DATA SHEET
www.onsemi.com
Undervoltage Sensing
Circuit
1
SOIC−8
D SUFFIX
CASE 751
1
Micro8
DM SUFFIX
CASE 846A
1
TSOP−5
SN SUFFIX
CASE 483
8
MC34064, MC33064,
NCV33064
8
The MC34064 is an undervoltage sensing circuit specifically
designed for use as a reset controller in microprocessor−based
systems. It offers the designer an economical solution for low voltage
detection with a single external resistor. The MC34064 features a
trimmed−in−package bandgap reference, and a comparator with
precise thresholds and built-in hysteresis to prevent erratic reset
operation. The open collector reset output is capable of sinking in
excess of 10 mA, and operation is guaranteed down to 1.0 V input with
low standby current. The MC devices are packaged in 3−pin TO-92,
micro size TSOP−5, 8−pin SOIC−8 and Micro8 surface mount
packages. The NCV device is packaged in SOIC−8 and TO−92.
Applications include direct monitoring of the 5.0 V MPU/logic
power supply used in appliance, automotive, consumer and industrial
equipment.
5
Pin 1.
2.
3.
4.
5.
Ground
Input
Reset
NC
NC
TO−92
CASE 29−10
Features
•
•
•
•
•
•
•
•
•
•
•
Trimmed−In−Package Temperature Compensated Reference
Comparator Threshold of 4.6 V at 25°C
Precise Comparator Thresholds Guaranteed Over Temperature
Comparator Hysteresis Prevents Erratic Reset
Reset Output Capable of Sinking in Excess of 10 mA
Internal Clamp Diode for Discharging Delay Capacitor
Guaranteed Reset Operation with 1.0 V Input
Low Standby Current
Economical TO−92, TSOP−5, SOIC−8 and Micro8 Surface Mount
Packages
NCV Prefix for Automotive and Other Applications Requiring Site
and Control Changes
These Devices are Pb−Free and are RoHS Compliant
1
12
3
STRAIGHT LEAD
2
3
BENT LEAD
Pin: 1. Reset
2. Input
3. Ground
PIN CONNECTIONS
Reset 1
8 N.C.
Input 2
7 N.C.
N.C. 3
6 N.C.
Ground 4
5 N.C.
(Top View)
ORDERING INFORMATION
See detailed ordering and shipping information on page 6 of
this data sheet.
Input
Reset
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 7 of this data sheet.
1.2 Vref
GND
= Sink Only
Positive True Logic
This device contains 21 active transistors.
Figure 1. Representative Block Diagram
© Semiconductor Components Industries, LLC, 2016
April, 2022 − Rev. 21
1
Publication Order Number:
MC34064/D
MC34064, MC33064, NCV33064
MAXIMUM RATINGS
Symbol
Value
Unit
Power Input Supply Voltage
Rating
Vin
−1.0 to 10
V
Reset Output Voltage
VO
10
V
Reset Output Sink Current (Note 2)
ISink
Internally
Limited
mA
IF
100
mA
PD
RqJA
625
200
mW
°C/W
PD
RqJA
625
200
mW
°C/W
PD
RqJA
520
240
mW
°C/W
Operating Junction Temperature
TJ
+150
°C
Operating Ambient Temperature
MC34064
MC33064
NCV33064
TA
Storage Temperature Range
Tstg
Clamp Diode Forward Current, Reset to Input Pin (Note 2)
Power Dissipation and Thermal Characteristics
P Suffix, Plastic Package
Maximum Power Dissipation @ TA = 25°C
Thermal Resistance, Junction−to−Air
D Suffix, Plastic Package
Maximum Power Dissipation @ TA = 25°C
Thermal Resistance, Junction−to−Air
DM Suffix, Plastic Package
Maximum Power Dissipation @ TA = 25°C
Thermal Resistance, Junction−to−Air
0 to +70
−40 to +85
−40 to +125
−65 to +150
°C
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. ESD data available upon request.
ELECTRICAL CHARACTERISTICS (For typical values TA = 25°C, for min/max values TA is the operating ambient temperature range
that applies [Notes 3 and 4] unless otherwise noted.)
Characteristics
Symbol
Min
Typ
Max
VIH
VIL
VH
4.5
4.5
0.01
4.61
4.59
0.02
4.7
4.7
0.05
−
−
−
0.46
0.15
−
1.0
0.4
0.1
Unit
COMPARATOR
Threshold Voltage
High State Output (Vin Increasing)
Low State Output (Vin Decreasing)
Hysteresis
V
RESET OUTPUT
Output Sink Saturation
(Vin = 4.0 V, ISink = 8.0 mA)
(Vin = 4.0 V, ISink = 2.0 mA)
(Vin = 1.0 V, ISink = 0.1 mA)
VOL
V
Output Sink Current (Vin, Reset = 4.0 V)
ISink
10
27
60
mA
Output Off-State Leakage (Vin, Reset = 5.0 V)
IOH
−
0.02
0.5
mA
Clamp Diode Forward Voltage, Reset to Input Pin (IF = 10 mA)
VF
0.6
0.9
1.2
V
Operating Input Voltage Range
Vin
1.0 to 6.5
−
−
V
Quiescent Input Current (Vin = 5.0 V)
Iin
−
390
500
mA
TOTAL DEVICE
2. Maximum package power dissipation limits must be observed.
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
Thigh = +70°C for MC34064
4. Tlow = 0°C for MC34064
−40°C for MC33064
+85°C for MC33064
−40°C for NCV33064
+125°C for NCV33064
5. NCV prefix is for automotive and other applications requiring site and change control.
www.onsemi.com
2
MC34064, MC33064, NCV33064
10
5.0
8.0
VO , OUTPUT VOLTAGE (V)
VO , OUTPUT VOLTAGE (V)
RL = 10 k to Vin
TA = 25°C
6.0
4.0
2.0
0
0
2.0
4.0
6.0
Vin, INPUT VOLTAGE (V)
8.0
RL = 10 k to Vin
TA = 25°C
4.0
3.0
2.0
1.0
0
10
4.560
Figure 2. Reset Output Voltage versus
Input Voltage
4.600
Vin, INPUT VOLTAGE (V)
4.620
4.640
Figure 3. Reset Output Voltage versus
Input Voltage
1.0
4.630
RL = 10 k to Vin
4.620
Upper Threshold
High State Output
I in , INPUT CURRENT (mA)
V th, THRESHOLD VOLTAGE (V)
4.580
4.610
4.600
4.590
Lower Threshold
Low State Output
4.580
4.570
-55
-25
0
25
50
75
100
TA = +25°C
0.8
-40°C
0.6
+85°C
0.4
TA = +25°C
+85°C
0.2
0
125
-40°C
0
2.0
4.0
6.0
8.0
TA, AMBIENT TEMPERATURE (°C)
Vin, INPUT VOLTAGE (V)
Figure 4. Comparator Threshold Voltage
versus Temperature
Figure 5. Input Current versus Input Voltage
2.0
Reset
V OL, OUTPUT SATURATION (V)
Vin = 4.0 V
TA = 25°C
Vin = 5.0 V to 4.0 V
RL = 10 k
TA = 25°C
90%
1.5
TA = 85°C
Vin
TA = -40°C
5.0 V -
1.0
4.0 V Vin
10k
5.0V
4.0V
0.5
Reset
10%
0
REF
0
10
20
30
ISink, SINK CURRENT (mA)
40
200 ns/DIV
Figure 6. Reset Output Saturation versus
Sink Current
Figure 7. Reset Delay Time
www.onsemi.com
3
10
MC34064, MC33064, NCV33064
I F , FORWARD CURRENT (mA)
80
Vin = 0 V
TA = 25°C
60
40
20
0
0
0.4
0.8
1.2
VF, FORWARD VOLTAGE (V)
1.6
Figure 8. Clamp Diode Forward Current versus Voltage
+
R
Input
Reset
Power
Supply
-
Microprocessor
Circuit
CDLY
+
A time delayed reset can be accomplished with the
addition of CDLY. For systems with extremely fast
power supply rise times (