0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MJE18004D2

MJE18004D2

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT78

  • 描述:

    TRANS NPN 450V 5A TO-220AB

  • 详情介绍
  • 数据手册
  • 价格&库存
MJE18004D2 数据手册
MJE18004D2G High Speed, High Gain Bipolar NPN Power Transistor with Integrated Collector−Emitter Diode and Built−in Efficient Antisaturation Network http://onsemi.com POWER TRANSISTORS 5 AMPERES, 1000 VOLTS, 75 WATTS The MJE18004D2 is state−of−art High Speed High gain BIPolar transistor (H2BIP). High dynamic characteristics and lot to lot minimum spread (±150 ns on storage time) make it ideally suitable for light ballast applications. Therefore, there is no need to guarantee an hFE window. It’s characteristics make it also suitable for PFC application. Features • Low Base Drive Requirement • High Peak DC Current Gain (55 Typical) @ IC = 100 mA • Extremely Low Storage Time Min/Max Guarantees Due to the • • • • H2BIP Structure which Minimizes the Spread Integrated Collector−Emitter Free Wheeling Diode Fully Characterized and Guaranteed Dynamic VCE(sat) “6 Sigma” Process Providing Tight and Reproductible Parameter Spreads These Devices are Pb−Free and are RoHS Compliant* MARKING DIAGRAM 4 TO−220AB CASE 221A STYLE 1 MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) Symbol Value Unit Collector−Emitter Sustaining Voltage Rating VCEO 450 Vdc Collector−Base Breakdown Voltage VCBO 1000 Vdc Collector−Emitter Breakdown Voltage VCES 1000 Vdc Emitter−Base Voltage VEBO 12 Vdc Collector Current − Continuous Collector Current − Peak (Note 1) IC ICM 5 10 Adc Base Current − Continuous Base Current − Peak (Note 1) IB IBM 2 4 Adc Total Device Dissipation @ TC = 25_C Derate above 25°C PD 75 0.6 W W/°C TJ, Tstg – 65 to 150 °C Operating and Storage Temperature THERMAL CHARACTERISTICS Thermal Resistance, Junction−to−Case RqJC 1.65 _C/W Thermal Resistance, Junction−to−Ambient RqJA 62.5 _C/W Maximum Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds TL 260 _C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%. © Semiconductor Components Industries, LLC, 2010 April, 2010 − Rev. 6 1 1 2 18004D2G AYWW 3 18004D2 G A Y WW = Device Code = Pb−Free Package = Assembly Location = Year = Work Week ORDERING INFORMATION Device Package Shipping† MJE18004D2G TO−220AB (Pb−Free) 50 Units / Rail *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Publication Order Number: MJE18004D2/D MJE18004D2G ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VCEO(sus) 450 547 − Vdc Collector−Base Breakdown Voltage (ICBO = 1 mA) VCBO 1000 1100 − Vdc Emitter−Base Breakdown Voltage (IEBO = 1 mA) VEBO 12 14 − Vdc Collector Cutoff Current (VCE = Rated VCEO, IB = 0) ICEO − − 100 mAdc ICES − − 100 500 100 mAdc IEBO − − 100 mAdc VBE(sat) − 0.8 0.7 1 0.9 Vdc − 0.9 0.8 1 0.9 − 0.38 0.55 0.5 0.75 OFF CHARACTERISTICS Collector−Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH) Collector Cutoff Current (VCE = Rated VCES, VEB = 0) @ TC = 25°C @ TC = 125°C @ TC = 125°C Collector Cutoff Current (VCE = 500 V, VEB = 0) Emitter−Cutoff Current (VEB = 10 Vdc, IC = 0) ON CHARACTERISTICS Base−Emitter Saturation Voltage (IC = 0.8 Adc, IB = 80 mAdc) (IC = 2 Adc, IB = 0.4 Adc) @ TC = 25°C @ TC = 125°C @ TC = 25°C @ TC = 125°C VCE(sat) Collector−Emitter Saturation Voltage (IC = 0.8 Adc, IB = 80 mAdc) @ TC = 25°C @ TC = 125°C (IC = 2 Adc, IB = 0.4 Adc) @ TC = 25°C @ TC = 125°C − 0.45 0.75 0.75 1 (IC = 0.8 Adc, IB = 40 mAdc) @ TC = 25°C @ TC = 125°C − 0.9 1.6 1.5 (IC = 1 Adc, IB = 0.2 Adc) @ TC = 25°C @ TC = 125°C − 0.25 0.28 0.5 0.6 DC Current Gain (IC = 0.8 Adc, VCE = 1 Vdc) @ TC = 25°C @ TC = 125°C 15 10 28 14 − (IC = 2 Adc, VCE = 1 Vdc) @ TC = 25°C @ TC = 125°C 6 4 8 6 − (IC = 1 Adc, VCE = 2.5 Vdc) @ TC = 25°C @ TC = 125°C 18 14 28 20 − − 9 16 − hFE Vdc − DYNAMIC SATURATION VOLTAGE Dynamic Saturation Voltage: Determined 1 ms and 3 ms respectively after rising IB1 reaches 90% of final IB1 IC = 1 Adc IB1 = 100 mA VCC = 300 V IC = 2 Adc IB1 = 0.4 A VCC = 300 V VCE(dsat) @ 1 ms @ TC = 25°C @ TC = 125°C @ 3 ms @ TC = 25°C @ TC = 125°C − 3.1 9 − @ 1 ms @ TC = 25°C @ TC = 125°C − 11 18 − @ 3 ms @ TC = 25°C @ TC = 125°C − 1.4 8 − http://onsemi.com 2 V MJE18004D2G ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit VEC − 0.96 0.72 1.5 V − 1.15 0.8 1.7 DIODE CHARACTERISTICS Forward Diode Voltage (IEC = 1 Adc) @ TC = 25°C @ TC = 125°C (IEC = 2 Adc) @ TC = 25°C @ TC = 125°C @ TC = 25°C tfr ns − 440 − (IF = 1 Adc, di/dt = 10 A/ms) @ TC = 25°C − 335 − (IF = 2 Adc, di/dt = 10 A/ms) @ TC = 25°C − 335 − fT − 13 − MHz Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1 MHz) Cob − 60 100 pF Input Capacitance (IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz) Cib − 450 750 pF @ TC = 25°C ton − 500 750 ns @ TC = 25°C toff 1.1 − 1.4 ms @ TC = 25°C @ TC = 125°C ton − 100 150 150 ns @ TC = 25°C @ TC = 125°C toff − 1.15 1.6 1.3 ms @ TC = 25°C @ TC = 125°C ton − 120 500 150 ns @ TC = 25°C @ TC = 125°C toff 1.85 − 2.6 2.15 ms @ TC = 25°C @ TC = 125°C tf − 130 300 175 ns @ TC = 25°C @ TC = 125°C ts − 2.12 2.6 2.4 ms @ TC = 25°C @ TC = 125°C tc − 355 750 500 ns @ TC = 25°C @ TC = 125°C tf − 95 230 150 ns @ TC = 25°C @ TC = 125°C ts 2.1 2.4 ms @ TC = 25°C @ TC = 125°C tc − 300 700 450 ns @ TC = 25°C @ TC = 125°C tf − 70 100 90 ns @ TC = 25°C @ TC = 125°C ts − 0.7 1.05 0.9 ms @ TC = 25°C @ TC = 125°C tc − 75 160 120 ns Forward Recovery Time (IF = 0.4 Adc, di/dt = 10 A/ms) DYNAMIC CHARACTERISTICS Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz) SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 40 ms) Turn−on Time Turn−off Time Turn−on Time Turn−off Time Turn−on Time Turn−off Time IC = 2.5 Adc, IB1 = 0.5 Adc IB2 = 1 Adc VCC = 250 Vdc IC = 2 Adc, IB1 = 0.4 Adc IB2 = 1 Adc VCC = 300 Vdc IC = 2.5 Adc, IB1 = 0.5 Adc IB2 = 0.5 Adc VCC = 300 Vdc SWITCHING CHARACTERISTICS: Inductive Load (VCC = 15 V) Fall Time Storage Time Crossover Time IC = 2.5 Adc IB1 = 500 mAdc IB2 = 500 mAdc VZ = 350 V LC = 300 mH Fall Time Storage Time Crossover Time IC = 2 Adc IB1 = 400 mAdc IB2 = 400 mAdc VZ = 300 V LC = 200 mH Fall Time Storage Time Crossover Time IC = 1 Adc IB1 = 100 mAdc IB2 = 500 mAdc VZ = 300 V LC = 200 mH http://onsemi.com 3 2.9 MJE18004D2G TYPICAL STATIC CHARACTERISTICS 100 100 TJ = 125°C TJ = -20°C hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN VCE = 1 V TJ = 25°C 10 TJ = 125°C 1 TJ = -20°C TJ = 25°C 10 1 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 0.001 Figure 1. DC Current Gain @ 1 Volt 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 Figure 2. DC Current Gain @ 5 Volt 3 10 TJ = 25°C 5A 2 4A 3A 2A 1 TJ = 125°C IC/IB = 5 VCE , VOLTAGE (VOLTS) VCE , VOLTAGE (VOLTS) VCE = 5 V 1A TJ = 25°C 1 TJ = -20°C 0 IC = 500 mA 0.1 0.01 0.1 1 IB, BASE CURRENT (mA) 10 0.001 Figure 3. Collector Saturation Region 10 Figure 4. Collector−Emitter Saturation Voltage 10 10 IC/IB = 20 VCE , VOLTAGE (VOLTS) TJ = 125°C IC/IB = 10 VCE , VOLTAGE (VOLTS) 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 1 TJ = 25°C TJ = -20°C 0.1 0.001 TJ = 125°C TJ = -20°C 1 TJ = 25°C 0.1 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 0.001 Figure 5. Collector−Emitter Saturation Voltage 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) Figure 6. Collector−Emitter Saturation Voltage http://onsemi.com 4 10 MJE18004D2G TYPICAL STATIC CHARACTERISTICS 10 10 IC/IB = 10 1 VBE , VOLTAGE (VOLTS) VBE , VOLTAGE (VOLTS) IC/IB = 5 TJ = -20°C TJ = 125°C TJ = 25°C 0.1 1 TJ = -20°C TJ = 125°C 0.1 0.001 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) 10 0.001 Figure 7. Base−Emitter Saturation Region 10 10 1 FORWARD DIODE VOLTAGE (VOLTS) IC/IB = 20 VBE , VOLTAGE (VOLTS) 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) Figure 8. Base−Emitter Saturation Region 10 TJ = -20°C TJ = 125°C TJ = 25°C 0.1 25°C 1 125°C 0.1 0.001 1 0.01 0.1 IC, COLLECTOR CURRENT (AMPS) 10 0.01 Figure 9. Base−Emitter Saturation Region COLLECTOR EMITTER VOLTAGE (VOLTS) Cib (pF) TJ = 25°C f(test) = 1 MHz 100 Cob 10 VR, REVERSE VOLTAGE (VOLTS) 10 1200 TC = 25°C BVCER @ ICER = 10 mA 1000 800 BVCER(sus) @ ICER = 200 mA, Lc = 25 mH 600 10 1 0.1 1 REVERSE EMITTER-COLLECTOR CURRENT (AMPS) Figure 10. Forward Diode Voltage 1000 C, CAPACITANCE (pF) TJ = 25°C 100 10 Figure 11. Capacitance 100 BASE-EMITTER RESISTOR (W) Figure 12. BVCER = f(RBE) http://onsemi.com 5 1000 MJE18004D2G TYPICAL SWITCHING CHARACTERISTICS 3200 5 TJ = 125°C TJ = 25°C 2400 IBon = IBoff VCC = 300 V PW = 20 ms 4 t, TIME (ns) t, TIME (s) μ IC/IB = 10 1600 800 3 2 1 TJ = 125°C TJ = 25°C IC/IB = 5 0 IC/IB = 5 0 3 2 IC, COLLECTOR CURRENT (AMPS) 1 4 2 3 IC, COLLECTOR CURRENT (AMPS) 1 Figure 13. Resistive Switch Time, ton 4 IC/IB = 5 IC/IB = 10 3 t, TIME (s) μ 3 t, TIME (s) μ 4 Figure 14. Resistive Switch Time, toff 4 2 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 mH 1 TJ = 125°C TJ = 25°C 2 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 mH 1 TJ = 125°C TJ = 25°C 0 0 0 2 3 1 IC, COLLECTOR CURRENT (AMPS) 4 0 Figure 15. Inductive Storage Time, tsi @ IC/IB = 5 2 3 1 IC, COLLECTOR CURRENT (AMPS) 4 Figure 16. Inductive Storage Time, tsi @ IC/IB = 10 1000 1000 TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C IC/IB = 5 800 IC/IB = 10 800 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 mH 600 tc t, TIME (ns) t, TIME (ns) IBon = IBoff VCC = 300 V PW = 20 ms IC/IB = 10 400 tfi 200 IBoff = IBon VCC = 15 V VZ = 300 V LC = 200 mH 600 400 200 0 0 0 1 2 3 IC, COLLECTOR CURRENT (AMPS) 4 0 Figure 17. Inductive Switching Time, tc and tfi @ IC/IB = 5 1 2 3 IC, COLLECTOR CURRENT (AMPS) Figure 18. Inductive Switching Time, tfi @ IC/IB = 10 http://onsemi.com 6 4 MJE18004D2G TYPICAL SWITCHING CHARACTERISTICS 1600 5 t si , STORAGE TIME (μs) 1200 t, TIME (ns) IC/IB = 10 IBoff = IBon VCC = 15 V VZ = 300 V LC = 200 mH 800 400 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 mH 4 TJ = 125°C TJ = 25°C IC = 1 A IC = 2 A 3 TJ = 125°C TJ = 25°C 0 0 2 1 3 IC, COLLECTOR CURRENT (AMPS) 2 4 Figure 19. Inductive Switching, tc @ IC/IB = 10 15 20 2000 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 mH IC = 2 A t c , CROSSOVER TIME (ns) TJ = 125°C TJ = 25°C IBoff = IBon VCC = 15 V VZ = 300 V LC = 200 mH 800 t fi , FALL TIME (ns) 10 hFE, FORCED GAIN Figure 20. Inductive Storage Time 1000 600 IC = 1 A 400 200 0 1500 TJ = 125°C TJ = 25°C IC = 2 A 1000 500 IC = 1 A 0 2 4 6 8 10 12 14 hFE, FORCED GAIN 16 18 20 2 Figure 21. Inductive Fall Time 8 14 hFE, FORCED GAIN 20 Figure 22. Inductive Crossover Time 4 420 3 IBon = IBoff VCC = 15 V VZ = 300 V LC = 200 mH t fr , FORWARD RECOVERY TIME (ns) IB = 50 mA t, TIME (s) μ 5 0 2 IB = 100 mA IB = 200 mA IB = 500 mA I = 1 A B 1 0.5 1 1.5 2 2.5 3 IC, COLLECTOR CURRENT (AMPS) 3.5 dI/dt = 10 A/ms TC = 25°C 380 340 300 4 0 Figure 23. Inductive Storage Time, tsi 0.5 1 1.5 IF, FORWARD CURRENT (AMP) Figure 24. Forward Recovery Time, TFR http://onsemi.com 7 2 MJE18004D2G TYPICAL SWITCHING CHARACTERISTICS 10 VCE 9 dyn 1 ms IC 90% IC tfi 8 dyn 3 ms tsi 7 VOLTS 6 0V Vclamp 5 10% IC 10% Vclamp tc 4 90% IB 3 1 ms 2 IB IB 90% IB1 1 2 1 3 ms 0 0 3 4 TIME TIME Figure 25. Dynamic Saturation Voltage Measurements 5 6 7 8 Figure 26. Inductive Switching Measurements VFRM VFR (1.1 VF unless otherwise specified) VF VF tfr 0.1 VF 0 IF 10% IF 0 2 4 6 8 10 Figure 27. tfr Measurements +15 V 1 mF 150 W 3W IC PEAK 100 mF MTP8P10 100 W 3W VCE PEAK MTP8P10 VCE RB1 MPF930 MUR105 Iout MPF930 +10 V IB1 IB A 50 W MJE210 COMMON 500 mF 150 W 3W IB2 RB2 MTP12N10 1 mF V(BR)CEO(sus) L = 10 mH RB2 = ∞ VCC = 20 V IC(pk) = 100 mA -Voff Table 1. Inductive Load Switching Drive Circuit http://onsemi.com 8 Inductive Switching L = 200 mH RB2 = 0 VCC = 15 V RB1 selected for desired Ib1 RBSOA L = 500 mH RB2 = 0 VCC = 15 V RB1 selected for desired Ib1 MJE18004D2G TYPICAL CHARACTERISTICS 6 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) 100 1 ms 10 1 ms 5 ms 10 ms EXTENDED SOA DC 1 0.1 0.01 TC ≤ 125°C GAIN ≥ 5 LC = 2 mH 5 4 3 2 -5 V 1 0V 0 10 100 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 1000 200 Figure 28. Forward Bias Safe Operating Area 1.0 SECOND BREAKDOWN DERATING 0.8 0.6 0.4 THERMAL DERATING 0.2 0 20 40 60 80 100 120 TC, CASE TEMPERATURE (°C) 140 160 Figure 30. Forward Bias Power Derating 400 600 800 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 1000 Figure 29. Reverse Bias Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC−VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC > 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30. TJ(pk) may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn−off with the base−to−emitter junction reverse biased. The safe level is specified as a reverse−biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. TYPICAL THERMAL RESPONSE 1 r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) POWER DERATING FACTOR -1.5 V 0.5 0.2 0.1 0.1 P(pk) 0.05 0.02 t1 SINGLE PULSE 0.01 0.01 t2 DUTY CYCLE, D = t1/t2 0.1 1 10 RqJC(t) = r(t) RqJC RqJC = 2.5°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) RqJC(t) 100 t, TIME (ms) Figure 31. Typical Thermal Response (ZqJC(t)) for MJE18004D2 http://onsemi.com 9 1000 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TO−220 CASE 221A ISSUE AK DATE 13 JAN 2022 SCALE 1:1 STYLE 1: PIN 1. 2. 3. 4. BASE COLLECTOR EMITTER COLLECTOR STYLE 2: PIN 1. 2. 3. 4. BASE EMITTER COLLECTOR EMITTER STYLE 3: PIN 1. 2. 3. 4. CATHODE ANODE GATE ANODE STYLE 4: PIN 1. 2. 3. 4. MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2 STYLE 5: PIN 1. 2. 3. 4. GATE DRAIN SOURCE DRAIN STYLE 6: PIN 1. 2. 3. 4. ANODE CATHODE ANODE CATHODE STYLE 7: PIN 1. 2. 3. 4. CATHODE ANODE CATHODE ANODE STYLE 8: PIN 1. 2. 3. 4. CATHODE ANODE EXTERNAL TRIP/DELAY ANODE STYLE 9: PIN 1. 2. 3. 4. GATE COLLECTOR EMITTER COLLECTOR STYLE 10: PIN 1. 2. 3. 4. GATE SOURCE DRAIN SOURCE STYLE 11: PIN 1. 2. 3. 4. DRAIN SOURCE GATE SOURCE STYLE 12: PIN 1. 2. 3. 4. MAIN TERMINAL 1 MAIN TERMINAL 2 GATE NOT CONNECTED DOCUMENT NUMBER: DESCRIPTION: 98ASB42148B TO−220 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MJE18004D2
物料型号:MJE18004D2/D2G 器件简介:MJE18004D2 是一款高速高增益的双极型 NPN 功率晶体管,具有集成的集电极-发射极二极管和内置的高效抗饱和网络,非常适合用于光球镇流器应用,并且因其特性也适用于功率因数校正应用。

引脚分配:该晶体管有三种不同的封装样式,分别为 STYLE 1, STYLE 5, 和 STYLE 6,每种样式的引脚分配略有不同,具体如下: - STYLE 1: 1. 基极 2. 发射极 3. 集电极 - STYLE 5: 1. 栅极 2. 阳极 3. 阴极 - STYLE 6: 1. 基极 2. 发射极 3. 集电极 参数特性: - 低基极驱动需求 - 高峰值直流电流增益(典型值 55 @ IC = 100 mA) - 由于 H2BIP 结构,存储时间极短,最小/最大保证值由于最小化了分散 - 完全表征和保证的动态 VCE(sat) - “6 Sigma” 工艺提供紧凑和可复现的参数分散 功能详解:该器件的高速特性和高增益使其非常适合用于需要快速切换和高效率的应用,如光球镇流器和功率因数校正。

应用信息:适用于光球镇流器、功率因数校正等应用。

封装信息:提供 TO-220AB 封装,具体尺寸和引脚分配根据样式不同而有所区别。
MJE18004D2 价格&库存

很抱歉,暂时无法提供与“MJE18004D2”相匹配的价格&库存,您可以联系我们找货

免费人工找货