0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC33502DG

MC33502DG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOIC8_150MIL

  • 描述:

    General Purpose Amplifier 2 Circuit Rail-to-Rail 8-SOIC

  • 数据手册
  • 价格&库存
MC33502DG 数据手册
MC33502 1.0 V, Rail−to−Rail, Dual Operational Amplifier The MC33502 operational amplifier provides rail−to−rail operation on both the input and output. The output can swing within 50 mV of each rail. This rail−to−rail operation enables the user to make full use of the entire supply voltage range available. It is designed to work at very low supply voltages (1.0 V and ground), yet can operate with a supply of up to 7.0 V and ground. Output current boosting techniques provide high output current capability while keeping the drain current of the amplifier to a minimum. http://onsemi.com MARKING DIAGRAMS 8 Features • Low Voltage, Single Supply Operation • • • • • • • • • • • • (1.0 V and Ground to 7.0 V and Ground) High Input Impedance: Typically 40 fA Input Current Typical Unity Gain Bandwidth @ 5.0 V = 5.0 MHz, @ 1.0 V = 4.0 MHz High Output Current (ISC = 40 mA @ 5.0 V, 13 mA @ 1.0 V) Output Voltage Swings within 50 mV of Both Rails @ 1.0 V Input Voltage Range Includes Both Supply Rails High Voltage Gain: 100 dB Typical @ 1.0 V No Phase Reversal on the Output for Over−Driven Input Signals Input Offset Trimmed to 0.5 mV Typical Low Supply Current (ID = 1.2 mA/per Amplifier, Typical) 600 W Drive Capability Extended Operating Temperature Range (−40 to 105°C) Pb−Free Packages are Available 8 1 8 SOIC−8 D SUFFIX CASE 751 8 1 33502 ALYW G 1 A L, WL Y, YY W, WW G or G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package PIN CONNECTIONS Output 1 1 Inputs 1 Single Cell NiCd/Ni MH Powered Systems Interface to DSP Portable Communication Devices Low Voltage Active Filters Telephone Circuits Instrumentation Amplifiers Audio Applications Power Supply Monitor and Control Compatible with VCX Logic MC33502P AWL YYWWG 1 8 VCC 2 Applications • • • • • • • • • PDIP−8 P SUFFIX CASE 626 3 7 Output 2 1 2 VEE 4 6 5 Inputs 2 (Dual, Top View) ORDERING INFORMATION Device Package Shipping PDIP−8 50 Units/Rail PDIP−8 (Pb−Free) 50 Units/Rail SOIC−8 98 Units/Rail MC33502DG SOIC−8 (Pb−Free) 98 Units/Rail MC33502DR2 SOIC−8 2500 Tape & Reel SOIC−8 (Pb−Free) 2500 Tape & Reel MC33502P MC33502PG MC33502D MC33502DR2G †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2006 July, 2006 − Rev. 8 1 Publication Order Number: MC33502/D MC33502 Base Current Boost Input Stage Inputs Offset Voltage Trim Buffer with 0 V Level Shift Saturation Detector Output Stage Outputs Base Current Boost This device contains 98 active transistors per amplifier. Figure 1. Simplified Block Diagram MAXIMUM RATINGS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Rating Symbol Value Unit VS 7.0 V ESD Protection Voltage at any Pin Human Body Model VESD 2000 V Voltage at Any Device Pin VDP VS ±0.3 V Input Differential Voltage Range VIDR VCC to VEE V Common Mode Input Voltage Range VCM VCC to VEE V tS Note 1 s Supply Voltage (VCC to VEE) Output Short Circuit Duration Maximum Junction Temperature TJ 150 °C Storage Temperature Range Tstg −65 to 150 °C Maximum Power Dissipation PD Note 1 mW Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. 2. ESD data available upon request. http://onsemi.com 2 MC33502 DC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Symbol Characteristic Input Offset Voltage (VCM = 0 to VCC) VCC = 1.0 V TA = 25°C TA = −40° to 105°C VCC = 3.0 V TA = 25°C TA = −40° to 105°C VCC = 5.0 V TA = 25°C TA = −40° to 105°C Min Typ Max VIO Unit mV −5.0 −7.0 0.5 − 5.0 7.0 −5.0 −7.0 0.5 − 5.0 7.0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ −5.0 −7.0 0.5 − 5.0 7.0 DVIO/DT − 8.0 − mV/°C I IIB I − 0.00004 10 nA Common Mode Input Voltage Range VICR VEE − VCC Large Signal Voltage Gain VCC = 1.0 V (TA = 25°C) RL = 10 kW RL = 1.0 kW VCC = 3.0 V (TA = 25°C) RL = 10 kW RL = 1.0 kW VCC = 5.0 V (TA = 25°C) RL = 10 kW RL = 1.0 kW AVOL Output Voltage Swing, High (VID = ±0.2 V) VCC = 1.0 V (TA = 25°C) RL = 10 kW RL = 600 W VCC = 1.0 V (TA = −40° to 105°C) RL = 10 kW RL = 600 W VCC = 3.0 V (TA = 25°C) RL = 10 kW RL = 600 W VCC = 3.0 V (TA = −40° to 105°C) RL = 10 kW RL = 600 W VCC = 5.0 V (TA = 25°C) RL = 10 kW RL = 600 W VCC = 5.0 V (TA = −40° to 105°C) RL = 10 kW RL = 600 W VOH Input Offset Voltage Temperature Coefficient (RS = 50 W) TA = −40° to 105°C Input Bias Current (VCC = 1.0 to 5.0 V) V kV/V 25 5.0 100 50 − − 50 25 500 100 − − 50 25 500 200 − − ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ http://onsemi.com 3 V 0.9 0.85 0.95 0.88 − − 0.85 0.8 − − − − 2.9 2.8 2.93 2.84 − − 2.85 2.75 − − − − 4.9 4.75 4.92 4.81 − − 4.85 4.7 − − − − MC33502 DC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Characteristic Symbol Output Voltage Swing, Low (VID = ±0.2 V) VCC = 1.0 V (TA = 25°C) RL = 10 kW RL = 600 W VCC = 1.0 V (TA = −40° to 105°C) RL = 10 kW RL = 600 W VCC = 3.0 V (TA = 25°C) RL = 10 kW RL = 600 W VCC = 3.0 V (TA = −40° to 105°C) RL = 10 kW RL = 600 W VCC = 5.0 V (TA = 25°C) RL = 10 kW RL = 600 W VCC = 5.0 V (TA = −40° to 105°C) RL = 10 kW RL = 600 W VOL Common Mode Rejection (Vin = 0 to 5.0 V) Power Supply Rejection VCC/VEE = 5.0 V/Ground to 3.0 V/Ground Min Typ Max Unit V 0.05 0.1 0.02 0.05 − − 0.1 0.15 − − − − 0.05 0.1 0.02 0.08 − − 0.1 0.15 − − − − 0.05 0.15 0.02 0.1 − − 0.1 0.2 − − − − CMR 60 75 − dB PSR 60 75 − dB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Output Short Circuit Current (Vin Diff = ±1.0 V) VCC = 1.0 V Source Sink VCC = 3.0 V Source Sink VCC = 5.0 V Source Sink ISC Power Supply Current (Per Amplifier, VO = 0 V) VCC = 1.0 V VCC = 3.0 V VCC = 5.0 V VCC = 1.0 V (TA = −40 to 105°C) VCC = 3.0 V (TA = −40 to 105°C) VCC = 5.0 V (TA = −40 to 105°C) ID mA 6.0 10 13 13 26 26 15 40 32 64 60 140 20 40 40 70 140 140 − − − − − − 1.2 1.5 1.65 − − − 1.75 2.0 2.25 2.0 2.25 2.5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ http://onsemi.com 4 mA MC33502 AC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Symbol Characteristic Slew Rate (VS = ±2.5 V, VO = −2.0 to 2.0 V, RL = 2.0 kW, AV = 1.0) Positive Slope Negative Slope Min Typ Max 2.0 2.0 3.0 3.0 6.0 6.0 3.0 3.5 4.0 4.0 4.5 5.0 6.0 7.0 8.0 SR Gain Bandwidth Product (f = 100 kHz) VCC = 0.5 V, VEE = −0.5 V VCC = 1.5 V, VEE = −1.5 V VCC = 2.5 V, VEE = −2.5 V Unit V/ms GBW MHz ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Gain Margin (RL =10 kW, CL = 0 pF) Am − 6.5 − dB Phase Margin (RL = 10 kW, CL = 0 pF) φm − 60 − Deg Channel Separation (f = 1.0 Hz to 20 kHz, RL = 600 W) CS − 120 − dB Power Bandwidth (VO = 4.0 Vpp, RL = 1.0 kW, THD ≤1.0%) BWP − 200 − kHz Total Harmonic Distortion (VO = 4.5 Vpp, RL = 600 W, AV = 1.0) f = 1.0 kHz f = 10 kHz THD − − 0.004 0.01 − − % Differential Input Resistance (VCM = 0 V) Rin − >1.0 − terraW Differential Input Capacitance (VCM = 0 V) Cin − 2.0 − pF Equivalent Input Noise Voltage (VCC = 1.0 V, VCM = 0 V, VEE = Gnd, RS = 100 W) f = 1.0 kHz en nV/√Hz − 30 − VCC IN− IN+ Offset Voltage Trim VCC VCC VCC Output Voltage Saturation Detector Body Bias Figure 2. Representative Block Diagram http://onsemi.com 5 Clamp Out MC33502 Output Stage General Information The MC33502 dual operational amplifier is unique in its ability to provide 1.0 V rail−to−rail performance on both the input and output by using a SMARTMOSt process. The amplifier output swings within 50 mV of both rails and is able to provide 50 mA of output drive current with a 5.0 V supply, and 10 mA with a 1.0 V supply. A 5.0 MHz bandwidth and a slew rate of 3.0 V/ms is achieved with high speed depletion mode NMOS (DNMOS) and vertical PNP transistors. This device is characterized over a temperature range of −40°C to 105°C. An additional feature of this device is an “on demand” base current cancellation amplifier. This feature provides base drive to the output power devices by making use of a buffer amplifier to perform a voltage−to−current conversion. This is done in direct proportion to the load conditions. This “on demand” feature allows these amplifiers to consume only a few micro−amps of current when the output stage is in its quiescent mode. Yet it provides high output current when required by the load. The rail−to−rail output stage current boost circuit provides 50 mA of output current with a 5.0 V supply (For a 1.0 V supply output stage will do 10 mA) enabling the operational amplifier to drive a 600 W load. A buffer is necessary to isolate the load current effects in the output stage from the input stage. Because of the low voltage conditions, a DNMOS follower is used to provide an essentially zero voltage level shift. This buffer isolates any load current changes on the output stage from loading the input stage. A high speed vertical PNP transistor provides excellent frequency performance while sourcing current. The operational amplifier is also internally compensated to provide a phase margin of 60 degrees. It has a unity gain of 5.0 MHz with a 5.0 V supply and 4.0 MHz with a 1.0 V supply. Circuit Information Input Stage One volt rail−to−rail performance is achieved in the MC33502 at the input by using a single pair of depletion mode NMOS devices (DNMOS) to form a differential amplifier with a very low input current of 40 fA. The normal input common mode range of a DNMOS device, with an ion implanted negative threshold, includes ground and relies on the body effect to dynamically shift the threshold to a positive value as the gates are moved from ground towards the positive supply. Because the device is manufactured in a p−well process, the body effect coefficient is sufficiently large to ensure that the input stage will remain substantially saturated when the inputs are at the positive rail. This also applies at very low supply voltages. The 1.0 V rail−to−rail input stage consists of a DNMOS differential amplifier, a folded cascode, and a low voltage balanced mirror. The low voltage cascoded balanced mirror provides high 1st stage gain and base current cancellation without sacrificing signal integrity. Also, the input offset voltage is trimmed to less than 1.0 mV because of the limited available supply voltage. The body voltage of the input DNMOS differential pair is internally trimmed to minimize the input offset voltage. A common mode feedback path is also employed to enable the offset voltage to track over the input common mode voltage. The total operational amplifier quiescent current drop is 1.3 mA/amp. Low Voltage Operation The MC33502 will operate at supply voltages from 0.9 to 7.0 V and ground. When using the MC33502 at supply voltages of less than 1.2 V, input offset voltage may increase slightly as the input signal swings within approximately 50 mV of the positive supply rail. This effect occurs only for supply voltages below 1.2 V, due to the input depletion mode MOSFETs starting to transition between the saturated to linear region, and should be considered when designing high side dc sensing applications operating at the positive supply rail. Since the device is rail−to−rail on both input and output, high dynamic range single battery cell applications are now possible. http://onsemi.com 6 MC33502 0 0 TA = −55°C 400 600 600 VCC = 5.0 V VEE = 0 V RL to VCC/2 400 200 1.0 k 10 k VEE 100 k 1.0 M Source Saturation −1.0 0.5 0 0 4.0 TA = 125°C TA = −55°C 8.0 VEE 12 16 20 24 IO, OUTPUT CURRENT (mA) Figure 4. Drive Output Source/Sink Saturation Voltage versus Load Current Figure 3. Output Saturation versus Load Resistance 1000 100 0 100 Gain 80 Phase AVOL, GAIN (dB) 10 1.0 0.1 0.01 0.001 25 50 75 100 Phase Margin = 60° 90 40 135 VCC = 2.5 V VEE = −2.5 V RL = 10 k 0 1.0 125 45 60 20 10 100 180 1.0 k 10 k 100 k 1.0 M 10 M TA, AMBIENT TEMPERATURE (°C) f, FREQUENCY (Hz) Figure 5. Input Current versus Temperature Figure 6. Gain and Phase versus Frequency 1.0 V/DIV (mV) VCC = 0.5 V VEE = −0.5 V ACL = 1.0 CL = 10 pF RL = 10 k TA = 25°C 20 mV/DIV IIB, INPUT CURRENT (pA) TA = 25°C VCC − VEE = 5.0 V RL, LOAD RESISTANCE (W) 0 TA = 25°C Sink Saturation 1.0 10 M TA = 125°C VCC = 2.5 V VEE = −2.5 V ACL = 1.0 CL = 10 pF RL = 600 W TA = 25°C t, TIME (500 ms/DIV) t, TIME (1.0 ms/DIV) Figure 7. Transient Response Figure 8. Slew Rate http://onsemi.com 7 φ m, EXCESS PHASE (DEGREES) 0 100 VCC −0.5 VCC Vsat, OUTPUT SATURATION VOLTAGE (V) Vsat, OUTPUT SATURATION VOLTAGE (mV) 200 120 1600 1400 ΔAVOL , OPEN LOOP GAIN (dB) PDmax, MAXIMUM POWER DISSIPATION (mW) MC33502 1200 SO−8 Pkg 1000 DIP Pkg 800 600 400 200 0 −55 −25 0 25 50 75 100 110 100 90 80 70 60 VCC = 2.5 V VEE = −2.5 V RL = 600 W 50 40 30 20 −55 125 −25 TA, AMBIENT TEMPERATURE (°C) Figure 9. Maximum Power Dissipation versus Temperature CMR, COMMON MODE REJECTION (dB) VO, OUTPUT VOLTAGE (Vpp) 6.0 5.0 4.0 1.0 0 10 VCC = 2.5 V VEE = −2.5 V AV = 1.0 RL = 600 W TA = 25°C 100 1.0 k 10 k 100 k 40 VCC = 2.5 V VEE = −2.5 V TA = 25°C 20 100 IISCI, OUTPUT SHORT CIRCUIT CURRENT (mA) PSR, POWER SUPPLY REJECTION (dB) 80 VCC = 0.5 V VEE = −0.5 V Either VCC or VEE TA = 25°C 0 100 1.0 k 10 k 100 k 1.0 M Figure 12. Common Mode Rejection versus Frequency VCC = 2.5 V VEE = −2.5 V 100 1.0 k f, FREQUENCY (Hz) 120 10 125 60 0 10 1.0 M 140 20 100 80 Figure 11. Output Voltage versus Frequency 40 75 100 f, FREQUENCY (Hz) 60 50 120 7.0 2.0 25 Figure 10. Open Loop Voltage Gain versus Temperature 8.0 3.0 0 TA, AMBIENT TEMPERATURE (°C) 10 k 100 k 100 VCC = 2.5 V VEE = −2.5 V TA = 25°C 80 Sink 60 40 Source 20 0 0 f, FREQUENCY (Hz) 0.5 1.0 1.5 2.0 |VS| − |VO| (V) Figure 13. Power Supply Rejection versus Frequency Figure 14. Output Short Circuit Current versus Output Voltage http://onsemi.com 8 2.5 ICC, SUPPLY CURRENT PER AMPLIFIER (mA) IISCI, OUTPUT SHORT CIRCUIT CURRENT (mA) MC33502 100 Sink 80 60 VCC = 2.5 V VEE = −2.5 V 40 20 Source 0 −55 −25 0 25 50 75 100 2.5 2.0 1.5 TA = 125°C 1.0 TA = 25°C 0.5 0 125 0 ±0.5 Figure 15. Output Short Circuit Current versus Temperature ±2.5 PERCENTAGE OF AMPLIFIERS (%) 50 VCC = 3.0 V VO = 1.5 V VEE = 0 V 60 Amplifiers Tested from 2 Wafer Lots 40 30 20 10 0 −50 −40 −30 −20 −10 0 10 20 30 40 40 30 VCC = 3.0 V VO = 1.5 V VEE = 0 V TA = 25°C 60 Amplifiers Tested from 2 Wafer Lots 20 10 0 −5.0 −4.0 −3.0 −2.0 50 Figure 17. Input Offset Voltage Temperature Coefficient Distribution THD, TOTAL HARMONIC DISTORTION (%) AV = 1000 AV = 100 AV = 10 0.1 AV = 1.0 0.01 Vout = 0.5 Vpp RL = 600 W 10 100 VCC − VEE = 1.0 V 1.0 k 10 k 0 1.0 2.0 3.0 4.0 5.0 Figure 18. Input Offset Voltage Distribution 10 1.0 −1.0 INPUT OFFSET VOLTAGE (mV) TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (mV/°C) THD, TOTAL HARMONIC DISTORTION (%) ±2.0 Figure 16. Supply Current per Amplifier versus Supply Voltage with No Load 50 0.001 ±1.5 VCC, |VEE|, SUPPLY VOLTAGE (V) TA, AMBIENT TEMPERATURE (°C) PERCENTAGE OF AMPLIFIERS (%) ±1.0 TA = −55°C 100 k 10 Vout = 4.0 Vpp RL = 600 W 1.0 AV = 1000 AV = 100 0.1 AV = 10 0.01 AV = 1.0 0.001 10 100 VCC − VEE = 5.0 V 1.0 k 10 k f, FREQUENCY (Hz) f, FREQUENCY (Hz) Figure 19. Total Harmonic Distortion versus Frequency with 1.0 V Supply Figure 20. Total Harmonic Distortion versus Frequency with 5.0 V Supply http://onsemi.com 9 100 k MC33502 3.0 VCC − VEE = 5.0 V − Slew Rate 2.0 VCC − VEE = 1.0 V − Slew Rate 1.0 0 −55 −25 0 25 50 75 100 3.0 2.0 VCC − VEE = 5.0 V f = 100 kHz 1.0 0 −55 −25 100 125 100 Φm, PHASE MARGIN (°) VCC − VEE = 5.0 V VCC − VEE = 1.0 V VCC − VEE = 5.0 V VCC − VEE = 1.0 V RL = 600 W CL = 0 TA = 25°C 100 k 1.0 M 80 100 VCC − VEE = 5.0 V RL = 600 W CL = 100 pF 60 Phase Margin 40 40 20 0 −55 10 M −25 0 0 125 100 50 VCC − VEE = 5.0 V RL = 600 W CL = 100 pF TA = 25°C 40 30 20 20 Gain Margin VCC − VEE = 5.0 V RL = 600 W TA = 25°C Phase Margin 50 50 40 40 30 30 20 20 Gain Margin 10 10 10 0 3.0 0 1.0 M 100 k 60 AV GAIN MARGIN (dB) Φm, PHASE MARGIN (°) Phase Margin 10 k 75 60 60 60 1.0 k 50 Figure 24. Gain and Phase Margin versus Temperature 70 100 25 TA, AMBIENT TEMPERATURE (°C) 70 10 20 Gain Margin Figure 23. Voltage Gain and Phase versus Frequency 50 80 60 f, FREQUENCY (Hz) Φm, PHASE MARGIN (°) 75 Figure 22. Gain Bandwidth Product versus Temperature −40 10 k 0 10 50 Figure 21. Slew Rate versus Temperature 0 30 25 TA, AMBIENT TEMPERATURE (°C) 20 40 0 TA, AMBIENT TEMPERATURE (°C) 40 AVOL, GAIN (dB) 4.0 125 60 −20 5.0 AV , GAIN MARGIN (dB) VCC − VEE = 5.0 V + Slew Rate 10 30 100 300 1000 0 3000 CL, CAPACITIVE LOAD (pF) RT, DIFFERENTIAL SOURCE RESISTANCE (W) Figure 25. Gain and Phase Margin versus Differential Source Resistance Figure 26. Feedback Loop Gain and Phase versus Capacitive Load http://onsemi.com 10 AV , GAIN MARGIN (dB) SR, SLEW RATE (V/ μs) VCC − VEE = 1.0 V + Slew Rate GBW, GAIN BANDWIDTH PRODUCT (MHz) 4.0 MC33502 8.0 120 80 60 40 20 VCC − VEE = 5.0 V RL = 600 W VO = 4.0 Vpp TA = 25°C 100 300 10 k 30 k 100 k RL= 600 W TA = 25°C 6.0 4.0 2.0 0 300 k ±0.5 0 ±1.5 ±2.0 ±2.5 ±3.0 VCC, |VEE|, SUPPLY VOLTAGE (V) Figure 27. Channel Separation versus Frequency Figure 28. Output Voltage Swing versus Supply Voltage ±3.5 100 70 VCC − VEE = 5.0 V TA = 25°C 60 50 40 30 20 100 RL = 600 W CL = 0 TA = 25°C 80 80 Phase Margin 60 60 40 40 20 20 Gain Margin 10 0 10 100 10 k 1.0 k 0 100 k 0 1 0 2 f, FREQUENCY (Hz) 4 5 6 7 Figure 30. Gain and Phase Margin versus Supply Voltage 1.6 120 AVOL, OPEN LOOP GAIN (dB) AVOL ≥ 10 dB RL = 600 W 1.2 0.8 0.4 0 −55 3 VCC − VEE, SUPPLY VOLTAGE (V) Figure 29. Equivalent Input Noise Voltage versus Frequency VCC−VEE, USEABLE SUPPLY VOLTAGE (V) ±1.0 f, FREQUENCY (Hz) AV, GAIN MARGIN (dB) AV = 10 0 30 en, EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz) VO, OUTPUT VOLTAGE (Vpp) 100 Φm, PHASE MARGIN (°) CS, CHANNEL SEPARATION (dB) AV = 100 −25 0 25 50 75 100 100 80 60 40 0 125 RL = 600 W TA = 25°C 20 0 1.0 2.0 3.0 4.0 TA, AMBIENT TEMPERATURE (°C) VCC − VEE, SUPPLY VOLTAGE (V) Figure 31. Useable Supply Voltage versus Temperature Figure 32. Open Loop Gain versus Supply Voltage http://onsemi.com 11 5.0 6.0 MC33502 RT 470 k 1.0 V CT 1.0 nF 1.0 Vpp − fO 1.0 kHz + f + O R1a 470 k ƪ R C In T T VCC R2 470 k R1b 470 k 1 2 (R 1a ) R 1b R2 Figure 33. 1.0 V Oscillator Af Cf 400 pF Rf 100 k fL fH 0.5 V R2 10 k 1 f + [ 200 Hz L 2pR C 1 1 + VO − C1 80 nF 1 [ 4.0 kHz f + H 2pRC f f R1 10 k −0.5 V R A + 1 ) f + 11 f R2 Figure 34. 1.0 V Voiceband Filter http://onsemi.com 12 ) ƫ MC33502 5.0 V Vref 15 V 15 13 2 16 4 3 1 FB 11 Output A 14 Output B MC34025 22 k 5 4.7 4.7 8 12 6 0.1 10 470 pF 7 9 From Current Sense 100 k 1.0 k + MC33502 − 3320 Provides current sense amplification and eliminates leading edge spike. 1.0 k Figure 35. Power Supply Application IO 1.0 V VO Rsense R3 1.0 k IO IL 435 mA 463 mA 212 mA 492 mA DIO/DIL R4 R1 1.0 k + − SMARTMOS is a trademark of Motorola, Inc. 1.0 k −120 x 10−6 R5 VL 2.4 k RL 75 IL For best performance, use low tolerance resistors. R2 3.3 k Figure 36. 1.0 V Current Pump SMARTMOS is a trademark of Motorola, Inc. http://onsemi.com 13 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS PDIP−8 CASE 626−05 ISSUE P DATE 22 APR 2015 SCALE 1:1 D A E H 8 5 E1 1 4 NOTE 8 b2 c B END VIEW TOP VIEW WITH LEADS CONSTRAINED NOTE 5 A2 A e/2 NOTE 3 L SEATING PLANE A1 C D1 M e 8X SIDE VIEW b 0.010 eB END VIEW M C A M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3. 4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. 5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C. 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. 7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. 8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS). DIM A A1 A2 b b2 C D D1 E E1 e eB L M INCHES MIN MAX −−−− 0.210 0.015 −−−− 0.115 0.195 0.014 0.022 0.060 TYP 0.008 0.014 0.355 0.400 0.005 −−−− 0.300 0.325 0.240 0.280 0.100 BSC −−−− 0.430 0.115 0.150 −−−− 10 ° MILLIMETERS MIN MAX −−− 5.33 0.38 −−− 2.92 4.95 0.35 0.56 1.52 TYP 0.20 0.36 9.02 10.16 0.13 −−− 7.62 8.26 6.10 7.11 2.54 BSC −−− 10.92 2.92 3.81 −−− 10 ° NOTE 6 GENERIC MARKING DIAGRAM* STYLE 1: PIN 1. AC IN 2. DC + IN 3. DC − IN 4. AC IN 5. GROUND 6. OUTPUT 7. AUXILIARY 8. VCC XXXXXXXXX AWL YYWWG XXXX A WL YY WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DOCUMENT NUMBER: DESCRIPTION: 98ASB42420B PDIP−8 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK 8 1 SCALE 1:1 −X− DATE 16 FEB 2011 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N X 45 _ SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X J S 8 8 1 1 IC 4.0 0.155 XXXXX A L Y W G IC (Pb−Free) = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package XXXXXX AYWW 1 1 Discrete XXXXXX AYWW G Discrete (Pb−Free) XXXXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 1.270 0.050 SCALE 6:1 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 8 8 XXXXX ALYWX G XXXXX ALYWX 1.52 0.060 0.6 0.024 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 7.0 0.275 DIM A B C D G H J K M N S mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−8 NB CASE 751−07 ISSUE AK DATE 16 FEB 2011 STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 14: PIN 1. N−SOURCE 2. N−GATE 3. P−SOURCE 4. P−GATE 5. P−DRAIN 6. P−DRAIN 7. N−DRAIN 8. N−DRAIN STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC33502DG 价格&库存

很抱歉,暂时无法提供与“MC33502DG”相匹配的价格&库存,您可以联系我们找货

免费人工找货