0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC74HC161ADTR2G

MC74HC161ADTR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP16

  • 描述:

    IC COUNTER 4BIT PRESET 16TSSOP

  • 数据手册
  • 价格&库存
MC74HC161ADTR2G 数据手册
MC74HC161A, MC74HC163A Presettable Counters High−Performance Silicon−Gate CMOS The MC74HC161A and HC163A are identical in pinout to the LS161 and LS163. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. The HC161A and HC163A are programmable 4−bit binary counters with asynchronous and synchronous reset, respectively. Features • • • • • • • • http://onsemi.com MARKING DIAGRAMS 16 SOIC−16 D SUFFIX CASE 751B 16 Output Drive Capability: 10 LSTTL Loads Outputs Directly Interface to CMOS, NMOS, and TTL Operating Voltage Range: 2.0 to 6.0 V Low Input Current: 1.0 mA High Noise Immunity Characteristic of CMOS Devices In Compliance with the Requirements Defined by JEDEC Standard No. 7A Chip Complexity: 192 FETs or 48 Equivalent Gates These are Pb−Free Devices 1 HC16xAG AWLYWW 1 16 HC 16xA ALYWG G TSSOP−16 DT SUFFIX CASE 948F 16 1 1 x A WL, L YY, Y WW, W G or G = 1 or 3 = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2013 May, 2013 − Rev. 13 1 Publication Order Number: MC74HC161A/D MC74HC161A, MC74HC163A RESET 1 16 CLOCK 2 15 P0 3 14 P1 4 13 Q1 P2 5 12 Q2 P3 6 11 Q3 ENABLE P 7 10 ENABLE T GND 8 9 VCC RIPPLE CARRY OUT Q0 FUNCTION TABLE Inputs Clock LOAD Output Reset* Load Enable P Enable T Q L H H H H X L H H H X X H L X X X H X L Reset Load Preset Data Count No Count No Count *HC163A only. HC161A is an Asynchronous Reset Device H = high level, L = low level, X = don’t care Figure 1. Pin Assignment P0 PRESET DATA INPUTS P1 P2 P3 CLOCK 3 14 4 13 5 12 6 11 2 15 Q1 Q2 9 LOAD RIPPLE CARRY OUT PIN 16 = VCC PIN 8 = GND 7 ENABLE P 10 ENABLE T Figure 2. Logic Diagram DEVICE/MODE TABLE Device Count Mode Reset Mode HC161A Binary Asynchronous HC163A Binary Synchronous http://onsemi.com 2 BCD OR BINARY OUTPUT Q3 1 RESET COUNT ENABLES Q0 MC74HC161A, MC74HC163A MAXIMUM RATINGS Symbol VCC Parameter Value Unit *0.5 to )7.0 V *0.5 to VCC )0.5 V *0.5 v VO v VCC )0.5 V DC Supply Voltage VI DC Input Voltage VO DC Output Voltage (Note 1) IIK DC Input Diode Current $20 mA IOK DC Output Diode Current $25 mA IO DC Output Sink Current $25 mA ICC DC Supply Current per Supply Pin $50 mA IGND DC Ground Current per Ground Pin $50 mA TSTG Storage Temperature Range *65 to )150 _C TL Lead Temperature, 1 mm from Case for 10 Seconds TJ Junction Temperature Under Bias qJA Thermal Resistance PD Power Dissipation in Still Air at 85_C MSL Moisture Sensitivity FR Flammability Rating VESD ILATCHUP _C _C SOIC TSSOP 112 148 _C/W SOIC TSSOP 500 450 mW Level 1 Oxygen Index: 30% − 35% ESD Withstand Voltage Latchup Performance 260 )150 UL 94 V−0 @ 0.125 in Human Body Model (Note 2) Machine Model (Note 3) u2000 u200 V Above VCC and Below GND at 85_C (Note 4) $300 mA Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. IO absolute maximum rating must be observed. 2. Tested to EIA/JESD22−A114−A. 3. Tested to EIA/JESD22−A115−A. 4. Tested to EIA/JESD78. RECOMMENDED OPERATING CONDITIONS Symbol VCC Vin, Vout Min Max Unit DC Supply Voltage Parameter (Referenced to GND) 2.0 6.0 V DC Input Voltage, Output Voltage (Referenced to GND) 0 VCC V *55 )125 _C 0 0 0 0 1000 600 500 400 ns TA Operating Temperature, All Package Types tr, tf Input Rise and Fall Time (Figure 4) VCC = 2.0 V VCC = 3.0 V VCC = 4.5 V VCC = 6.0 V 5. Unused inputs may not be left open. All inputs must be tied to a high− or low−logic input voltage level. http://onsemi.com 3 MC74HC161A, MC74HC163A DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) VCC V Guaranteed Limit –55 to 25_C v 85_C v 125_C Unit VIH Minimum High−Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| v 20 mA 2.0 3.0 4.5 6.0 1.5 2.1 3.15 4.2 1.5 2.1 3.15 4.2 1.5 2.1 3.15 4.2 V VIL Maximum Low−Level Input Voltage Vout = 0.1 V or VCC – 0.1 V |Iout| v 20 mA 2.0 3.0 4.5 6.0 0.5 0.9 1.35 1.8 0.5 0.9 1.35 1.8 0.5 0.9 1.35 1.8 V VOH Minimum High−Level Output Voltage Vin = VIH or VIL |Iout| v 20 mA 2.0 4.5 6.0 1.9 4.4 5.9 1.9 4.4 5.9 1.9 4.4 5.9 V 3.0 4.5 6.0 2.48 3.98 5.48 2.34 3.84 5.34 2.2 3.7 5.2 2.0 4.5 6.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.0 4.5 6.0 0.26 0.26 0.26 0.33 0.33 0.33 0.4 0.4 0.4 Symbol Parameter Test Conditions Vin = VIH or VIL VOL Maximum Low−Level Output Voltage |Iout| v 3.6 mA |Iout| v 4.0 mA |Iout| v 5.2 mA Vin = VIH or VIL |Iout| v 20 mA Vin = VIH or VIL |Iout| v 3.6 mA |Iout| v 4.0 mA |Iout| v 5.2 mA V Iin Maximum Input Leakage Current Vin = VCC or GND 6.0 ± 0.1 ± 1.0 ± 1.0 mA ICC Maximum Quiescent Supply Current Vin = VCC or GND Iout = 0 mA 6.0 4.0 40 160 mA http://onsemi.com 4 MC74HC161A, MC74HC163A AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns) VCC V Guaranteed Limit – 55 to 25_C v 85_C v 125_C Unit fmax Maximum Clock Frequency (50% Duty Cycle) (Note 6) 4, 10 2.0 3.0 4.5 6.0 6 15 30 35 5 12 24 28 4 10 20 24 MHz tPLH Maximum Propagation Delay, Clock to Q 4, 10 2.0 3.0 4.5 6.0 120 75 20 16 160 120 23 20 200 150 28 22 ns 4, 10 2.0 3.0 4.5 6.0 145 100 22 18 185 135 25 20 220 150 30 23 ns Symbol Parameter Figure tPHL tPHL Maximum Propagation Delay, Reset to Q (HC161A Only) 5, 10 2.0 3.0 4.5 6.0 145 100 20 17 185 135 22 19 220 150 25 21 ns tPLH Maximum Propagation Delay, Enable T to Ripple Carry Out 6, 10 2.0 3.0 4.5 6.0 110 60 16 14 150 115 18 15 190 140 20 17 ns 6, 10 2.0 3.0 4.5 6.0 135 100 18 15 175 130 20 16 210 160 22 20 ns 4, 10 2.0 3.0 4.5 6.0 120 75 22 18 160 135 27 22 200 150 30 25 ns 4, 10 2.0 3.0 4.5 6.0 145 100 22 20 185 135 28 24 220 150 35 28 ns tPHL tPLH Maximum Propagation Delay, Clock to Ripple Carry Out tPHL tPHL Maximum Propagation Delay, Reset to Ripple Carry Out (HC161A Only) 5, 10 2.0 3.0 4.5 6.0 155 120 22 18 190 140 26 22 230 155 30 25 ns tTLH, tTHL Maximum Output Transition Time, Any Output 5, 10 2.0 3.0 4.5 6.0 75 30 15 13 95 40 19 16 110 55 22 19 ns Maximum Input Capacitance 4, 10 − 10 10 10 pF Cin 6. Applies to noncascaded/nonsynchronous clocked configurations only with synchronously cascaded counters. (1) Clock to Ripple Carry Out propagation delays. (2) Enable T or Enable P to Clock setup times and (3) Clock to Enable T or Enable P hold times determine fmax. However, if Ripple Carry out of each stage is tied to the Clock of the next stage (nonsynchronously clocked) the fmax in the table above is applicable. See Applications information in this data sheet. Typical @ 25°C, VCC = 5.0 V CPD 45 Power Dissipation Capacitance (Per Gate) (Note 7) 7. Used to determine the no−load dynamic power consumption: P D = CPD VCC 2 f + ICC VCC . http://onsemi.com 5 pF MC74HC161A, MC74HC163A TIMING REQUIREMENTS (CL = 50 pF, Input tr = tf = 6.0 ns) VCC V Guaranteed Limit – 55 to 25_C v 85_C v 125_C Unit tsu Minimum Setup Time, Preset Data Inputs to Clock 8 2.0 3.0 4.5 6.0 40 20 15 12 60 30 20 18 80 40 30 20 ns tsu Minimum Setup Time, Load to Clock 8 2.0 3.0 4.5 6.0 60 25 15 12 75 30 20 18 90 40 30 20 ns tsu Minimum Setup Time, Reset to Clock (HC163A Only) 7 2.0 3.0 4.5 6.0 60 25 20 17 75 30 25 23 90 40 35 25 ns tsu Minimum Setup Time, Enable T or Enable P to Clock 9 2.0 3.0 4.5 6.0 80 35 20 17 95 40 25 23 110 50 35 25 ns th Minimum Hold Time, Clock to Load or Preset Data Inputs 8 2.0 3.0 4.5 6.0 3 3 3 3 3 3 3 3 3 3 3 3 ns th Minimum Hold Time, Clock to Reset (HC163A Only) 7 2.0 3.0 4.5 6.0 3 3 3 3 3 3 3 3 3 3 3 3 ns th Minimum Hold Time, Clock to Enable T or Enable P 9 2.0 3.0 4.5 6.0 3 3 3 3 3 3 3 3 3 3 3 3 ns trec Minimum Recovery Time, Reset Inactive to Clock (HC161A Only) 5 2.0 3.0 4.5 6.0 80 35 15 12 95 40 20 17 110 50 26 23 ns trec Minimum Recovery Time, Load Inactive to Clock 8 2.0 3.0 4.5 6.0 80 35 15 12 95 40 20 17 110 50 26 23 ns tw Minimum Pulse Width, Clock 4 2.0 3.0 4.5 6.0 60 25 12 10 75 30 15 13 90 40 18 15 ns tw Minimum Pulse Width, Reset (HC161A Only) 5 2.0 3.0 4.5 6.0 60 25 12 10 75 30 15 13 90 40 18 15 ns 2.0 3.0 4.5 6.0 1000 800 500 400 1000 800 500 400 1000 800 500 400 ns Symbol tr, tf Parameter Figure Maximum Input Rise and Fall Times http://onsemi.com 6 MC74HC161A, MC74HC163A FUNCTION DESCRIPTION CONTROL FUNCTIONS The HC161A/163A are programmable 4−bit synchronous counters that feature parallel Load, synchronous or asynchronous Reset, a Carry Output for cascading, and count−enable controls. The HC161A and HC163A are binary counters with asynchronous Reset and synchronous Reset, respectively. Resetting A low level on the Reset pin (Pin 1) resets the internal flip−flops and sets the outputs (Q0 through Q3) to a low level. The HC161A resets asynchronously, and the HC163A resets with the rising edge of the Clock input (synchronous reset). INPUTS Loading Clock (Pin 2) With the rising edge of the Clock, a low level on Load (Pin 9) loads the data from the Preset Data input pins (P0, P1, P2, P3) into the internal flip−flops and onto the output pins, Q0 through Q3. The count function is disabled as long as Load is low. The internal flip−flops toggle and the output count advances with the rising edge of the Clock input. In addition, control functions, such as resetting and loading, occur with the rising edge of the Clock input. Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6) These are the data inputs for programmable counting. Data on these pins may be synchronously loaded into the internal flip−flops and appear at the counter outputs. P0 (Pin 3) is the least−significant bit and P3 (Pin 6) is the most−significant bit. Count Enable/Disable OUTPUTS The count is either enabled or disabled by the control inputs according to Table 1. In general, Enable P is a count−enable control: Enable T is both a count−enable and a Ripple−Carry Output control. These devices have two count−enable control pins: Enable P (Pin 7) and Enable T (Pin 10). The devices count when these two pins and the Load pin are high. The logic equation is: Count Enable = Enable P • Enable T • Load Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11) These are the counter outputs. Q0 (Pin 14) is the least−significant bit and Q3 (Pin 11) is the most−significant bit. Table 1. Count Enable/Disable Control Inputs Ripple Carry Out (Pin 15) Result at Outputs When the counter is in its maximum state, 1111, this output goes high, providing an external look−ahead carry pulse that may be used to enable successive cascaded counters. Ripple Carry Out remains high only during the maximum count state. The logic equation for this output is: Load Enable P Enable T Q0 − Q3 H H H Count L H H No Count Ripple Carry Out = Enable T • Q0 • Q1 • Q2 • Q3 X L H No Count High when Q0−Q3 are maximum* OUTPUT STATE DIAGRAMS X X L No Count L 0 1 2 3 5 14 6 13 7 12 11 10 9 High when Q0−Q3 are maximum* *Q0 through Q3 are maximum when Q3, Q2, Q1, Q0 = 1111. 4 15 Ripple Carry Out 8 Figure 3. Binary Counters http://onsemi.com 7 MC74HC161A, MC74HC163A SWITCHING WAVEFORMS tr tf 90% 50% 10% CLOCK tw VCC RESET GND 1/fmax tPHL tPLH 90% 50% 10% 50% ANY OUTPUT trec 50% CLOCK tTHL tTLH Figure 4. tr tf tPLH RIPPLE CARRY OUT VCC GND Figure 5. VCC 90% 50% 10% ENABLE T GND tPHL tw ANY OUTPUT VCC 50% 50% RESET GND 90% 50% 10% th tsu tPHL VCC CLOCK tTLH 50% GND tTHL Figure 6. Figure 7. HC163A Only VALID INPUTS P0, P1, P2, P3 GND tsu LOAD VALID ENABLE T OR ENABLE P th VCC 50% th VCC 50% tsu GND tsu CLOCK VCC 50% th 50% CLOCK GND VCC GND trec VCC 50% GND Figure 8. Figure 9. TEST CIRCUIT TEST POINT OUTPUT DEVICE UNDER TEST CL * *Includes all probe and jig capacitance Figure 10. http://onsemi.com 8 3 http://onsemi.com 9 Figure 11. 4−Bit Binary Counter with Asynchronous Reset (MC74HC161A) CLOCK LOAD RESET ENABLE T ENABLE P P3 P2 2 9 1 10 7 6 5 P1 4 P0 C C LOAD LOAD R VCC= PIN 16 GND = PIN 8 Q3 Q2 Q1 Q0 15 RIPPLE CARRY OUT 11 12 13 14 The flip−flops shown in the circuit diagrams are Toggle−Enable flip−flops. A Toggle− Enable flip−flop is a combination of a D flip−flop and a T flip−flop. When loading data from Preset inputs P0, P1, P2, and P3, the Load signal is used to disable the Toggle input (Tn) of the flip−flop. The logic level at the Pn input is then clocked to the Q output of the flip−flop on the next rising edge of the clock. A logic zero on the Reset device input forces the internal clock (C) high and resets the Q output of the flip−flop low. T3 R Q3 C C LOAD LOAD P3 T2 R Q2 C C LOAD LOAD Q2 P2 T1 Q1 R C C LOAD LOAD Q1 P1 T0 R Q0 C C LOAD LOAD Q0 P0 MC74HC161A, MC74HC163A MC74HC161A, MC74HC163A Sequence illustrated in waveforms: 1. Reset outputs to zero. 2. Preset to binary twelve. 3. Count to thirteen, fourteen, fifteen, zero, one and two. 4. Inhibit. RESET (HC161A) (ASYNCHRONOUS) RESET (HC163A) (SYNCHRONOUS) LOAD P0 PRESET DATA INPUTS P1 P2 P3 CLOCK (HC161A) CLOCK (HC163A) COUNT ENABLES ENABLE P ENABLE T Q0 Q1 OUTPUTS Q2 Q3 RIPPLE CARRY OUT 12 13 14 15 0 COUNT RESET LOAD Figure 12. Timing Diagram http://onsemi.com 10 1 2 INHIBIT http://onsemi.com 11 Figure 13. 4−Bit Binary Counter with Synchronous Reset (MC74HC163A) CLOCK LOAD RESET ENABLE T ENABLE P P3 P2 P1 P0 2 9 1 10 7 6 5 4 3 C C LOAD LOAD R VCC= PIN 16 GND = PIN 8 Q3 Q2 Q1 Q0 15 RIPPLE CARRY OUT 11 12 13 14 The flip−flops shown in the circuit diagrams are Toggle−Enable flip−flops. A Toggle− Enable flip−flop is a combination of a D flip−flop and a T flip−flop. When loading data from Preset inputs P0, P1, P2, and P3, the Load signal is used to disable the Toggle input (Tn) of the flip−flop. The logic level at the Pn input is then clocked to the Q output of the flip−flop on the next rising edge of the clock. A logic zero on the Reset device input forces the internal clock (C) high and resets the Q output of the flip−flop low. T3 R Q3 C C LOAD LOAD P3 T2 R Q2 C C LOAD LOAD Q2 P2 T1 Q1 R C C LOAD LOAD Q1 P1 T0 R Q0 C C LOAD LOAD Q0 P0 MC74HC161A, MC74HC163A MC74HC161A, MC74HC163A TYPICAL APPLICATIONS CASCADING LOAD INPUTS INPUTS H = COUNT L = DISABLE H = COUNT L = DISABLE INPUTS LOAD P0 P1 P2 P3 LOAD P0 P1 P2 P3 LOAD P0 P1 P2 P3 ENABLE P ENABLE P ENABLE P RIPPLE ENABLE T CARRY OUT RIPPLE ENABLE T CARRY OUT RIPPLE ENABLE T CARRY OUT CLOCK CLOCK CLOCK R R R Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 TO MORE SIGNIFICANT STAGES Q0 Q1 Q2 Q3 RESET OUTPUTS OUTPUTS OUTPUTS CLOCK NOTE: When used in these cascaded configurations the clock fmax guaranteed limits may not apply. Actual performance will depend on number of stages. This limitation is due to set up times between Enable (Port) and Clock. Figure 14. N−Bit Synchronous Counters INPUTS INPUTS INPUTS LOAD ENABLE P ENABLE T CLOCK LOAD P0 P1 P2 P3 LOAD P0 P1 P2 P3 LOAD P0 P1 P2 P3 ENABLE P ENABLE P ENABLE P RIPPLE ENABLE T CARRY OUT RIPPLE ENABLE T CARRY OUT RIPPLE ENABLE T CARRY OUT CLOCK CLOCK CLOCK R R R Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 RESET OUTPUTS OUTPUTS Figure 15. Nibble Ripple Counter http://onsemi.com 12 OUTPUTS TO MORE SIGNIFICANT STAGES MC74HC161A, MC74HC163A TYPICAL APPLICATIONS VARYING THE MODULUS HC163A HC163A OTHER Q0 INPUTS Q1 OTHER Q0 INPUTS Q1 OPTIONAL BUFFER FOR NOISE REJECTION Q2 OPTIONAL BUFFER FOR NOISE REJECTION Q2 OUTPUT Q3 OUTPUT Q3 RESET RESET Figure 16. Modulo−5 Counter Figure 17. Modulo−11 Counter The HC163A facilitates designing counters of any modulus with minimal external logic. The output is glitch−free due to the synchronous Reset. ORDERING INFORMATION Package Shipping† MC74HC161ADTG TSSOP−16 (Pb−Free) 96 Units / Tube MC74HC163ADTG TSSOP−16 (Pb−Free) 96 Units / Tube MC74HC161ADG SOIC−16 (Pb−Free) 48 Units / Rail MC74HC161ADR2G SOIC−16 (Pb−Free) 2500 Units / Tape & Reel TSSOP−16* 2500 Units / Tape & Reel MC74HC163ADG SOIC−16 (Pb−Free) 48 Units / Rail MC74HC163ADR2G SOIC−16 (Pb−Free) 2500 Units / Tape & Reel TSSOP−16* 2500 Units / Tape & Reel Device MC74HC161ADTR2G MC74HC163ADTR2G †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. http://onsemi.com 13 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−16 CASE 751B−05 ISSUE K DATE 29 DEC 2006 SCALE 1:1 −A− 16 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 −B− 1 P 8 PL 0.25 (0.010) 8 M B S G R K F X 45 _ C −T− SEATING PLANE J M D DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 16 PL 0.25 (0.010) M T B S A S STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR EMITTER COLLECTOR STYLE 2: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3 COLLECTOR, #3 COLLECTOR, #4 BASE, #4 EMITTER, #4 COLLECTOR, #4 STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. STYLE 5: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1 SOURCE, #1 STYLE 6: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE STYLE 7: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. SOURCE N‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P‐CH SOURCE P‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE N‐CH COLLECTOR, DYE #1 COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 BASE, #4 EMITTER, #4 BASE, #3 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1 EMITTER, #1 SOLDERING FOOTPRINT 8X 6.40 16X 1 1.12 16 16X 0.58 1.27 PITCH 8 9 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: DESCRIPTION: 98ASB42566B SOIC−16 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−16 CASE 948F−01 ISSUE B 16 DATE 19 OCT 2006 1 SCALE 2:1 16X K REF 0.10 (0.004) 0.15 (0.006) T U M T U S V S K S ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 2X L/2 16 9 J1 B −U− L SECTION N−N J PIN 1 IDENT. N 8 1 0.25 (0.010) M 0.15 (0.006) T U S A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. N F DETAIL E −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.18 0.28 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.007 0.011 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT 7.06 16 XXXX XXXX ALYW 1 1 0.65 PITCH 16X 0.36 DOCUMENT NUMBER: DESCRIPTION: 16X 1.26 98ASH70247A TSSOP−16 DIMENSIONS: MILLIMETERS XXXX A L Y W G or G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC74HC161ADTR2G 价格&库存

很抱歉,暂时无法提供与“MC74HC161ADTR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货