DATA SHEET
www.onsemi.com
1-of-8 Decoder/
Demultiplexer
16
High−Performance Silicon−Gate CMOS
MC74HC138A
The MC74HC138A is identical in pinout to the LS138. The device
inputs are compatible with standard CMOS outputs; with pullup
resistors, they are compatible with LSTTL outputs.
The HC138A decodes a three−bit Address to one−of−eight
active−low outputs. This device features three Chip Select inputs, two
active−low and one active−high to facilitate the demultiplexing,
cascading, and chip−selecting functions. The demultiplexing function
is accomplished by using the Address inputs to select the desired
device output; one of the Chip Selects is used as a data input while the
other Chip Selects are held in their active states.
Features
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1.0 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC
Standard No. 7 A
Chip Complexity: 100 FETs or 29 Equivalent Gates
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable*
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
16
1
1
TSSOP−16
DT SUFFIX
CASE 948F
SOIC−16
D SUFFIX
CASE 751B
MARKING DIAGRAMS
16
16
HC
138A
ALYWG
G
HC138AG
AWLYWW
1
1
A
L, WL
Y, YY
W, WW
G or G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
PIN ASSIGNMENT
A0
1
16
VCC
A1
2
15
Y0
A2
3
14
Y1
CS2
4
13
Y2
CS3
5
12
Y3
CS1
6
11
Y4
Y7
7
10
Y5
GND
8
9
Y6
ORDERING INFORMATION
Package
Shipping†
MC74HC138ADG
SOIC−16
(Pb−Free)
48 Units /
Rail
MC74HC138ADR2G
SOIC−16
(Pb−Free)
2500 /
Tape & Reel
MC74HC138ADTR2G
TSSOP−16
(Pb−Free)
2500 /
Tape & Reel
NLV74HC138ADR2G*
SOIC−16
(Pb−Free)
2500 /
Tape & Reel
NLV74HC138ADTR2G*
TSSOP−16
(Pb−Free)
2500 /
Tape & Reel
Device
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
Semiconductor Components Industries, LLC, 2012
July, 2022 − Rev. 13
1
Publication Order Number:
MC74HC138A/D
MC74HC138A
A0
ADDRESS
INPUTS
A1
A2
CHIPSELECT
INPUTS
CS1
CS2
CS3
1
FUNCTION TABLE
15
Y0
14
Y1
13
Y2
12
Y3
11
Y4
10
Y5
9
Y6
7
Y7
2
3
Inputs
ACTIVE-LOW
OUTPUTS
6
PIN 16 = VCC
PIN 8 = GND
4
Outputs
CS1CS2 CS3 A2 A1 A0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
5
X
X
L
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
H
L
H
H
H
H
L
H
H
H
H
L
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
L
L
H
H
L
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
L
H
H
H
H
L
H
H
H
H
L
H = high level (steady state);
L = low level (steady state);
X = don’t care
Figure 1. Logic Diagram
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
–0.5 to +7.0
V
VCC
DC Supply Voltage (Referenced to GND)
Vin
DC Input Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
Vout
DC Output Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
Iin
DC Input Current, per Pin
20
mA
Iout
DC Output Current, per Pin
25
mA
ICC
DC Supply Current, VCC and GND Pins
50
mA
PD
Power Dissipation in Still Air
SOIC Package†
TSSOP Package†
500
450
Tstg
Storage Temperature
TL
Lead Temperature, 1 mm from Case for 10 Seconds
(SOIC or TSSOP Package)
mW
–65 to +150
_C
_C
260
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of
these limits are exceeded, device functionality should not be assumed, damage may occur and
reliability may be affected.
†Derating − SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: − 6.1 .W/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
DC Supply Voltage (Referenced to GND)
Min
Max
Unit
2.0
6.0
V
0
VCC
V
–55
+125
_C
0
0
0
1000
500
400
ns
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figure 2)
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
Functional operation above the stresses listed in the Recommended Operating Ranges is not
implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may
affect device reliability.
www.onsemi.com
2
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC74HC138A
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
VCC
V
Guaranteed Limit
−55_C to 25_C
v 85_C
v 125_C
Unit
VIH
Minimum High−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL
Maximum Low−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
Vin = VIH or VIL |Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.20
3.70
5.20
Vin = VIH or VIL
|Iout| v 20 mA
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
Vin = VIH or VIL |Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.40
0.40
0.40
Symbol
VOL
Parameter
Test Conditions
Maximum Low−Level Output
Voltage
V
Iin
Maximum Input Leakage
Current
Vin = VCC or GND
6.0
0.1
1.0
1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
4
40
160
mA
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)
Symbol
Parameter
Guaranteed Limit
VCC
V
−55_C to 25_C
v 85_C
v 125_C
Unit
tPLH,
tPHL
Maximum Propagation Delay, Input A to Output Y
(Figures 1 and 4)
2.0
3.0
4.5
6.0
135
90
27
23
170
125
34
29
205
165
41
35
ns
tPLH,
tPHL
Maximum Propagation Delay, CS1 to Output Y
(Figures 2 and 4)
2.0
3.0
4.5
6.0
110
85
22
19
140
100
28
24
165
125
33
28
ns
tPLH,
tPHL
Maximum Propagation Delay, CS2 or CS3 to Output Y
(Figures 3 and 4)
2.0
3.0
4.5
6.0
120
90
24
20
150
120
30
26
180
150
36
31
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 2 and 4)
2.0
3.0
4.5
6.0
75
30
15
13
95
40
19
16
110
55
22
19
ns
−
10
10
10
pF
Cin
Maximum Input Capacitance
Typical @ 25C, VCC = 5.0 V
CPD
55
Power Dissipation Capacitance (Per Package)*
* Used to determine the no−load dynamic power consumption: P D = CPD VCC
www.onsemi.com
3
2f
+ ICC VCC .
pF
MC74HC138A
SWITCHING WAVEFORMS
VALID
INPUT A
VCC
50%
OUTPUT Y
VCC
90%
50%
10%
INPUT CS1
GND
GND
tPLH
tPHL
tPHL
tPLH
tf
tr
VALID
50%
90%
50%
10%
OUTPUT Y
tTHL
tTLH
Figure 2.
Figure 1.
TEST POINT
tr
tf
INPUT
CS2, CS3
VCC
90%
50%
10%
GND
tPHL
OUTPUT Y
OUTPUT
DEVICE
UNDER
TEST
tPLH
CL*
90%
50%
10%
tTHL
tTLH
*Includes all probe and jig capacitance
Figure 3.
Figure 4. Test Circuit
www.onsemi.com
4
MC74HC138A
PIN DESCRIPTIONS
ADDRESS INPUTS
A0, A1, A2 (Pins 1, 2, 3)
Address inputs. For any other combination of CS1, CS2, and
CS3, the outputs are at a logic high.
Address inputs. These inputs, when the chip is selected,
determine which of the eight outputs is active−low.
OUTPUTS
Y0 − Y7 (Pins 15, 14, 13, 12, 11, 10, 9, 7)
CONTROL INPUTS
CS1, CS2, CS3 (Pins 6, 4, 5)
Active−low Decoded outputs. These outputs assume a
low level when addressed and the chip is selected. These
outputs remain high when not addressed or the chip is not
selected.
Chip select inputs. For CS1 at a high level and CS2, CS3
at a low level, the chip is selected and the outputs follow the
EXPANDED LOGIC DIAGRAM
15
14
A0
A1
13
1
12
2
11
A2
3
10
CS3
CS2
Y1
Y2
Y3
Y4
Y5
5
4
9
7
CS1
Y0
6
www.onsemi.com
5
Y6
Y7
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−16
CASE 751B−05
ISSUE K
DATE 29 DEC 2006
SCALE 1:1
−A−
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
16 PL
0.25 (0.010)
M
T B
S
A
S
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
COLLECTOR
BASE
EMITTER
NO CONNECTION
EMITTER
BASE
COLLECTOR
COLLECTOR
BASE
EMITTER
NO CONNECTION
EMITTER
BASE
COLLECTOR
EMITTER
COLLECTOR
STYLE 2:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
CATHODE
ANODE
NO CONNECTION
CATHODE
CATHODE
NO CONNECTION
ANODE
CATHODE
CATHODE
ANODE
NO CONNECTION
CATHODE
CATHODE
NO CONNECTION
ANODE
CATHODE
STYLE 3:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
COLLECTOR, DYE #1
BASE, #1
EMITTER, #1
COLLECTOR, #1
COLLECTOR, #2
BASE, #2
EMITTER, #2
COLLECTOR, #2
COLLECTOR, #3
BASE, #3
EMITTER, #3
COLLECTOR, #3
COLLECTOR, #4
BASE, #4
EMITTER, #4
COLLECTOR, #4
STYLE 4:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
STYLE 5:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
DRAIN, DYE #1
DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4
DRAIN, #4
GATE, #4
SOURCE, #4
GATE, #3
SOURCE, #3
GATE, #2
SOURCE, #2
GATE, #1
SOURCE, #1
STYLE 6:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
STYLE 7:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
SOURCE N‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
SOURCE P‐CH
SOURCE P‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE N‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
SOURCE N‐CH
COLLECTOR, DYE #1
COLLECTOR, #1
COLLECTOR, #2
COLLECTOR, #2
COLLECTOR, #3
COLLECTOR, #3
COLLECTOR, #4
COLLECTOR, #4
BASE, #4
EMITTER, #4
BASE, #3
EMITTER, #3
BASE, #2
EMITTER, #2
BASE, #1
EMITTER, #1
SOLDERING FOOTPRINT
8X
6.40
16X
1
1.12
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42566B
SOIC−16
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
TSSOP−16
CASE 948F−01
ISSUE B
16
DATE 19 OCT 2006
1
SCALE 2:1
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
S
V
S
K
S
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
N
8
1
0.25 (0.010)
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL
IN EXCESS OF THE K DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT
7.06
16
XXXX
XXXX
ALYW
1
1
0.65
PITCH
16X
0.36
DOCUMENT NUMBER:
DESCRIPTION:
16X
1.26
98ASH70247A
TSSOP−16
DIMENSIONS: MILLIMETERS
XXXX
A
L
Y
W
G or G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative