MC74VHC257
Quad 2-Channel Multiplexer
with 3-State Outputs
The MC74VHC257 is an advanced high speed CMOS quad
2–channel multiplexer fabricated with silicon gate CMOS technology.
It achieves high speed operation similar to equivalent Bipolar
Schottky TTL while maintaining CMOS low power dissipation.
It consists of four 2–input digital multiplexers with common select
(S) and enable (OE) inputs. When (OE) is held High, selection of data
is inhibited and all the outputs go Low.
The select decoding determines whether the A or B inputs get routed
to the corresponding Y outputs.
The inputs tolerate voltages up to 7V, allowing the interface of 5V
systems to 3V systems.
•
•
•
•
•
•
•
•
•
•
•
High Speed: tPD = 4.1ns (Typ) at VCC = 5V
Low Power Dissipation: ICC = 4µA (Max) at TA = 25°C
High Noise Immunity: VNIH = VNIL = 28% VCC
Power Down Protection Provided on Inputs
Balanced Propagation Delays
Designed for 2V to 5.5V Operating Range
Low Noise: VOLP = 0.8V (Max)
Pin and Function Compatible with Other Standard Logic Families
Latchup Performance Exceeds 300mA
ESD Performance: HBM > 2000V; Machine Model > 200V
Chip Complexity: FETs = 100; Equivalent Gates = 25
http://onsemi.com
MARKING DIAGRAMS
16
SO–16
D SUFFIX
CASE 751B
1
16
VCC
A0
2
15
OE
B0
3
14
A3
Y0
4
13
B3
A1
5
12
Y3
B1
6
11
A2
Y1
7
10
B2
9
Y2
GND
TSSOP–16
DT SUFFIX
CASE 948F
8
16
9
1
8
9
16
A
L, WL
Y
W, WW
VHC257
ALYW
8
1
=
=
=
=
Assembly Location
Wafer Lot
Year
Work Week
ORDERING INFORMATION
Device
8
1
VHC257
ALYW
EIAJ SO–16
M SUFFIX
CASE 966
S
9
VHC257
AWLYWW
Figure 1. Pin Assignment
Package
Shipping
MC74VHC257D
SO–16
48 Units/Rail
MC74VHC257DR2
SO–16
2500 Tape & Reel
MC74VHC257DT
TSSOP–16
96 Units/Rail
MC74VHC257DTR2
TSSOP–16 2500 Tape & Reel
MC74VHC257M
EIAJ–SO–16
50 Units/Rail
MC74VHC257MEL EIAJ–SO–16 2000 Tape & Reel
Semiconductor Components Industries, LLC, 2001
April, 2001 – Rev. 2
1
Publication Order Number:
MC74VHC257/D
MC74VHC257
A0
B0
A1
NIBBLE
INPUTS
B1
A2
B2
A3
B3
OE
S
2
4
3
Y0
5
7
6
Y1
11
9 Y2
10
DATA
OUTPUTS
A0
B0
A1
B1
14
12 Y3
13
OE
S
A2
B2
15
1
A3
B3
Figure 2. Expanded Logic Diagram
OE
S
2
3
5
6
EN
G1
1
1
MUX
11
10
14
13
4
7
9
12
Figure 3. IEC Logic Symbol
FUNCTION TABLE
Inputs
15
1
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND (Vin or Vout) VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or V CC ).
Unused outputs must be left open.
Outputs
Y0 – Y3
H
X
L
L
L
A0–A3
L
H
B0–B3
A0 – A3, B0 – B3 = the levels
of the respective Data–Word
Inputs.
http://onsemi.com
2
Y0
Y1
Y2
Y3
MC74VHC257
MAXIMUM RATINGS (Note 1.)
Value
Unit
VCC
Symbol
Positive DC Supply Voltage
Parameter
–0.5 to +7.0
V
VIN
Digital Input Voltage
–0.5 to +7.0
V
VOUT
DC Output Voltage
–0.5 to VCC +0.5
V
IIK
Input Diode Current
–20
mA
IOK
Output Diode Current
20
mA
IOUT
DC Output Current, per Pin
25
mA
ICC
DC Supply Current, VCC and GND Pins
75
mA
PD
Power Dissipation in Still Air
200
180
mW
TSTG
Storage Temperature Range
–65 to +150
°C
VESD
ESD Withstand Voltage
Human Body Model (Note 2.)
Machine Model (Note 3.)
Charged Device Model (Note 4.)
>2000
>200
>2000
V
ILATCH–UP
Latch–Up Performance
Above VCC and Below GND at 125°C (Note 5.)
300
mA
JA
Thermal Resistance, Junction to Ambient
143
164
°C/W
SOIC Package
TSSOP
SOIC Package
TSSOP
1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the
Recommended Operating Conditions.
2. Tested to EIA/JESD22–A114–A
3. Tested to EIA/JESD22–A115–A
4. Tested to JESD22–C101–A
5. Tested to EIA/JESD78
RECOMMENDED OPERATING CONDITIONS
Symbol
Characteristics
Min
Max
Unit
2.0
5.5
V
VCC
DC Supply Voltage
VIN
DC Input Voltage
0
5.5
V
VOUT
DC Output Voltage
0
VCC
V
TA
Operating Temperature Range, all Package Types
–55
125
°C
tr, tf
Input Rise or Fall Time
0
100
20
ns/V
VCC = 3.3 V + 0.3 V
VCC = 5.0 V + 0.5 V
90
419,300
47.9
100
178,700
20.4
110
79,600
9.4
120
37,000
4.2
130
17,800
2.0
140
8,900
1.0
TJ = 80 ° C
117.8
TJ = 90 ° C
1,032,200
TJ = 100 ° C
80
FAILURE RATE OF PLASTIC = CERAMIC
UNTIL INTERMETALLICS OCCUR
TJ = 110° C
Time, Years
TJ = 120° C
Time, Hours
TJ = 130 ° C
Junction
Temperature °C
NORMALIZED FAILURE RATE
DEVICE JUNCTION TEMPERATURE VERSUS
TIME TO 0.1% BOND FAILURES
1
1
10
100
1000
TIME, YEARS
Figure 4. Failure Rate vs. Time Junction Temperature
http://onsemi.com
3
MC74VHC257
DC CHARACTERISTICS (Voltages Referenced to GND)
VCC
Symbol
VIH
VIL
Parameter
Condition
Minimum High–Level
Input Voltage
Maximum Low–Level
Input Voltage
VOH
Maximum High–Level
Output Voltage
VIN = VIH or VIL
IOH = –50 µA
VIN = VIH or VIL
IOH = –4 mA
IOH = –8 mA
VOL
Maximum Low–Level
Output Voltage
VIN = VIH or VIL
IOL = 50 µA
VIN = VIH or VIL
IOH = 4 mA
IOH = 8 mA
(V)
TA ≤ 85°C
TA = 25°C
Min
Typ
Max
Min
–55°C ≤ TA ≤ 125°C
Max
Min
2.0
1.5
1.5
1.5
1.5
3.0 to
5.5
VCCX
0.7
VCCX
0.7
VCCX
0.7
VCCX
0.7
Max
V
2.0
0.5
0.5
0.5
3.0 to
5.5
VCCX
0.3
VCCX
0.3
VCCX
0.3
2.0
3.0
4.5
1.9
2.9
4.4
3.0
4.5
2.58
3.94
2.0
3.0
4.5
2.0
3.0
4.5
0.0
0.0
0.0
1.9
2.9
4.4
1.9
2.9
4.4
2.48
3.8
2.34
3.66
Unit
V
V
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3.0
4.5
0.36
0.36
0.44
0.44
0.52
0.52
V
IIN
Input Leakage Current
VIN = 5.5 V or GND
0 to
5.5
±0.1
±1.0
±1.0
µA
IOZ
Maximum 3–State
Leakage Current
VIN = VIH or VIL
5.5
±0.25
±2.5
±2.5
µA
Maximum Quiescent
Supply Current
(per package)
VIN = VCC or GND
5.5
4.0
40.0
40.0
µA
ICC
VOUT = VCC or GND
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
AC ELECTRICAL CHARACTERISTICS (Input tr = tf = 3.0ns)
TA = ≤ 85°C
TA = 25°C
Symbol
tPLH,
tPHL
tPLH,
tPHL
tPZL,
tPZH
tPLZ,
tPHZ
CIN
Typ
Max
Min
Max
Min
Max
Unit
Maximum Propagation
Delayy
t Y
A or B to
VCC = 3.3 ± 0.3V
CL = 15pF
CL = 50pF
5.8
8.3
9.3
12.8
1.0
1.0
11.0
14.5
1.0
1.0
11.0
14.5
ns
VCC = 5.0 ± 0.5V
CL = 15pF
CL = 50pF
3.6
5.1
5.9
7.9
1.0
1.0
7.0
9.0
1.0
1.0
7.0
9.0
Maximum Propagation
Delayy
t Y
S to
VCC = 3.3 ± 0.3V
CL = 15pF
CL = 50pF
7.0
9.5
11.0
14.5
1.0
1.0
13.0
16.5
1.0
1.0
13.0
16.5
VCC = 5.0 ± 0.5V
CL = 15pF
CL = 50pF
4.0
5.5
6.8
8.8
1.0
1.0
8.0
10.0
1.0
1.0
8.0
10.0
Maximum Output Enable
Time
t Y
OE to
VCC = 3.3 ± 0.3V
RL = 1 k
CL = 15pF
CL = 50pF
6.7
9.2
10.5
14.0
1.0
1.0
12.5
16.0
1.0
1.0
12.5
16.0
VCC = 5.0 ± 0.5V
RL = 1 k
CL = 15pF
CL = 50pF
3.6
5.1
6.8
8.8
1.0
1.0
8.0
10.0
1.0
1.0
8.0
10.0
Maximum Output Disable
Time
t Y
OE to
VCC = 3.3 ± 0.3V
RL = 1 k
CL = 50pF
12.0
15.0
1.0
16.0
1.0
17.5
VCC = 5.0 ± 0.5V
RL = 1 k
CL = 50pF
5.7
13.0
1.0
14.0
1.0
15.0
4
10
Parameter
Min
–55°C ≤ TA ≤ 125°C
Test Conditions
Maximum Input
Capacitance
10
10
ns
ns
ns
pF
Typical @ 25°C, VCC = 5.0V
CPD
20
Power Dissipation Capacitance (Note 6.)
pF
6. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no–load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
http://onsemi.com
4
MC74VHC257
NOISE CHARACTERISTICS (Input tr = tf = 3.0ns, CL = 50pF, VCC = 5.0V)
TA = 25°C
Symbol
Characteristic
Typ
Max
Unit
VOLP
Quiet Output Maximum Dynamic VOL
0.3
0.8
V
VOLV
Quiet Output Minimum Dynamic VOL
– 0.3
– 0.8
V
VIHD
Minimum High Level Dynamic Input Voltage
3.5
V
VILD
Maximum Low Level Dynamic Input Voltage
1.5
V
OE
VCC
50%
GND
VCC
A, B or S
50%
tPLH
Y
tPZL
GND
tPHL
tPLZ
Y
tPZH
50% VCC
VOH - 0.3V
HIGH
IMPEDANCE
Figure 6. Switching Waveform
TEST POINT
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
VOL + 0.3V
tPHZ
50% VCC
Y
Figure 5. Switching Waveform
HIGH
IMPEDANCE
50% VCC
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
OUTPUT
1 kΩ
CL *
CONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
*Includes all probe and jig capacitance
Figure 7. Test Circuit
Figure 8. Test Circuit
INPUT
Figure 9. Input Equivalent Circuit
http://onsemi.com
5
MC74VHC257
PACKAGE DIMENSIONS
SOIC–16
D SUFFIX
CASE 751B–05
ISSUE J
–A–
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
9
–B–
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
DIM
A
B
C
D
F
G
J
K
M
P
R
F
X 45
C
–T–
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0
7
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0
7
0.229
0.244
0.010
0.019
TSSOP–16
DT SUFFIX
CASE 948F–01
ISSUE O
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉ
ÇÇÇ
ÇÇÇ
ÉÉ
K1
2X
L/2
16
9
J1
B
–U–
L
SECTION N–N
J
PIN 1
IDENT.
8
1
N
0.15 (0.006) T U
S
0.25 (0.010)
A
–V–
M
N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
F
DETAIL E
–W–
C
0.10 (0.004)
–T– SEATING
PLANE
DETAIL E
H
D
G
http://onsemi.com
6
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
--1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0
8
INCHES
MIN
MAX
0.193
0.200
0.169
0.177
--0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.007
0.011
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0
8
MC74VHC257
SOIC EIAJ–16
M SUFFIX
CASE 966–01
ISSUE O
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH OR PROTRUSIONS AND ARE MEASURED
AT THE PARTING LINE. MOLD FLASH OR
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
LE
9
Q1
M
E HE
1
8
L
DETAIL P
Z
D
e
VIEW P
A
A1
b
0.13 (0.005)
c
M
0.10 (0.004)
http://onsemi.com
7
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
MILLIMETERS
MIN
MAX
--2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10
0
0.70
0.90
--0.78
INCHES
MIN
MAX
--0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10
0
0.028
0.035
--0.031
MC74VHC257
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
MC74VHC257/D