0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MC74VHC50DTR2G

MC74VHC50DTR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP14_5X4.4MM

  • 描述:

    BUFFER, AHC/VHC SERIES, 6-FUNC,

  • 数据手册
  • 价格&库存
MC74VHC50DTR2G 数据手册
DATA SHEET www.onsemi.com Hex Buffer MC74VHC50 The MC74VHC50 is an advanced high speed CMOS buffer fabricated with silicon gate CMOS technology. The internal circuit is composed of three stages, including a buffered output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems. • 14−LEAD TSSOP DT SUFFIX CASE 948G MARKING DIAGRAM 14 14 Features • • • • • • • • 14−LEAD SOIC D SUFFIX CASE 751A VHC 50 ALYWG VHC50 AWLYWWG High Speed: tPD = 3.8 ns (Typ) at VCC = 5 V Low Power Dissipation: ICC = 2 mA (Max) at TA = 25°C High Noise Immunity: VNIH = VNIL = 28% VCC Power Down Protection Provided on Inputs Balanced Propagation Delays Designed for 2 V to 5.5 V Operating Range Low Noise: VOLP = 0.8 V (Max) NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable* These Devices are Pb−Free and are RoHS Compliant 1 1 A WL, L Y WW, W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package FUNCTION TABLE A Input Y Output L H L H ORDERING INFORMATION A1 1 2 Device Y1 12 GND Y4 Shipping† MC74VHC50DG SOIC−14 (Pb−Free) 55 Units / Tube MC74VHC50DR2G SOIC−14 (Pb−Free) 2500 / Tape & Reel MC74VHC50DTR2G TSSOP−14 (Pb−Free) 2500 / Tape & Reel NLV74VHC50DTR2G* TSSOP−14 (Pb−Free) 2500 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Y6 Figure 1. Logic Diagram © Semiconductor Components Industries, LLC, 2011 October, 2022 − Rev. 6 8 13 A4 7 A6 Y5 Y3 6 A5 10 Y5 Y4 A3 11 A5 9 Y2 10 A4 Y6 11 Y=A 12 8 A2 13 9 Y3 A6 5 6 Y1 4 5 Y2 14 4 3 A3 3 2 A2 VCC 1 A1 Package Figure 2. Pinout: 14−Lead Packages (Top View) 1 Publication Order Number: MC74VHC50/D MC74VHC50 MAXIMUM RATINGS Symbol Parameter VCC DC Supply Voltage VIN DC Input Voltage VOUT Value Unit *0.5 to )7.0 V *0.5 to )7.0 V *0.5 to VCC )0.5 V VI < GND *20 mA VO < GND $20 mA DC Output Voltage IIK DC Input Diode Current IOK DC Output Diode Current IOUT DC Output Sink Current $25 mA ICC DC Supply Current per Supply Pin $50 mA *65 to )150 °C 260 °C TSTG Storage Temperature Range TL Lead Temperature, 1 mm from Case for 10 Seconds TJ Junction Temperature under Bias qJA Thermal Resistance MSL Moisture Sensitivity FR Flammability Rating )150 (Note 1) SOIC TSSOP °C °C/W 125 170 Level 1 Oxygen Index: 30 to 35 UL 94 V−0 @ 0.125 in VESD ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) > 2000 > 200 2000 V ILatch−Up Latch−Up Performance Above VCC and Below GND at 85°C (Note 5) $300 mA Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow. 2. Tested to EIA/JESD22−A114−A. 3. Tested to EIA/JESD22−A115−A. 4. Tested to JESD22−C101−A. 5. Tested to EIA/JESD78. RECOMMENDED OPERATING CONDITIONS Symbol VCC Parameter Min Max Unit 2.0 5.5 V Supply Voltage VI Input Voltage VO Output Voltage TA Operating Free−Air Temperature Dt/DV Input Transition Rise or Fall Rate (Note 6) 0 5.5 V (HIGH or LOW State) 0 VCC V *55 )125 °C 0 0 100 20 ns/V VCC = 3.0 V $0.3 V VCC = 5.0 V $0.5 V 6. Unused inputs may not be left open. All inputs must be tied to a high− or low−logic input voltage level. NOTE: The qJA of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below. www.onsemi.com 2 MC74VHC50 DC ELECTRICAL CHARACTERISTICS VCC Symbol Parameter Test Conditions Min 1.5 2.0 3.15 3.85 VIH Minimum High−Level Input Voltage 2.0 3.0 4.5 5.5 VIL Maximum Low−Level Input Voltage 2.0 3.0 4.5 5.5 VOH Minimum High−Level Output Voltage VIN = VIH or VIL IOH = −50 mA VIN = VIH or VIL IOH = −4 mA IOH = −8 mA VOL Maximum Low−Level Output Voltage VIN = VIH or VIL IOL = 50 mA TA = 25°C (V) Typ Min 0.5 0.9 1.35 1.65 2.0 3.0 4.5 1.9 2.9 4.4 3.0 4.5 2.58 3.94 Max 1.5 2.0 3.15 3.85 2.0 3.0 4.5 2.0 3.0 4.5 VIN = VIH or VIL IOL = 4 mA IOL = 8 mA TA ≤ 85°C Max 0.0 0.0 0.0 TA ≤ 125°C Min Max 1.5 2.0 3.15 3.85 V 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 1.9 2.9 4.4 1.9 2.9 4.4 2.48 3.80 2.34 3.66 Unit V V V 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.0 4.5 0.36 0.36 0.44 0.44 0.52 0.52 V V IIN Maximum Input Leakage Current VIN = 5.5 V or GND 0 to 5.5 ±0.1 ±1.0 ±1.0 mA ICC Maximum Quiescent Supply Current VIN = VCC or GND 5.5 2.0 20 40 mA ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ AC ELECTRICAL CHARACTERISTICS (Cload = 50 pF, Input tr = tf = 3.0 ns) TA = 25°C Symbol tPLH, tPHL CIN Parameter Maximum Propogation Delay, Input A to Y Min Test Conditions TA ≤ 85°C Typ Max Min Max TA ≤ 125°C Min Max Unit ns VCC = 3.0 ± 0.3 V CL = 15 pF CL = 50 pF 5.0 7.5 7.1 10.6 8.5 12.0 10.0 14.5 VCC = 5.0 ± 0.5 V CL = 15 pF CL = 50 pF 3.8 5.3 5.5 7.5 6.5 8.5 8.0 10.0 4 10 10 10 Maximum Input Capacitance pF Typical @ 25°C, VCC = 5.0 V CPD 18 Power Dissipation Capacitance (Note 7) pF 7. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD  VCC  fin + ICC. CPD is used to determine the no−load dynamic power consumption; PD = CPD  VCC2  fin + ICC  VCC. NOISE CHARACTERISTICS (Input tr = tf = 3.0 ns, CL = 50 pF, VCC = 5.0 V) TA = 25°C Symbol Characteristic Typ Max Unit VOLP Quiet Output Maximum Dynamic VOL 0.8 1.0 V VOLV Quiet Output Minimum Dynamic VOL −0.8 −1.0 V VIHD Minimum High Level Dynamic Input Voltage 3.5 V VILD Maximum Low Level Dynamic Input Voltage 1.5 V www.onsemi.com 3 MC74VHC50 TEST POINT VCC A OUTPUT 50% DEVICE UNDER TEST GND tPLH tPHL CL* 50% VCC Y *Includes all probe and jig capacitance Figure 3. Switching Waveforms Figure 4. Test Circuit INPUT Figure 5. Input Equivalent Circuit www.onsemi.com 4 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−14 NB CASE 751A−03 ISSUE L 14 1 SCALE 1:1 D DATE 03 FEB 2016 A B 14 8 A3 E H L 1 0.25 B M DETAIL A 7 13X M b 0.25 M C A S B S 0.10 X 45 _ M A1 e DETAIL A h A C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 6.50 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 14 14X 1.18 XXXXXXXXXG AWLYWW 1 1 1.27 PITCH XXXXX A WL Y WW G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−14 CASE 751A−03 ISSUE L DATE 03 FEB 2016 STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 2: CANCELLED STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42565B SOIC−14 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TSSOP−14 WB CASE 948G ISSUE C 14 DATE 17 FEB 2016 1 SCALE 2:1 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S DETAIL E K A −V− K1 J J1 ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE H G D DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 −−− 1.20 −−− 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ GENERIC MARKING DIAGRAM* 14 SOLDERING FOOTPRINT XXXX XXXX ALYWG G 7.06 1 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: 98ASH70246A DESCRIPTION: TSSOP−14 WB A L Y W G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MC74VHC50DTR2G 价格&库存

很抱歉,暂时无法提供与“MC74VHC50DTR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MC74VHC50DTR2G
  •  国内价格 香港价格
  • 2500+2.325392500+0.27787
  • 5000+2.131945000+0.25476
  • 7500+2.033707500+0.24302
  • 12500+1.9235912500+0.22986
  • 17500+1.8675217500+0.22316

库存:4387

MC74VHC50DTR2G
    •  国内价格
    • 1+2.95920
    • 10+2.32200
    • 30+2.05200
    • 100+1.70640

    库存:260

    MC74VHC50DTR2G
    •  国内价格 香港价格
    • 1+9.882071+1.18085
    • 10+6.0156010+0.71883
    • 25+4.9974425+0.59717
    • 100+3.84581100+0.45955
    • 250+3.28024250+0.39197
    • 500+2.93179500+0.35033
    • 1000+2.639841000+0.31545

    库存:4387