0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC74VHC14DTR2

MC74VHC14DTR2

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP-14_5X4.4MM

  • 描述:

    IC INVERTER 6CH 6-INP 14TSSOP

  • 数据手册
  • 价格&库存
MC74VHC14DTR2 数据手册
DATA SHEET www.onsemi.com Hex Schmitt Inverter MARKING DIAGRAMS MC74VHC14 14 The MC74VHC14 is an advanced high speed CMOS Schmitt inverter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. Pin configuration and function are the same as the MC74VHC04 but the inputs have hysteresis and, with its Schmitt trigger function, the VHC14 can be used as a line receiver which will receive slow input signals. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V systems to 3.0 V systems. Features • • • • • • • • • • High Speed: tPD = 5.5 ns (Typ) at VCC = 5.0 V Low Power Dissipation: ICC = 2.0 mA (Max) at TA = 25°C High Noise Immunity: VNIH = VNIL = 28% VCC VHC14G AWLYWW 1 14 TSSOP DT SUFFIX CASE 948G 1 VHC 14 ALYW   A = Assembly Location WL, L = Wafer Lot Y = Year WW, W = Work Week G or  = Pb−Free Package (Note: Microdot may be in either location) FUNCTION TABLE Power Down Protection Provided on Inputs Inputs Outputs Balanced Propagation Delays A Y Designed for 2.0 V to 5.5 V Operating Range L H H L Low Noise: VOLP = 0.8 V (Max) Pin and Function Compatible with Other Standard Logic Families Latchup Performance Exceeds 300 mA ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V ORDERING INFORMATION • Chip Complexity: 60 FETs or 15 Equivalent Gates • NLV Prefix for Automotive and Other Applications Requiring • SOIC−14 D SUFFIX CASE 751A See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant VCC A6 Y6 A5 Y5 A4 Y4 14 13 12 11 10 9 8 1 2 3 4 5 6 7 A1 Y1 A2 Y2 A3 Y3 GND Figure 1. 14−Lead Pinout (Top View) © Semiconductor Components Industries, LLC, 2011 June, 2022 − Rev. 11 1 Publication Order Number: MC74VHC14/D MC74VHC14 1 2 3 4 5 6 9 8 11 10 13 12 A1 A2 A3 Y1 This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND v (Vin or Vout) v VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V CC ). Unused outputs must be left open. Y2 Y3 Y=A A4 A5 A6 Y4 Y5 Y6 Figure 2. Logic Diagram MAXIMUM RATINGS Symbol Parameter VCC Positive DC Supply Voltage Value Unit −0.5 to +7.0 V VIN Digital Input Voltage −0.5 to +7.0 V VOUT DC Output Voltage −0.5 to VCC +0.5 V IIK Input Diode Current −20 mA IOK Output Diode Current $20 mA IOUT DC Output Current, per Pin $25 mA ICC DC Supply Current, VCC and GND Pins $75 mA PD Power Dissipation in Still Air 200 180 mW TSTG Storage Temperature Range −65 to +150 °C VESD ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3) >2000 >200 N/A V Above VCC and Below GND at 125°C (Note 4) $300 mA 143 164 °C/W ILATCHUP qJA SOIC TSSOP Latchup Performance Thermal Resistance, Junction−to−Ambient SOIC TSSOP Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Tested to EIA/JESD22−A114−A. 2. Tested to EIA/JESD22−A115−A. 3. Tested to JESD22−C101−A. 4. Tested to EIA/JESD78. RECOMMENDED OPERATING CONDITIONS Symbol Characteristics Min Max Unit VCC DC Supply Voltage 2.0 5.5 V VIN DC Input Voltage 0 5.5 V DC Output Voltage 0 VCC V VOUT TA Operating Temperature Range, All Package Types tr, tf Input Rise or Fall Time VCC = 3.3 V + 0.3 V VCC = 5.0 V + 0.5 V www.onsemi.com 2 −55 125 °C − − No limit No limit ns/V MC74VHC14 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ DC ELECTRICAL CHARACTERISTICS Symbol Parameter VCC V Test Conditions TA = 25°C Min VT+ Positive Threshold Voltage (Figure 5) 3.0 4.5 5.5 VT− Negative Threshold Voltage (Figure 5) 3.0 4.5 6.0 0.9 1.35 1.65 VH Hysteresis Voltage (Figure 5) 3.0 4.5 5.5 0.30 0.40 0.50 2.0 3.0 4.5 1.9 2.9 4.4 3.0 4.5 2.58 3.94 VOH Minimum High−Level Output Voltage Vin = VIH or VIL IOH = − 50 mA Vin = VIH or VIL VOL Maximum Low−Level Output Voltage IOH = − 4 mA IOH = − 8 mA Vin = VIH or VIL IOL = 50 mA Vin = VIH or VIL Typ Min 2.20 3.15 3.85 Max Unit 2.20 3.15 3.85 V 0.90 1.35 1.65 1.20 1.40 1.60 V 0.30 0.40 0.50 2.0 3.0 4.5 1.20 1.40 1.60 V V 1.9 2.9 4.4 2.48 3.80 2.0 3.0 4.5 IOL = 4 mA IOL = 8 mA −55°C ≤ TA ≤ 125°C Max 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 3.0 4.5 0.36 0.36 0.44 0.44 V Iin Maximum Input Leakage Current Vin = 5.5 V or GND 0 to 5.5 ± 0.1 ± 1.0 mA ICC Maximum Quiescent Supply Current Vin = VCC or GND 5.5 2.0 20.0 mA AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0 ns) TA = 25°C Symbol Parameter tPLH, tPHL Maximum Propagation Delay, A or B to Y Cin Min Test Conditions −55°C ≤ TA ≤ 125°C Typ Max Min Max Unit ns VCC = 3.3 ± 0.3 V CL = 15 pF CL = 50 pF 8.3 10.8 12.8 16.3 1.0 1.0 15.0 18.5 VCC = 5.0 ± 0.5 V CL = 15 pF CL = 50 pF 5.5 7.0 8.6 10.6 1.0 1.0 10.0 12.0 4 10 Maximum Input Capacitance 10 pF Typical @ 25°C, VCC = 5.0 V CPD 21 Power Dissipation Capacitance (Note 5) pF 5. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD  VCC  fin + ICC / 6 (per buffer). CPD is used to determine the no−load dynamic power consumption; PD = CPD  VCC2  fin + ICC  VCC. NOISE CHARACTERISTICS (Input tr = tf = 3.0 ns, CL = 50 pF, VCC = 5.0 V) TA = 25°C Typ Max Unit VOLP Quiet Output Maximum Dynamic VOL 0.4 0.8 V VOLV Quiet Output Minimum Dynamic VOL −0.4 −0.8 V VIHD Minimum High Level Dynamic Input Voltage 3.5 V VILD Maximum Low Level Dynamic Input Voltage 1.5 V Characteristic Symbol www.onsemi.com 3 MC74VHC14 TEST POINT VCC A 50% OUTPUT DEVICE UNDER TEST GND tPLH tPHL CL * 50% VCC Y *Includes all probe and jig capacitance V T , TYPICAL INPUT THRESHOLD VOLTAGE (VOLTS) Figure 3. Switching Waveforms Figure 4. Test Circuit 4 3 (VT+) VHtyp 2 (VT−) 1 2 3 4 5 6 VCC, POWER SUPPLY VOLTAGE (VOLTS) VHtyp = (VT+ typ) − (VT− typ) Figure 5. Typical Input Threshold, VT+, VT− versus Power Supply Voltage VCC VH VT+ VT− Vin VCC VH VT+ VT− Vin GND GND VOH VOH Vout Vout VOL VOL (a) A Schmitt−Trigger Squares Up Inputs With Slow Rise and Fall Times (b) A Schmitt−Trigger Offers Maximum Noise Immunity Figure 6. Typical Schmitt−Trigger Applications www.onsemi.com 4 MC74VHC14 ORDERING INFORMATION Package Shipping† MC74VHC14DG SOIC−14 (Pb−Free) 55 Units / Rail MC74VHC14DR2G SOIC−14 (Pb−Free) 2500 / Tape & Reel MC74VHC14DTG TSSOP−14 (Pb−Free) 96 Units / Rail MC74VHC14DTR2G TSSOP−14 (Pb−Free) 2500 / Tape & Reel NLV74VHC14DTR2G* TSSOP−14 (Pb−Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. www.onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−14 NB CASE 751A−03 ISSUE L 14 1 SCALE 1:1 D DATE 03 FEB 2016 A B 14 8 A3 E H L 1 0.25 B M DETAIL A 7 13X M b 0.25 M C A S B S 0.10 X 45 _ M A1 e DETAIL A h A C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 6.50 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 14 14X 1.18 XXXXXXXXXG AWLYWW 1 1 1.27 PITCH XXXXX A WL Y WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−14 CASE 751A−03 ISSUE L DATE 03 FEB 2016 STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 2: CANCELLED STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−14 WB CASE 948G ISSUE C 14 DATE 17 FEB 2016 1 SCALE 2:1 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S DETAIL E K A −V− K1 J J1 ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE H G D DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 −−− 1.20 −−− 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ GENERIC MARKING DIAGRAM* 14 SOLDERING FOOTPRINT XXXX XXXX ALYWG G 7.06 1 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: 98ASH70246A DESCRIPTION: TSSOP−14 WB A L Y W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC74VHC14DTR2 价格&库存

很抱歉,暂时无法提供与“MC74VHC14DTR2”相匹配的价格&库存,您可以联系我们找货

免费人工找货