MC74LCX244
Octal Buffer, Non-Inverting,
Low Voltage, 3-State
The MC74LCX244 is a high performance, non−inverting octal
buffer operating from a 2.3 to 5.5 V supply. High impedance TTL
compatible inputs significantly reduce current loading to input drivers
while TTL compatible outputs offer improved switching noise
performance. A VI specification of 5.5 V allows MC74LCX244 inputs
to be safely driven from 5 V devices. The MC74LCX244 is suitable
for memory address driving and all TTL level bus oriented transceiver
applications.
Current drive capability is 24 mA at the outputs. The Output Enable
(OE) input, when HIGH, disables the output by placing them in
a HIGH Z condition.
Features
•
•
•
•
•
•
•
•
•
•
•
•
www.onsemi.com
SOIC−20 WB
DW SUFFIX
CASE 751D
TSSOP−20
DT SUFFIX
CASE 948E
QFN20
MN SUFFIX
CASES 485AA
& 485CB
MARKING DIAGRAMS
Designed for 2.3 to 5.5 V VCC Operation
5 V Tolerant − Interface Capability With 5 V TTL Logic
Supports Live Insertion and Withdrawal
IOFF Specification Guarantees High Impedance When VCC = 0 V
LVTTL Compatible
LVCMOS Compatible
24 mA Balanced Output Sink and Source Capability
Near Zero Static Supply Current in All Three Logic States (10 mA)
Substantially Reduces System Power Requirements
Latchup Performance Exceeds 500 mA
ESD Performance:
♦ Human Body Model >2000 V
♦ Machine Model >200 V
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
20
LCX244
AWLYYWWG
1
SOIC−20 WB
20
LCX
244
ALYW G
G
1
TSSOP−20
1
1
LCX
244
ALYWG
G
244
ALYWG
G
QFN20 − 485AA
QFN20 − 485CB
A
L, WL
Y, YY
W, WW
G or G
=
=
=
=
=
Assembly Location
Wafer Lot
Year
Work Week
Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
© Semiconductor Components Industries, LLC, 2016
October, 2017 − Rev. 20
1
Publication Order Number:
MC74LCX244/D
MC74LCX244
VCC
2OE
1O0
2D0
1O1
2D1
1O2
2D2
1O3
2D3
20
19
18
17
16
15
14
13
12
11
1OE
1D0
1D1
1
2
3
4
5
6
7
8
9
10
1OE
1D0
2O0
1D1
2O1
1D2
2O2
1D3
2O3
GND
1D2
1D3
19
1
2
18
4
16
6
14
8
12
1O0
1O1
1O2
1O3
12
11
20
QFN
PIN #1
2OE
19
10
2D0
2
9
2D1
17
3
15
5
13
7
11
9
2O0
2O1
Figure 1. Pinouts: 20−Lead (Top View)
2D2
PIN NAMES
PINS
FUNCTION
2D3
nOE
Output Enable Inputs
1Dn, 2Dn
Data Inputs
1On, 2On
3−State Outputs
1OE
2OE
OUTPUTS
1Dn
2Dn
1On, 2On
L
L
L
L
H
H
H
X
Z
2O3
Figure 2. Logic Diagram
TRUTH TABLE
INPUTS
2O2
H = High Voltage Level
L = Low Voltage Level
Z = High Impedance State
X = High or Low Voltage Level and Transitions are Acceptable
For ICC reasons, DO NOT FLOAT Inputs
www.onsemi.com
2
MC74LCX244
MAXIMUM RATINGS
Symbol
VCC
Parameter
Value
DC Supply Voltage
Condition
Units
−0.5 to +7.0
V
V
VI
DC Input Voltage
−0.5 ≤ VI ≤ +7.0
VO
DC Output Voltage
−0.5 ≤ VO ≤ +7.0
Output in 3−State
V
−0.5 ≤ VO ≤ VCC + 0.5
Output in HIGH or LOW State (Note 1)
V
IIK
DC Input Diode Current
−50
VI < GND
mA
IOK
DC Output Diode Current
−50
VO < GND
mA
+50
VO > VCC
mA
IO
DC Output Source/Sink Current
±50
mA
ICC
DC Supply Current Per Supply Pin
±100
mA
IGND
DC Ground Current Per Ground Pin
TSTG
Storage Temperature Range
±100
mA
−65 to +150
°C
TL
Lead Temperature, 1 mm from Case
for 10 Seconds
TL = 260
°C
TJ
Junction Temperature Under Bias
TJ = 150
°C
qJA
Thermal Resistance (Note 2)
qJA = 140
°C/W
MSL
Moisture Sensitivity
Level 1
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. IO absolute maximum rating must be observed.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2 ounce copper trace no air flow.
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Parameter
Supply Voltage
Operating
Data Retention Only
Min
Typ
Max
2.0
1.5
2.5, 3.3
2.5, 3.3
5.5
5.5
V
VI
Input Voltage
0
5.5
VO
Output Voltage
HIGH or LOW State
3−State
0
0
VCC
5.5
IOH
IOL
TA
Dt/DV
Units
V
V
HIGH Level Output Current
VCC = 3.0 V − 3.6 V
VCC = 2.7 V − 3.0 V
−24
−12
mA
LOW Level Output Current
VCC = 3.0 V − 3.6 V
VCC = 2.7 V − 3.0 V
24
12
mA
Operating Free−Air Temperature
Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V
−55
+125
°C
0
10
ns/V
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
www.onsemi.com
3
MC74LCX244
DC ELECTRICAL CHARACTERISTICS
TA = −55°C to +125°C
Symbol
VIH
Characteristic
HIGH Level Input Voltage (Note 3)
VIL
LOW Level Input Voltage (Note 3)
VOH
HIGH Level Output Voltage
Condition
Min
2.3 V ≤ VCC ≤ 2.7 V
1.7
2.7 V ≤ VCC ≤ 3.6 V
2.0
Max
V
2.3 V ≤ VCC ≤ 2.7 V
0.7
2.7 V ≤ VCC ≤ 3.6 V
VOL
LOW Level Output Voltage
IOZ
3−State Output Current
IOFF
Power Off Leakage Current
Units
V
0.8
2.3 V ≤ VCC ≤ 3.6 V; IOL = 100 mA
VCC − 0.2
VCC = 2.3 V; IOH = −8 mA
1.8
VCC = 2.7 V; IOH = −12 mA
2.2
VCC = 3.0 V; IOH = −18 mA
2.4
VCC = 3.0 V; IOH = −24 mA
2.2
V
2.3 V ≤ VCC ≤ 3.6 V; IOL = 100 mA
0.2
VCC = 2.3 V; IOL = 8 mA
0.6
VCC = 2.7 V; IOL = 12 mA
0.4
V
VCC = 3.0 V; IOL = 16 mA
0.4
VCC = 3.0 V; IOL = 24 mA
0.55
VCC = 3.6 V, VIN = VIH or VIL,
VOUT = 0 to 5.5 V
±5
mA
VCC = 0, VIN = 5.5 V or VOUT = 5.5 V
10
mA
IIN
Input Leakage Current
VCC = 3.6 V, VIN = 5.5 V or GND
±5
mA
ICC
Quiescent Supply Current
VCC = 3.6 V, VIN = 5.5 V or GND
10
mA
2.3 ≤ VCC ≤ 3.6 V; VIH = VCC − 0.6 V
500
mA
DICC
Increase in ICC per Input
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. These values of VI are used to test DC electrical characteristics only.
AC CHARACTERISTICS (tR = tF = 2.5 ns; RL = 500 W)
Limits
TA = −55°C to +125°C
VCC = 3.0 V to 3.6 V
CL = 50 pF
Symbol
Parameter
VCC = 2.5 V ± 0.2
VCC = 2.7 V
CL = 50 pF
CL = 30 pF
Waveform
Min
Max
Min
Max
Min
Max
Units
tPLH
tPHL
Propagation Delay
Input to Output
1
1.5
1.5
6.5
6.5
1.5
1.5
7.5
7.5
1.5
1.5
7.8
7.8
ns
tPZH
tPZL
Output Enable Time to
High and Low Level
2
1.5
1.5
8.0
8.0
1.5
1.5
9.0
9.0
1.5
1.5
10
10
ns
tPHZ
tPLZ
Output Disable Time From
High and Low Level
2
1.5
1.5
7.0
7.0
1.5
1.5
8.0
8.0
1.5
1.5
8.4
8.4
ns
tOSHL
tOSLH
Output−to−Output Skew
(Note 4)
1.0
1.0
ns
4. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
DYNAMIC SWITCHING CHARACTERISTICS
TA = +25°C
Symbol
Characteristic
Condition
Min
Typ
Max
Units
VOLP
Dynamic LOW Peak Voltage (Note 5)
VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V
VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V
0.8
0.6
V
VOLV
Dynamic LOW Valley Voltage (Note 5)
VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V
VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V
−0.8
−0.6
V
5. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is
measured in the LOW state.
www.onsemi.com
4
MC74LCX244
CAPACITIVE CHARACTERISTICS
Symbol
CIN
Parameter
Condition
Typical
Units
VCC = 3.3 V, VI = 0 V or VCC
7
pF
VCC = 3.3 V, VI = 0 V or VCC
8
pF
10 MHz, VCC = 3.3 V, VI = 0 V or VCC
25
pF
Input Capacitance
COUT
Output Capacitance
CPD
Power Dissipation Capacitance
VCC
Vmi
1Dn, 2Dn
Vmi
0V
tPLH
tPHL
VOH
Vmo
1On, 2On
Vmo
VOL
WAVEFORM 1 − PROPAGATION DELAYS
tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
VCC
Vmi
1OE, 2OE
Vmi
0V
tPZH
tPHZ
VCC
VOH - 0.3 V
Vmo
1On, 2On
≈0V
tPZL
tPLZ
≈ 3.0 V
Vmo
1On, 2On
VOL + 0.3 V
GND
WAVEFORM 2 − OUTPUT ENABLE AND DISABLE TIMES
tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
Figure 3. AC Waveforms
VCC
Symbol
3.3 V ± 0.3 V
2.7 V
2.5 V ± 0.2 V
Vmi
1.5 V
1.5 V
VCC/2
Vmo
1.5 V
1.5 V
VCC/2
VHZ
VOL + 0.3 V
VOL + 0.3 V
VOL + 0.15 V
VLZ
VOH − 0.3 V
VOH − 0.3 V
VOH − 015 V
www.onsemi.com
5
MC74LCX244
VCC
PULSE
GENERATOR
DUT
RT
CL
RL
TEST
SWITCH
tPLH, tPHL
Open
tPZL, tPLZ
6 V at VCC = 3.3 ± 0.3 V
6 V at VCC = 2.5 ± 0.2 V
Open Collector/Drain tPLH and tPHL
6V
tPZH, tPHZ
GND
CL =
CL =
RL =
RT =
6V
OPEN
GND
R1
50 pF at VCC = 3.3 ± 0.3 V or equivalent (includes jig and probe capacitance)
30 pF at VCC = 2.5 ± 0.2 V or equivalent (includes jig and probe capacitance)
R1 = 500 W or equivalent
ZOUT of pulse generator (typically 50 W)
Figure 4. Test Circuit
ORDERING INFORMATION
Package
Shipping†
MC74LCX244DWG
SOIC−20 WB
(Pb−Free)
38 Units / Rail
MC74LCX244DWR2G
SOIC−20 WB
(Pb−Free)
1000 / Tape & Reel
MC74LCX244DTG
TSSOP−20
(Pb−Free)
75 Units / Rail
MC74LCX244DTR2G
TSSOP−20
(Pb−Free)
2500 / Tape & Reel
NLV74LCX244DTR2G*
TSSOP−20
(Pb−Free)
2500 / Tape & Reel
MC74LCX244MNTWG
QFN20, 2.5x4.5
(Pb−Free)
3000 / Tape & Reel
MC74LCX244MN2TWG
QFN20, 2.5x3.5
(Pb−Free)
3000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable
www.onsemi.com
6
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
1
QFN20, 2.5x4.5 MM
CASE 485AA−01
ISSUE B
DATE 30 APR 2010
20
SCALE 2:1
PIN ONE REFERENCE
D
A
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
E
2X
0.15 C
2X
0.15 C
TOP VIEW
GENERIC MARKING
DIAGRAM*
0.10 C
A
20X
0.08 C
(A3)
A1
SIDE VIEW
11
20X
L
e
9
12
e
E2
20X
b
0.10 C A B
0.05 C
19
2
NOTE 3
1
20
1
C
D2
20X
K
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.20
0.30
2.50 BSC
0.85
1.15
4.50 BSC
2.85
3.15
0.50 BSC
0.20
--0.35
0.45
SEATING
PLANE
XXXX
XXXX
ALYWG
G
XXXX = Specific Device Code
A
= Assembly Location
L
= Wafer Lot
Y
= Year
W
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
BOTTOM VIEW
DOCUMENT NUMBER:
DESCRIPTION:
98AON12653D
QFN20. 2.5X4.5 MM
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
QFN20, 2.5x3.5, 0.4P
CASE 485CB
ISSUE O
1
SCALE 2:1
L
B
ÉÉÉ
ÉÉÉ
ÉÉÉ
DETAIL A
ALTERNATE TERMINAL
CONSTRUCTIONS
E
TOP VIEW
MOLD CMPD
DETAIL B
ALTERNATE
CONSTRUCTIONS
A
DETAIL B
(A3)
0.10 C
GENERIC MARKING
DIAGRAM*
A1
0.08 C
NOTE 4
C
SIDE VIEW
XXXX
ALYWG
G
SEATING
PLANE
0.10 C A B
XXXX = Specific Device Code
A
= Assembly Location
L
= Wafer Lot
Y
= Year
W
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
D2
20X
L
9
12
0.10 C A B
DETAIL A
E2
20X
2
e
19
1
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.15
0.25
2.50 BSC
0.90
1.10
3.50 BSC
2.00
2.20
0.40 BSC
0.35
0.45
--0.15
DIM
A
A1
A3
b
D
D2
E
E2
e
L
L1
ÇÇÇ
ÇÇÇ
ÉÉÉ
ÉÉÉ
EXPOSED Cu
0.15 C
2X
L
L1
0.15 C
2X
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
A
D
PIN ONE
REFERENCE
DATE 25 OCT 2011
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
b
0.10 C A B
0.05 C
NOTE 3
SOLDERING FOOTPRINT*
e/2
3.80
BOTTOM VIEW
2.24
PACKAGE
OUTLINE
20X
2.80 1.14
0.63
1
0.40
PITCH
20X
0.25
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
DOCUMENT NUMBER:
DESCRIPTION:
98AON65196E
QFN20, 2.5X3.5, 0.4P
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−20 WB
CASE 751D−05
ISSUE H
DATE 22 APR 2015
SCALE 1:1
A
20
q
X 45 _
M
E
h
0.25
H
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
11
B
M
D
1
10
20X
B
b
0.25
M
T A
S
B
DIM
A
A1
b
c
D
E
e
H
h
L
q
S
L
A
18X
e
SEATING
PLANE
A1
c
T
GENERIC
MARKING DIAGRAM*
RECOMMENDED
SOLDERING FOOTPRINT*
20
20X
20X
1.30
0.52
20
XXXXXXXXXXX
XXXXXXXXXXX
AWLYYWWG
11
1
11.00
1
XXXXX
A
WL
YY
WW
G
10
1.27
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
DOCUMENT NUMBER:
DESCRIPTION:
MILLIMETERS
MIN
MAX
2.35
2.65
0.10
0.25
0.35
0.49
0.23
0.32
12.65
12.95
7.40
7.60
1.27 BSC
10.05
10.55
0.25
0.75
0.50
0.90
0_
7_
98ASB42343B
SOIC−20 WB
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
TSSOP−20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016
SCALE 2:1
20X
0.15 (0.006) T U
2X
L
K REF
0.10 (0.004)
S
L/2
20
M
T U
S
V
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
K
K1
S
J J1
11
B
SECTION N−N
−U−
PIN 1
IDENT
0.25 (0.010)
N
1
10
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
G
D
H
DETAIL E
0.100 (0.004)
−T− SEATING
PLANE
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
6.40
6.60
4.30
4.50
--1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.27
0.37
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.252
0.260
0.169
0.177
--0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.011
0.015
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT
7.06
XXXX
XXXX
ALYWG
G
1
0.65
PITCH
16X
0.36
16X
1.26
DOCUMENT NUMBER:
98ASH70169A
DESCRIPTION:
TSSOP−20 WB
A
L
Y
W
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
DIMENSIONS: MILLIMETERS
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative