0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC74LVX139DTR2G

MC74LVX139DTR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP16

  • 描述:

    IC DECODER/DEMUX 1X2:4 16TSSOP

  • 数据手册
  • 价格&库存
MC74LVX139DTR2G 数据手册
MC74LVX139 Dual 2-to-4 Decoder/ Demultiplexer The MC74LVX139 is an advanced high speed CMOS 2−to−4 decoder/demultiplexer fabricated with silicon gate CMOS technology. When the device is enabled (E = low), it can be used for gating or as a data input for demultiplexing operations. When the enable input is held high, all four outputs are fixed high, independent of other inputs. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems. http://onsemi.com Features • • • • • • • • • • • • SOIC−16 D SUFFIX CASE 751B High Speed: tPD = 6.0 ns (Typ) at VCC = 3.3 V Low Power Dissipation: ICC = 4 mΑ (Max) at TA = 25°C TSSOP−16 DT SUFFIX CASE 948F PIN ASSIGNMENT High Noise Immunity: VNIH = VNIL = 28% VCC VCC Eb A0b A1b Y0b Y1b Y2b Y3b Power Down Protection Provided on Inputs 16 15 14 13 12 11 10 9 1 2 4 6 7 8 Balanced Propagation Delays Designed for 2 V to 3.6 V Operating Range Low Noise: VOLP = 0.5 V (Max) 3 5 Pin and Function Compatible with Other Standard Logic Families Ea A0a A1a Y0a Y1a Y2aY3a GND Latchup Performance Exceeds 300 mA Chip Complexity: 100 FETs or 25 Equivalent Gates MARKING DIAGRAMS ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V These Devices are Pb−Free and are RoHS Compliant 16 16 LVX 139 ALYWG G LVX139G AWLYWW 1 ADDRESS INPUTS A0a A1a 2 4 3 5 6 7 A0b A1b Y2a ACTIVE−LOW OUTPUTS Y3a 1 Ea ADDRESS INPUTS Y1a 1 SOIC−16 Y0a LVX139 A WL, L Y WW, W G or G TSSOP−16 = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) 14 12 13 11 10 9 FUNCTION TABLE Y0b Y1b Y2b ACTIVE−LOW OUTPUTS Y3b 15 Eb Inputs Outputs E A1 A0 Y0 Y1 Y2 Y3 H L L L L X L L H H X L H L H H L H H H H H L H H H H H H L H H H L H Figure 1. Logic Diagram ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. © Semiconductor Components Industries, LLC, 2014 August, 2014 − Rev. 4 1 Publication Order Number: MC74LVX139/D MC74LVX139 En Y0 Y1 A0 Y2 Y3 A1 Figure 2. Expanded Logic Diagram (1/2 of Device) A1a 3 A0a Ea X/Y 1 0 2 2 1 1 EN 2 3 4 Y0a A1a 3 5 Y1a A0a 2 6 Y2a Ea 1 7 Y3a 0 1 DMUX 0 0 G 3 1 12 Y0b A1b 13 A0b 14 Eb 15 2 3 4 Y0a 5 Y1a 6 Y2a 7 Y3a 12 Y0b 11 Y1b A1b 13 10 Y2b A0b 14 10 Y2b Eb 15 9 Y3b 9 Y3b Figure 3. IEC Logic Diagram INPUT Figure 4. Input Equivalent Circuit http://onsemi.com 2 11 Y1b MC74LVX139 MAXIMUM RATINGS Symbol Parameter Value Unit VCC Positive DC Supply Voltage −0.5 to +7.0 V VIN Digital Input Voltage −0.5 to +7.0 V VOUT DC Output Voltage −0.5 to VCC +0.5 V IIK Input Diode Current −20 mA IOK Output Diode Current ±20 mA IOUT DC Output Current, per Pin ±25 mA ICC DC Supply Current, VCC and GND Pins ±75 mA PD Power Dissipation in Still Air 200 180 mW TSTG Storage Temperature Range −65 to +150 °C VESD ESD Withstand Voltage > 2000 > 200 > 2000 V Above VCC and Below GND at 125°C (Note 4) ±300 mA SOIC Package TSSOP 143 164 °C/W ILATCHUP qJA SOIC Package TSSOP Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3) Latchup Performance Thermal Resistance, Junction−to−Ambient Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Tested to EIA/JESD22−A114−A 2. Tested to EIA/JESD22−A115−A 3. Tested to JESD22−C101−A 4. Tested to EIA/JESD78 RECOMMENDED OPERATING CONDITIONS Symbol Characteristics VCC DC Supply Voltage VIN DC Input Voltage VOUT DC Output Voltage Output in 3−State High or Low State TA Operating Temperature Range, all Package Types tr, tf Input Rise or Fall Time VCC = 5.0 V ± 0.5 V Min Max Unit 2.0 3.6 V 0 5.5 V 0 VCC V −40 85 °C 0 100 ns/V Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. http://onsemi.com 3 MC74LVX139 DC CHARACTERISTICS (Voltages Referenced to GND) VCC Symbol Parameter Condition −40°C ≤ TA ≤ 85°C TA = 25°C (V) Min Typ Max Min Max Unit VIH Minimum High−Level Input Voltage 2.0 3.0 3.6 0.75 VCC 0.7 VCC 0.7 VCC − − − − − − 0.75 VCC 0.7 VCC 0.7 VCC − − − V VIL Maximum Low−Level Input Voltage 2.0 3.0 3.6 − − − − − − 0.25 VCC 0.3 VCC 0.3 VCC − − − 0.25 VCC 0.3 VCC 0.3 VCC V VOH High−Level Output Voltage IOH = −50 mA IOH = −50 mA IOH = −4 mA 2.0 3.0 3.0 1.9 2.9 2.58 2.0 3.0 3.0 − − − 1.9 2.9 2.48 − − − V VOL Low−Level Output Voltage IOL = 50 mA IOH = 50 mA IOH = 4 mA 2.0 3.0 3.0 − − − 0.0 0.1 0.1 0.36 − − − 0.1 0.1 0.44 V IIN Input Leakage Current VIN = 5.5 V or GND 0 to 3.6 − − ±0.1 − ±1.0 mA ICC Maximum Quiescent Supply Current (per package) VIN = VCC or GND 3.6 1.0 1.0 2.0 − − mA Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ AC ELECTRICAL CHARACTERISTICS Input tr = tf = 3.0 ns −40°C ≤ TA ≤ 85°C TA = 25°C Symbol tPLH, tPHL tPLH, tPHL CIN Parameter Maximum Propagation Delay, A to Y Maximum Propagation Delay, E to Y Test Conditions Min Typ Max Min Max Unit ns VCC = 2.7 V CL = 15 pF CL = 50 pF − − 8.5 11.0 15.0 16.5 1.0 1.0 17.8 18.0 VCC = 3.3 V ± 0.3 V CL = 15 pF CL = 50 pF − − 6.0 8.5 10.0 13.0 1.0 1.0 12.0 15.0 VCC = 2.7 V CL = 15 pF CL = 50 pF − − 8.0 10.0 13.0 16.5 1.0 1.0 15.5 18.0 VCC = 3.3 V ± 0.3 V CL = 15 pF CL = 50 pF − − 5.5 7.5 8.2 13.0 1.0 1.0 10.0 15.0 − 4 10 − 10 Maximum Input Capacitance ns pF Typical @ 25°C, VCC = 3.3 V CPD 26 Power Dissipation Capacitance (Note 5) pF 5. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD  VCC  fin + ICC/2 (per decoder). CPD is used to determine the no−load dynamic power consumption; PD = CPD  VCC2  fin + ICC  VCC. VCC A VCC E 50% 50% GND tPHL tPLH Y GND tPHL 50% VCC Y Figure 5. Switching Waveform tPLH 50% VCC Figure 6. Switching Waveform http://onsemi.com 4 MC74LVX139 TEST POINT OUTPUT DEVICE UNDER TEST CL * *Includes all probe and jig capacitance Figure 7. Test Circuit ORDERING INFORMATION Package Shipping† MC74LVX139DR2G SOIC−16 (Pb−Free) 2500 Tape & Reel MC74LVX139DTR2G TSSOP−16 (Pb−Free) 2500 Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. EMBOSSED CARRIER DIMENSIONS (See Notes 6 and 7) Tape Size B1 Max 8 mm 4.35 mm (0.179”) 12 mm 8.2 mm (0.323”) 16 mm 24 mm D D1 E F K P P0 P2 R T W 1.5 mm + 0.1 −0.0 (0.059” +0.004 −0.0) 1.0 mm Min (0.179”) 1.75 mm ±0.1 (0.069 ±0.004”) 3.5 mm ±0.5 (1.38 ±0.002”) 2.4 mm Max (0.094”) 4.0 mm ±0.10 (0.157 ±0.004”) 4.0 mm ±0.1 (0.157 ±0.004”) 2.0 mm ±0.1 (0.079 ±0.004”) 25 mm (0.98”) 0.6 mm (0.024) 8.3 mm (0.327) 5.5 mm ±0.5 (0.217 ±0.002”) 6.4 mm Max (0.252”) 4.0 mm ±0.10 (0.157 ±0.004”) 8.0 mm ±0.10 (0.315 ±0.004”) 12.1 mm (0.476”) 7.5 mm ±0.10 (0.295 ±0.004”) 7.9 mm Max (0.311”) 4.0 mm ±0.10 (0.157 ±0.004”) 8.0 mm ±0.10 (0.315 ±0.004”) 12.0 mm ±0.10 (0.472 ±0.004”) 16.3 mm (0.642) 20.1 mm (0.791”) 11.5 mm ±0.10 (0.453 ±0.004”) 11.9 mm Max (0.468”) 16.0 mm ±0.10 (0.63 ±0.004”) 24.3 mm (0.957) 1.5 mm Min (0.060) 30 mm (1.18”) 12.0 mm ±0.3 (0.470 ±0.012”) 6. Metric Dimensions Govern−English are in parentheses for reference only. 7. A0, B0, and K0 are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity http://onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−16 CASE 751B−05 ISSUE K DATE 29 DEC 2006 SCALE 1:1 −A− 16 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 9 −B− 1 P 8 PL 0.25 (0.010) 8 M B S G R K F X 45 _ C −T− SEATING PLANE J M D DIM A B C D F G J K M P R MILLIMETERS MIN MAX 9.80 10.00 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.386 0.393 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.229 0.244 0.010 0.019 16 PL 0.25 (0.010) M T B S A S STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR EMITTER COLLECTOR STYLE 2: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3 COLLECTOR, #3 COLLECTOR, #4 BASE, #4 EMITTER, #4 COLLECTOR, #4 STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. STYLE 5: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1 SOURCE, #1 STYLE 6: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE STYLE 7: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. SOURCE N‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P‐CH SOURCE P‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N‐CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE N‐CH COLLECTOR, DYE #1 COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 BASE, #4 EMITTER, #4 BASE, #3 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1 EMITTER, #1 SOLDERING FOOTPRINT 8X 6.40 16X 1 1.12 16 16X 0.58 1.27 PITCH 8 9 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: DESCRIPTION: 98ASB42566B SOIC−16 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−16 CASE 948F−01 ISSUE B 16 DATE 19 OCT 2006 1 SCALE 2:1 16X K REF 0.10 (0.004) 0.15 (0.006) T U M T U S V S K S ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ K1 2X L/2 16 9 J1 B −U− L SECTION N−N J PIN 1 IDENT. N 8 1 0.25 (0.010) M 0.15 (0.006) T U S A −V− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. N F DETAIL E −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 4.90 5.10 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.18 0.28 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.193 0.200 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.007 0.011 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT 7.06 16 XXXX XXXX ALYW 1 1 0.65 PITCH 16X 0.36 DOCUMENT NUMBER: DESCRIPTION: 16X 1.26 98ASH70247A TSSOP−16 DIMENSIONS: MILLIMETERS XXXX A L Y W G or G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC74LVX139DTR2G 价格&库存

很抱歉,暂时无法提供与“MC74LVX139DTR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货