1
D
A
14
8
E
H
E1
1
NOTE 8
7
b2
c
B
TOP VIEW
END VIEW
WITH LEADS CONSTRAINED
NOTE 5
A2
A
NOTE 3
L
SEATING
PLANE
A1
C
D1
e
M
eB
END VIEW
14X b
SIDE VIEW
0.010
M
C A
M
B
M
NOTE 6
DATE 22 APR 2015
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS).
DIM
A
A1
A2
b
b2
C
D
D1
E
E1
e
eB
L
M
INCHES
MIN
MAX
−−−−
0.210
0.015
−−−−
0.115 0.195
0.014 0.022
0.060 TYP
0.008 0.014
0.735 0.775
0.005
−−−−
0.300 0.325
0.240 0.280
0.100 BSC
−−−−
0.430
0.115 0.150
−−−−
10 °
MILLIMETERS
MIN
MAX
−−−
5.33
0.38
−−−
2.92
4.95
0.35
0.56
1.52 TYP
0.20
0.36
18.67 19.69
0.13
−−−
7.62
8.26
6.10
7.11
2.54 BSC
−−−
10.92
2.92
3.81
−−−
10 °
GENERIC
MARKING DIAGRAM*
14
XXXXXXXXXXXX
XXXXXXXXXXXX
AWLYYWWG
STYLES ON PAGE 2
1
XXXXX
A
WL
YY
WW
G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42428B
PDIP−14
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 2
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
PDIP−14
CASE 646−06
ISSUE S
DATE 22 APR 2015
STYLE 1:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
4. NO
CONNECTION
5. EMITTER
6. BASE
7. COLLECTOR
8. COLLECTOR
9. BASE
10. EMITTER
11. NO
CONNECTION
12. EMITTER
13. BASE
14. COLLECTOR
STYLE 2:
CANCELLED
STYLE 3:
CANCELLED
STYLE 4:
PIN 1. DRAIN
2. SOURCE
3. GATE
4. NO
CONNECTION
5. GATE
6. SOURCE
7. DRAIN
8. DRAIN
9. SOURCE
10. GATE
11. NO
CONNECTION
12. GATE
13. SOURCE
14. DRAIN
STYLE 5:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. NO CONNECTION
5. SOURCE
6. DRAIN
7. GATE
8. GATE
9. DRAIN
10. SOURCE
11. NO CONNECTION
12. SOURCE
13. DRAIN
14. GATE
STYLE 6:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 7:
PIN 1. NO CONNECTION
2. ANODE
3. ANODE
4. NO CONNECTION
5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON
CATHODE
STYLE 8:
PIN 1. NO CONNECTION
2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
8. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 9:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE
STYLE 10:
PIN 1. COMMON
CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON
CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 11:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
6. CATHODE
7. CATHODE
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE
STYLE 12:
PIN 1. COMMON CATHODE
2. COMMON ANODE
3. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. COMMON ANODE
7. COMMON CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
14. ANODE/CATHODE
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42428B
PDIP−14
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 2 OF 2
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AK
8
1
SCALE 1:1
−X−
DATE 16 FEB 2011
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
0.25 (0.010)
M
Y
M
1
4
−Y−
K
G
C
N
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
S
X
J
S
8
8
1
1
IC
4.0
0.155
XXXXX
A
L
Y
W
G
IC
(Pb−Free)
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
XXXXXX
AYWW
1
1
Discrete
XXXXXX
AYWW
G
Discrete
(Pb−Free)
XXXXXX = Specific Device Code
A
= Assembly Location
Y
= Year
WW
= Work Week
G
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
1.270
0.050
SCALE 6:1
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
8
8
XXXXX
ALYWX
G
XXXXX
ALYWX
1.52
0.060
0.6
0.024
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT*
7.0
0.275
DIM
A
B
C
D
G
H
J
K
M
N
S
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
STYLES ON PAGE 2
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42564B
SOIC−8 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
SOIC−8 NB
CASE 751−07
ISSUE AK
DATE 16 FEB 2011
STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. COLLECTOR
4. EMITTER
5. EMITTER
6. BASE
7. BASE
8. EMITTER
STYLE 2:
PIN 1. COLLECTOR, DIE, #1
2. COLLECTOR, #1
3. COLLECTOR, #2
4. COLLECTOR, #2
5. BASE, #2
6. EMITTER, #2
7. BASE, #1
8. EMITTER, #1
STYLE 3:
PIN 1. DRAIN, DIE #1
2. DRAIN, #1
3. DRAIN, #2
4. DRAIN, #2
5. GATE, #2
6. SOURCE, #2
7. GATE, #1
8. SOURCE, #1
STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
7. ANODE
8. COMMON CATHODE
STYLE 5:
PIN 1. DRAIN
2. DRAIN
3. DRAIN
4. DRAIN
5. GATE
6. GATE
7. SOURCE
8. SOURCE
STYLE 6:
PIN 1. SOURCE
2. DRAIN
3. DRAIN
4. SOURCE
5. SOURCE
6. GATE
7. GATE
8. SOURCE
STYLE 7:
PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd
STYLE 8:
PIN 1. COLLECTOR, DIE #1
2. BASE, #1
3. BASE, #2
4. COLLECTOR, #2
5. COLLECTOR, #2
6. EMITTER, #2
7. EMITTER, #1
8. COLLECTOR, #1
STYLE 9:
PIN 1. EMITTER, COMMON
2. COLLECTOR, DIE #1
3. COLLECTOR, DIE #2
4. EMITTER, COMMON
5. EMITTER, COMMON
6. BASE, DIE #2
7. BASE, DIE #1
8. EMITTER, COMMON
STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT
4. GROUND
5. GROUND
6. BIAS 2
7. INPUT
8. GROUND
STYLE 11:
PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1
STYLE 12:
PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 14:
PIN 1. N−SOURCE
2. N−GATE
3. P−SOURCE
4. P−GATE
5. P−DRAIN
6. P−DRAIN
7. N−DRAIN
8. N−DRAIN
STYLE 15:
PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON
STYLE 16:
PIN 1. EMITTER, DIE #1
2. BASE, DIE #1
3. EMITTER, DIE #2
4. BASE, DIE #2
5. COLLECTOR, DIE #2
6. COLLECTOR, DIE #2
7. COLLECTOR, DIE #1
8. COLLECTOR, DIE #1
STYLE 17:
PIN 1. VCC
2. V2OUT
3. V1OUT
4. TXE
5. RXE
6. VEE
7. GND
8. ACC
STYLE 18:
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE
STYLE 19:
PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1
STYLE 20:
PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3
4. CATHODE 4
5. CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6
STYLE 22:
PIN 1. I/O LINE 1
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND
STYLE 23:
PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT
STYLE 24:
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE
STYLE 25:
PIN 1. VIN
2. N/C
3. REXT
4. GND
5. IOUT
6. IOUT
7. IOUT
8. IOUT
STYLE 26:
PIN 1. GND
2. dv/dt
3. ENABLE
4. ILIMIT
5. SOURCE
6. SOURCE
7. SOURCE
8. VCC
STYLE 29:
PIN 1. BASE, DIE #1
2. EMITTER, #1
3. BASE, #2
4. EMITTER, #2
5. COLLECTOR, #2
6. COLLECTOR, #2
7. COLLECTOR, #1
8. COLLECTOR, #1
STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
3. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
6. SOURCE 1/DRAIN 2
7. SOURCE 1/DRAIN 2
8. GATE 1
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42564B
SOIC−8 NB
STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN
STYLE 28:
PIN 1. SW_TO_GND
2. DASIC_OFF
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 2 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−14 NB
CASE 751A−03
ISSUE L
14
1
SCALE 1:1
D
DATE 03 FEB 2016
A
B
14
8
A3
E
H
L
1
0.25
B
M
DETAIL A
7
13X
M
b
0.25
M
C A
S
B
S
0.10
X 45 _
M
A1
e
DETAIL A
h
A
C
SEATING
PLANE
DIM
A
A1
A3
b
D
E
e
H
h
L
M
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.19
0.25
0.35
0.49
8.55
8.75
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
INCHES
MIN
MAX
0.054 0.068
0.004 0.010
0.008 0.010
0.014 0.019
0.337 0.344
0.150 0.157
0.050 BSC
0.228 0.244
0.010 0.019
0.016 0.049
0_
7_
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT*
6.50
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER
SIDE.
14
14X
1.18
XXXXXXXXXG
AWLYWW
1
1
1.27
PITCH
XXXXX
A
WL
Y
WW
G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
14X
0.58
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
STYLES ON PAGE 2
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42565B
SOIC−14 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
SOIC−14
CASE 751A−03
ISSUE L
DATE 03 FEB 2016
STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 2:
CANCELLED
STYLE 3:
PIN 1. NO CONNECTION
2. ANODE
3. ANODE
4. NO CONNECTION
5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE
STYLE 4:
PIN 1. NO CONNECTION
2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
8. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 5:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 6:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
6. CATHODE
7. CATHODE
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE
STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
12. COMMON ANODE
13. ANODE/CATHODE
14. ANODE/CATHODE
STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42565B
SOIC−14 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 2 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative