MMBT2222ATT1G,
NSVMMBT2222ATT1G
General Purpose Transistor
NPN Silicon
These transistors are designed for general purpose amplifier
applications. They are housed in the SOT−416/SC−75 package which
is designed for low power surface mount applications.
http://onsemi.com
COLLECTOR
3
Features
• NSV Prefix for Automotive and Other Applications Requiring
•
1
BASE
Unique Site and Control Change Requirements; AEC-Q101 Qualified
and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
2
EMITTER
3
MAXIMUM RATINGS (TA = 25°C)
Symbol
Max
Unit
Collector−Emitter Voltage
VCEO
40
Vdc
Collector−Base Voltage
VCBO
75
Vdc
Emitter−Base Voltage
VEBO
6.0
Vdc
IC
600
mAdc
Symbol
Max
Unit
PD
150
mW
RqJA
833
°C/W
TJ, Tstg
−55 to +150
°C
Rating
Collector Current − Continuous
2
1
MARKING DIAGRAM
1P M G
G
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation (Note 1)
TA = 25°C
Thermal Resistance,
Junction−to−Ambient
Operating and Storage Junction
Temperature Range
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Device mounted on FR4 glass epoxy printed circuit board using the minimum
recommended footprint.
CASE 463
SOT−416/SC−75
STYLE 1
1
1P
= Specific Device Code
M
= Date Code
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
Package
Shipping†
SOT−416
(Pb−Free)
3000 / Tape &
Reel
NSVMMBT2222ATT1G SOT−416
(Pb−Free)
3000 / Tape &
Reel
Device
MMBT2222ATT1G
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
© Semiconductor Components Industries, LLC, 2013
November, 2013 − Rev. 5
1
Publication Order Number:
MMBT2222ATT1/D
MMBT2222ATT1G, NSVMMBT2222ATT1G
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Max
Unit
Collector −Emitter Breakdown Voltage (Note 1)
(IC = 1.0 mAdc, IB = 0)
V(BR)CEO
40
−
Vdc
Collector −Base Breakdown Voltage
(IC = 10 mAdc, IE = 0)
V(BR)CBO
75
−
Vdc
Emitter −Base Breakdown Voltage
(IE = 10 mAdc, IC = 0)
V(BR)EBO
6.0
−
Vdc
Base Cutoff Current
(VCE = 60 Vdc, VEB = 3.0 Vdc)
IBL
−
20
nAdc
Collector Cutoff Current
(VCE = 60 Vdc, VEB = 3.0 Vdc)
ICEX
−
10
nAdc
35
50
75
100
40
−
−
−
−
−
−
−
0.3
1.0
0.6
−
1.2
2.0
fT
300
−
MHz
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)
Cobo
−
8.0
pF
Input Capacitance
(VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz)
Cibo
−
30
pF
Input Impedance
(VCE = 10 Vdc, IC = 10 mAdc, f = 1.0 kHz)
hie
0.25
1.25
kW
Voltage Feedback Ratio
(VCE = 10 Vdc, IC = 10 mAdc, f = 1.0 kHz)
hre
−
4.0
X 10− 4
Small −Signal Current Gain
(VCE = 10 Vdc, IC = 10 mAdc, f = 1.0 kHz)
hfe
75
375
−
Output Admittance
(VCE = 10 Vdc, IC = 10 mAdc, f = 1.0 kHz)
hoe
25
200
mmhos
Noise Figure
(VCE = 10 Vdc, IC = 100 mAdc, RS = 1.0 k ohms, f = 1.0 kHz)
NF
−
4.0
dB
(VCC = 3.0 Vdc, VBE = − 0.5 Vdc,
IC = 150 mAdc, IB1 = 15 mAdc)
td
−
10
tr
−
25
(VCC = 30 Vdc, IC = 150 mAdc,
IB1 = IB2 = 15 mAdc)
ts
−
225
tf
−
60
Characteristic
OFF CHARACTERISTICS
ON CHARACTERISTICS (Note 2)
HFE
DC Current Gain
(IC = 0.1 mAdc, VCE = 10 Vdc)
(IC = 1.0 mAdc, VCE = 10 Vdc)
(IC = 10 mAdc, VCE = 10 Vdc)
(IC = 150 mAdc, VCE = 10 Vdc)
(IC = 500 mAdc, VCE = 10 Vdc)
Collector −Emitter Saturation Voltage
(IC = 150 mAdc, IB = 15 mAdc)
(IC = 500 mAdc, IB = 50 mAdc)
VCE(sat)
Base −Emitter Saturation Voltage
(IC = 150 mAdc, IB = 15 mAdc)
(IC = 500 mAdc, IB = 50 mAdc)
VBE(sat)
−
Vdc
Vdc
SMALL− SIGNAL CHARACTERISTICS
Current −Gain − Bandwidth Product
(IC = 20 mAdc, VCE = 20 Vdc, f = 100 MHz)
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Storage Time
Fall Time
1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.
2. Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2.0%.
http://onsemi.com
2
ns
ns
MMBT2222ATT1G, NSVMMBT2222ATT1G
SWITCHING TIME EQUIVALENT TEST CIRCUITS
+30 V
+30 V
1.0 to 100 ms,
DUTY CYCLE ≈ 2.0%
+16 V
200
1.0 to 100 ms,
DUTY CYCLE ≈ 2.0%
+16 V
200
0
0
-2 V
1 kW
< 2 ns
1k
-14 V
CS* < 10 pF
< 20 ns
CS* < 10 pF
1N914
-4 V
Scope rise time < 4 ns
*Total shunt capacitance of test jig, connectors, and oscilloscope.
Figure 1. Turn−On Time
Figure 2. Turn−Off Time
hFE , DC CURRENT GAIN
1000
700
500
TJ = 125°C
300
200
25°C
100
70
50
-55°C
30
VCE = 1.0 V
VCE = 10 V
20
10
0.1
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (mA)
30
50
70
100
200
300
500 700 1.0 k
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 3. DC Current Gain
1.0
TJ = 25°C
0.8
0.6
IC = 1.0 mA
10 mA
150 mA
500 mA
0.4
0.2
0
0.005
0.01
0.02 0.03
0.05
0.1
0.2 0.3
0.5
1.0
IB, BASE CURRENT (mA)
2.0
Figure 4. Collector Saturation Region
http://onsemi.com
3
3.0
5.0
10
20
30
50
MMBT2222ATT1G, NSVMMBT2222ATT1G
200
500
IC/IB = 10
TJ = 25°C
tr @ VCC = 30 V
td @ VEB(off) = 2.0 V
td @ VEB(off) = 0
30
20
10
7.0
5.0
200
t′s = ts - 1/8 tf
100
70
50
tf
30
20
10
7.0
5.0
3.0
2.0
5.0 7.0
10
200 300
20 30
50 70 100
IC, COLLECTOR CURRENT (mA)
5.0 7.0 10
500
20 30
50 70 100
IC, COLLECTOR CURRENT (mA)
Figure 5. Turn −On Time
RS = OPTIMUM
RS = SOURCE
RS = RESISTANCE
IC = 1.0 mA, RS = 150 W
500 mA, RS = 200 W
100 mA, RS = 2.0 kW
50 mA, RS = 4.0 kW
500
6.0
f = 1.0 kHz
8.0
NF, NOISE FIGURE (dB)
NF, NOISE FIGURE (dB)
300
10
8.0
4.0
IC = 50 mA
100 mA
500 mA
1.0 mA
6.0
4.0
2.0
2.0
0
0.01 0.02 0.05 0.1 0.2
0.5 1.0 2.0
5.0 10
0
50
50 100
20
500 1.0 k 2.0 k
5.0 k 10 k 20 k
50 k 100 k
Figure 7. Frequency Effects
Figure 8. Source Resistance Effects
f T, CURRENT-GAIN BANDWIDTH PRODUCT (MHz)
RS, SOURCE RESISTANCE (OHMS)
20
Ceb
10
7.0
5.0
Ccb
3.0
0.2 0.3
100 200
f, FREQUENCY (kHz)
30
CAPACITANCE (pF)
200
Figure 6. Turn −Off Time
10
2.0
0.1
VCC = 30 V
IC/IB = 10
IB1 = IB2
TJ = 25°C
300
t, TIME (ns)
t, TIME (ns)
100
70
50
0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
REVERSE VOLTAGE (VOLTS)
20 30
50
500
VCE = 20 V
TJ = 25°C
300
200
100
70
50
1.0
Figure 9. Capacitances
2.0
3.0
5.0 7.0 10
20 30
IC, COLLECTOR CURRENT (mA)
50
70 100
Figure 10. Current−Gain Bandwidth Product
http://onsemi.com
4
MMBT2222ATT1G, NSVMMBT2222ATT1G
1.3
150°C
0.1
−55°C
25°C
0.001
0.01
0.1
1.0
0.9
1
25°C
0.7
0.6
150°C
0.5
0.4
0.001
0.01
0.1
1
IC, COLLECTOR CURRENT (A)
Figure 11. Collector Emitter Saturation Voltage
vs. Collector Current
Figure 12. Base Emitter Saturation Voltage vs.
Collector Current
+0.5
VCE = 1 V
0
0.9
COEFFICIENT (mV/ °C)
1.0
−55°C
0.8
25°C
0.7
0.6
0.5
150°C
0.4
RqVC for VCE(sat)
-0.5
-1.0
-1.5
RqVB for VBE
-2.0
0.3
0.2
−55°C
0.8
0.3
0.2
1.2
1.1
1.1
IC, COLLECTOR CURRENT (A)
0.001
0.01
0.1
-2.5
1
0.1 0.2
0.5
IC, COLLECTOR CURRENT (A)
1.0 2.0
5.0 10 20
50 100 200
IC, COLLECTOR CURRENT (mA)
Figure 14. Temperature Coefficients
Figure 13. Base Emitter Voltage vs. Collector
Current
10
10 ms
100 ms
1
1 ms
1s
Thermal Limit
IC (A)
VBE(on), BASE−EMITTER VOLTAGE (V)
0.01
IC/IB = 10
1.2
IC/IB = 10
VBE(sat), BASE−EMITTER
SATURATION VOLTAGE (V)
VCE(sat), COLLECTOR−EMITTER
SATURATION VOLTAGE (V)
1
0.1
0.01
0.001
Single Pulse Test
@ TA = 25°C
0.01
0.1
1
10
VCE (Vdc)
Figure 15. Safe Operating Area
http://onsemi.com
5
100
500
MMBT2222ATT1G, NSVMMBT2222ATT1G
PACKAGE DIMENSIONS
SC−75/SOT−416
CASE 463−01
ISSUE F
−E−
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
2
3
b 3 PL
0.20 (0.008)
e
−D−
DIM
A
A1
b
C
D
E
e
L
HE
1
M
D
HE
C
0.20 (0.008) E
INCHES
NOM MAX
0.031 0.035
0.002 0.004
0.008 0.012
0.006 0.010
0.063 0.067
0.031 0.035
0.04 BSC
0.004 0.006 0.008
0.061 0.063 0.065
MIN
0.027
0.000
0.006
0.004
0.059
0.027
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
A
L
MILLIMETERS
MIN
NOM MAX
0.70
0.80
0.90
0.00
0.05
0.10
0.15
0.20
0.30
0.10
0.15
0.25
1.55
1.60
1.65
0.70
0.80
0.90
1.00 BSC
0.10
0.15
0.20
1.50
1.60
1.70
A1
SOLDERING FOOTPRINT*
0.356
0.014
1.803
0.071
0.787
0.031
0.508
0.020
1.000
0.039
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MMBT2222ATT1/D