MC74HC390A
Dual 4-Stage Binary Ripple
Counter with ÷ 2 and ÷ 5
Sections
High−Performance Silicon−Gate CMOS
http://onsemi.com
The MC74HC390A is identical in pinout to the LS390. The device
inputs are compatible with standard CMOS outputs; with pullup
resistors, they are compatible with LSTTL outputs.
This device consists of two independent 4−bit counters, each
composed of a divide−by−two and a divide−by−five section. The
divide−by−two and divide−by−five counters have separate clock
inputs, and can be cascaded to implement various combinations of ÷ 2
and/or ÷ 5 up to a ÷ 100 counter.
Flip−flops internal to the counters are triggered by high−to−low
transitions of the clock input. A separate, asynchronous reset is
provided for each 4−bit counter. State changes of the Q outputs do not
occur simultaneously because of internal ripple delays. Therefore,
decoded output signals are subject to decoding spikes and should not
be used as clocks or strobes except when gated with the Clock of the
HC390A.
SOIC−16
D SUFFIX
CASE 751B
PIN ASSIGNMENT
CLOCK Aa
1
16
VCC
RESET a
2
15
CLOCK Ab
QAa
3
14
RESET b
CLOCK Ba
4
13
QAb
QBa
5
12
CLOCK Bb
QCa
6
11
QBb
QDa
7
10
QCb
GND
8
9
QDb
Features
•
•
•
•
•
•
•
•
•
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No 7 A
Chip Complexity: 244 FETs or 61 Equivalent Gates
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
TSSOP−16
DT SUFFIX
CASE 948F
MARKING DIAGRAMS
16
16
HC
390A
ALYWG
G
HC390AG
AWLYWW
1
1
SOIC−16
A
L, WL
Y, YY
W, WW
G or G
TSSOP−16
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
CLOCK A
1, 15
÷2
COUNTER
3, 13
FUNCTION TABLE
QA
Clock
A
B
Reset
Action
X
X
H
X
L
Reset
÷ 2 and ÷ 5
Increment
÷2
Increment
÷5
5, 11
CLOCK B
RESET
4, 12
÷5
COUNTER
QB
6, 10
QC
7, 9
QD
X
PIN 16 = VCC
PIN 8 = GND
2, 14
August, 2014 − Rev. 7
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
Figure 1. Logic Diagram
© Semiconductor Components Industries, LLC, 2014
L
1
Publication Order Number:
MC74HC390A/D
MC74HC390A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
–0.5 to +7.0
V
DC Input Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
DC Output Voltage (Referenced to GND)
VCC
DC Supply Voltage (Referenced to GND)
Vin
Vout
–0.5 to VCC + 0.5
V
Iin
DC Input Current, per Pin
±20
mA
mA
Iout
DC Output Current, per Pin
±25
ICC
DC Supply Current, VCC and GND Pins
±50
mA
PD
Power Dissipation in Still Air,
500
450
mW
Tstg
Storage Temperature
–65 to +150
_C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
SOIC or TSSOP Package
SOIC Package†
TSSOP Package†
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
_C
260
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of
these limits are exceeded, device functionality should not be assumed, damage may occur and
reliability may be affected.
†Derating: SOIC Package: –7 mW/_C from 65_ to 125_C
TSSOP Package: −6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figure 1)
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
Min
Max
Unit
2.0
6.0
V
0
VCC
V
–55
+125
_C
0
0
0
0
1000
600
500
400
ns
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
–55 to
25_C
v85_C
v125_C
Unit
VIH
Minimum High−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL
Maximum Low−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.20
3.70
5.20
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.40
0.40
0.40
Vin = VIH or VIL
VOL
Maximum Low−Level Output
Voltage
|Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
Vin = VIH or VIL
|Iout| v 20 mA
Vin = VIH or VIL
|Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
http://onsemi.com
2
V
MC74HC390A
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued)
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
–55 to
25_C
v85_C
v125_C
Unit
Iin
Maximum Input Leakage
Current
Vin = VCC or GND
6.0
±0.1
±1.0
±1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
4
40
160
mA
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tf = tf = 6 ns)
Guaranteed Limit
Parameter
Symbol
VCC
V
–55 to
25_C
v85_C
v125_C
Unit
fmax
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 3)
2.0
3.0
4.5
6.0
10
15
30
50
9
14
28
45
8
12
25
40
MHz
tPLH,
tPHL
Maximum Propagation Delay, Clock A to QA
(Figures 1 and 3)
2.0
3.0
4.5
6.0
70
40
24
20
80
45
30
26
90
50
36
31
ns
tPLH,
tPHL
Maximum Propagation Delay, Clock A to QC
(QA connected to Clock B)
(Figures 1 and 3)
2.0
3.0
4.5
6.0
200
160
58
49
250
185
65
62
300
210
70
68
ns
tPLH,
tPHL
Maximum Propagation Delay, Clock B to QB
(Figures 1 and 3)
2.0
3.0
4.5
6.0
70
40
26
22
80
45
33
28
90
50
39
33
ns
tPLH,
tPHL
Maximum Propagation Delay, Clock B to QC
(Figures 1 and 3)
2.0
3.0
4.5
6.0
90
56
37
31
105
70
46
39
180
100
56
48
ns
tPLH,
tPHL
Maximum Propagation Delay, Clock B to QD
(Figures 1 and 3)
2.0
3.0
4.5
6.0
70
40
26
22
80
45
33
28
90
50
39
33
ns
tPHL
Maximum Propagation Delay, Reset to any Q
(Figures 2 and 3)
2.0
3.0
4.5
6.0
80
48
30
26
95
65
38
33
110
75
44
39
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 3)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
15
110
36
22
19
ns
−
10
10
10
pF
Cin
Maximum Input Capacitance
Typical @ 25°C, VCC = 5.0 V
CPD
35
Power Dissipation Capacitance (Per Counter)*
* Used to determine the no−load dynamic power consumption: P D = CPD VCC
http://onsemi.com
3
2f
+ ICC VCC .
pF
MC74HC390A
TIMING REQUIREMENTS (Input tr = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
–55 to
25_C
v85_C
v125_C
Unit
trec
Minimum Recovery Time, Reset Inactive to Clock A or Clock B
(Figure 3)
2.0
3.0
4.5
6.0
25
15
10
9
30
20
13
11
40
30
15
13
ns
tw
Minimum Pulse Width, Clock A, Clock B
(Figure 2)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
15
110
36
22
19
ns
tw
Minimum Pulse Width, Reset
(Figure 3)
2.0
3.0
4.5
6.0
75
27
20
18
95
32
24
22
110
36
30
28
ns
Maximum Input Rise and Fall Times
(Figure 2)
2.0
3.0
4.5
6.0
1000
800
500
400
1000
800
500
400
1000
800
500
400
ns
tf, tf
PIN DESCRIPTIONS
INPUTS
Clock A (Pins 1, 15) and Clock B (Pins 4, 15)
OUTPUTS
QA (Pins 3, 13)
Clock A is the clock input to the ÷ 2 counter; Clock B is
the clock input to the ÷ 5 counter. The internal flip−flops are
toggled by high−to−low transitions of the clock input.
Output of the ÷ 2 counter.
QB, QC, QD (Pins 5, 6, 7, 9, 10, 11)
Outputs of the ÷ 5 counter. QD is the most significant bit.
QA is the least significant bit when the counter is connected
for BCD output as in Figure 5. QB is the least significant bit
when the counter is operating in the bi−quinary mode as in
Figure 6.
CONTROL INPUTS
Reset (Pins 2, 14)
Asynchronous reset. A high at the Reset input prevents
counting, resets the internal flip−flops, and forces QA
through QD low.
SWITCHING WAVEFORMS
CLOCK
tf
90%
50%
10% 10%
tr
tw
VCC
VCC
GND
GND
tw
tPHL
1/fmax
tPLH
Q
50%
RESET
Q
tPHL
90%
50%
10%
50%
trec
tTLH
tTHL
VCC
50%
CLOCK
GND
Figure 2.
Figure 3.
http://onsemi.com
4
MC74HC390A
TEST CIRCUIT
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
Figure 4.
EXPANDED LOGIC DIAGRAM
1, 15
CLOCK A
Q
C
D
4, 12
CLOCK B
R
R
5, 11
Q
QB
Q
C
D
QA
Q
C
D
3, 13
Q
R
Q
6, 10 Q
C
Q
7, 9 Q
D
C
D
R
2, 14
RESET
TIMING DIAGRAM
(QA Connected to Clock B)
0
1
2
3
4
5
6
7
8
9
CLOCK A
RESET
QA
QB
QC
QD
http://onsemi.com
5
0
1
2
3
4
5
6
MC74HC390A
APPLICATIONS INFORMATION
Each half of the MC54/74HC390A has independent ÷ 2
and ÷ 5 sections (except for the Reset function). The ÷ 2 and
÷ 5 counters can be connected to give BCD or bi−quinary
(2−5) count sequences. If Output QA is connected to the
Clock B input (Figure 4), a decade divider with BCD output
is obtained. The function table for the BCD count sequence
is given in Table 1.
To obtain a bi−quinary count sequence, the input signals
connected to the Clock B input, and output QD is connected
to the Clock A input (Figure 6). QA provides a 50% duty
cycle output. The bi−quinary count sequence function table
is given in Table 2.
Table 1. BCD Count Sequence*
Table 2. Bi−Quinary Count Sequence**
Output
QD
Count
QC
0
L
L
1
L
L
2
L
L
3
L
L
4
L
H
5
L
H
6
L
H
7
L
H
8
H
L
9
H
L
*QA connected to Clock B input.
Output
QB
QA
Count
QA
QD
QC
QB
L
L
H
H
L
L
H
H
L
L
L
H
L
H
L
H
L
H
L
H
0
1
2
3
4
8
9
10
11
12
L
L
L
L
L
H
H
H
H
H
L
L
L
L
H
L
L
L
L
H
L
L
H
H
L
L
L
H
H
L
L
H
L
H
L
L
H
L
H
L
** QD connected to Clock A input.
CONNECTION DIAGRAMS
1, 15
CLOCK A
÷2
COUNTER
5, 11
4, 12
CLOCK B
3, 13
÷5
COUNTER
6, 10
7, 9
1, 15
QA
CLOCK A
QB
CLOCK B
QC
÷5
COUNTER
QD
3, 13
QA
5, 11
QB
6, 10
7, 9
QC
QD
2, 14
2, 14
RESET
4, 12
÷2
COUNTER
RESET
Figure 5. BCD Count
Figure 6. Bi-Quinary Count
ORDERING INFORMATION
Package
Shipping†
MC74HC390ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74HC390ADR2G
SOIC−16
(Pb−Free)
2500 / Tape & Reel
MC74HC390ADTR2G
TSSOP−16
(Pb−Free)
2500 / Tape & Reel
NLV74HC390ADR2G*
SOIC−16
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable
http://onsemi.com
6
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−16
CASE 751B−05
ISSUE K
DATE 29 DEC 2006
SCALE 1:1
−A−
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
16 PL
0.25 (0.010)
M
T B
S
A
S
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
COLLECTOR
BASE
EMITTER
NO CONNECTION
EMITTER
BASE
COLLECTOR
COLLECTOR
BASE
EMITTER
NO CONNECTION
EMITTER
BASE
COLLECTOR
EMITTER
COLLECTOR
STYLE 2:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
CATHODE
ANODE
NO CONNECTION
CATHODE
CATHODE
NO CONNECTION
ANODE
CATHODE
CATHODE
ANODE
NO CONNECTION
CATHODE
CATHODE
NO CONNECTION
ANODE
CATHODE
STYLE 3:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
COLLECTOR, DYE #1
BASE, #1
EMITTER, #1
COLLECTOR, #1
COLLECTOR, #2
BASE, #2
EMITTER, #2
COLLECTOR, #2
COLLECTOR, #3
BASE, #3
EMITTER, #3
COLLECTOR, #3
COLLECTOR, #4
BASE, #4
EMITTER, #4
COLLECTOR, #4
STYLE 4:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
STYLE 5:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
DRAIN, DYE #1
DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4
DRAIN, #4
GATE, #4
SOURCE, #4
GATE, #3
SOURCE, #3
GATE, #2
SOURCE, #2
GATE, #1
SOURCE, #1
STYLE 6:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
STYLE 7:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
SOURCE N‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
SOURCE P‐CH
SOURCE P‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE N‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
SOURCE N‐CH
COLLECTOR, DYE #1
COLLECTOR, #1
COLLECTOR, #2
COLLECTOR, #2
COLLECTOR, #3
COLLECTOR, #3
COLLECTOR, #4
COLLECTOR, #4
BASE, #4
EMITTER, #4
BASE, #3
EMITTER, #3
BASE, #2
EMITTER, #2
BASE, #1
EMITTER, #1
SOLDERING FOOTPRINT
8X
6.40
16X
1
1.12
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42566B
SOIC−16
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
TSSOP−16
CASE 948F−01
ISSUE B
16
DATE 19 OCT 2006
1
SCALE 2:1
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
S
V
S
K
S
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
N
8
1
0.25 (0.010)
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL
IN EXCESS OF THE K DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT
7.06
16
XXXX
XXXX
ALYW
1
1
0.65
PITCH
16X
0.36
DOCUMENT NUMBER:
DESCRIPTION:
16X
1.26
98ASH70247A
TSSOP−16
DIMENSIONS: MILLIMETERS
XXXX
A
L
Y
W
G or G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative