0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MUR810

MUR810

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TO220-2

  • 描述:

    DIODE GEN PURP 100V 8A TO220-2

  • 数据手册
  • 价格&库存
MUR810 数据手册
MUR805G, MUR810G, MUR815G, MUR820G, MUR840G, MUR860G, MURF860G, SUR8820G, SUR8840G http://onsemi.com Switch-mode Power Rectifiers This series is designed for use in switching power supplies, inverters and as free wheeling diodes. ULTRAFAST RECTIFIERS 8.0 AMPERES, 50−600 VOLTS Features • • • • • • • • • 1 Ultrafast 25 and 50 Nanosecond Recovery Time 175°C Operating Junction Temperature Epoxy Meets UL 94 V−0 @ 0.125 in Low Forward Voltage Low Leakage Current Reverse Voltage to 600 V ESD Ratings: ♦ Machine Model = C (> 400 V) ♦ Human Body Model = 3B (> 16,000 V) SUR8 Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant* Mechanical Characteristics: 4 3 TO−220AC CASE 221B STYLE 1 • Case: Epoxy, Molded • Weight: 1.9 Grams (Approximately) • Finish: All External Surfaces Corrosion Resistant and Terminal • Leads are Readily Solderable Lead Temperature for Soldering Purposes: 260°C Max for 10 Seconds TO−220 FULLPAK CASE 221AG STYLE 1 MARKING DIAGRAMS AY WWG U8xx KA A Y WW U8XX G KA AYWWG MURF860 KA = = = = Assembly Location Year Work Week Device Code xx = 05, 10, 15, 20, 40, or 60 = Pb−Free Package = Diode Polarity ORDERING INFORMATION *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2014 February, 2014 − Rev. 13 1 See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. Publication Order Number: MUR820/D MUR805G, MUR810G, MUR815G, MUR820G, MUR840G, MUR860G, MURF860G, SUR8820G, SUR8840G MAXIMUM RATINGS MUR/SUR8 Symbol 805 810 815 820 840 860 Unit Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage VRRM VRWM VR 50 100 150 200 400 600 V Average Rectified Forward Current Total Device, (Rated VR), TC = 150°C IF(AV) 8.0 A Peak Repetitive Forward Current (Rated VR, Square Wave, 20 kHz), TC = 150°C IFM 16 A Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 100 A TJ, Tstg −65 to +175 °C Rating Operating Junction Temperature and Storage Temperature Range Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. THERMAL CHARACTERISTICS MUR/SUR8 Characteristic Symbol Maximum Thermal Resistance, Junction−to−Case RqJC Thermal Resistance, Junction−to−Case MURF860 RqJC Thermal Resistance, Junction−to−Ambient RqJA Thermal Resistance, Junction−to−Ambiente MURF860 RqJA 805 810 815 820 840 860 3.0 2.0 Unit °C/W °C/W 4.75 73 °C/W °C/W 75 ELECTRICAL CHARACTERISTICS MUR/SUR8 Characteristic Symbol Maximum Instantaneous Forward Voltage (Note 1) (iF = 8.0 A, TC = 150°C) (iF = 8.0 A, TC = 25°C) vF Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, TJ = 150°C) (Rated DC Voltage, TJ = 25°C) iR Maximum Reverse Recovery Time (IF = 1.0 A, di/dt = 50 A/ms) (IF = 0.5 A, iR = 1.0 A, IREC = 0.25 A) trr 805 810 815 0.895 0.975 820 840 860 1.00 1.30 1.20 1.50 250 5.0 500 10 35 25 60 50 Unit V mA ns Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Pulse Test: Pulse Width = 300 ms, Duty Cycle ≤ 2.0%. http://onsemi.com 2 MUR805G, MUR810G, MUR815G, MUR820G, MUR840G, MUR860G, MURF860G, SUR8820G, SUR8840G MUR805G, MUR810G, MUR815G, MUR820G, SUR8820G 1000 100 IR, REVERSE CURRENT (m A) 70 50 20 10 100°C 1.0 25°C 0.1 10 0.01 7.0 0 20 60 80 100 120 140 160 VR, REVERSE VOLTAGE (VOLTS) 40 5.0 Figure 2. Typical Reverse Current* 3.0 2.0 TJ = 175°C 100°C 25°C 1.0 0.7 0.5 0.3 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 10 9.0 RATED VR APPLIED 8.0 dc 7.0 6.0 SQUARE WAVE 5.0 4.0 3.0 2.0 1.0 0 140 vF, INSTANTANEOUS VOLTAGE (VOLTS) PF(AV) , AVERAGE POWER DISSIPATION (WATTS) 10 SQUARE WAVE 8.0 6.0 4.0 dc 2.0 SQUARE WAVE 0 0 20 40 60 80 100 120 140 180 TC, CASE TEMPERATURE (°C) RqJA = 16°C/W RqJA = 60°C/W (NO HEAT SINK) dc 170 Figure 3. Current Derating, Case 14 12 160 150 Figure 1. Typical Forward Voltage IF(AV) , AVERAGE FORWARD CURRENT (AMPS) 180 200 * The curves shown are typical for the highest voltage device in the grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR. IF(AV) , AVERAGE FORWARD CURRENT (AMPS) i F , INSTANTANEOUS FORWARD CURRENT (AMPS) 30 TJ = 175°C 100 160 180 200 10 9.0 TJ = 175°C 8.0 7.0 SQUARE WAVE 6.0 dc 5.0 4.0 3.0 2.0 1.0 0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 TA, AMBIENT TEMPERATURE (°C) IF(AV), AVERAGE FORWARD CURRENT (AMPS) Figure 4. Current Derating, Ambient Figure 5. Power Dissipation http://onsemi.com 3 9.0 10 MUR805G, MUR810G, MUR815G, MUR820G, MUR840G, MUR860G, MURF860G, SUR8820G, SUR8840G MUR840G, SUR8840G 100 1000 IR, REVERSE CURRENT (m A) 70 50 20 10 100°C 25°C 1.0 0.1 10 0.01 7.0 0 50 100 150 200 250 300 350 400 VR, REVERSE VOLTAGE (VOLTS) 5.0 TJ = 175°C * The curves shown are typical for the highest voltage device in the grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR. 3.0 100°C 2.0 1.0 0.5 0.3 0.2 0.1 0.8 0.6 1.2 1.0 1.4 8.0 SQUARE WAVE dc SQUARE WAVE 0 0 20 6.0 SQUARE WAVE 5.0 4.0 3.0 2.0 1.0 0 140 150 160 40 60 80 100 120 140 160 180 200 10 9.0 TJ = 175°C 8.0 SQUARE WAVE 7.0 dc 6.0 5.0 4.0 3.0 2.0 1.0 0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 TA, AMBIENT TEMPERATURE (°C) IF(AV), AVERAGE FORWARD CURRENT (AMPS) Figure 9. Current Derating, Ambient Figure 10. Power Dissipation http://onsemi.com 4 180 170 Figure 8. Current Derating, Case dc 2.0 dc 7.0 Figure 6. Typical Forward Voltage 12 4.0 RATED VR APPLIED 8.0 TC, CASE TEMPERATURE (°C) RqJA = 16°C/W RqJA = 60°C/W (NO HEAT SINK) 6.0 9.0 1.6 14 10 10 vF, INSTANTANEOUS VOLTAGE (VOLTS) PF(AV) , AVERAGE POWER DISSIPATION (WATTS) 0.4 450 500 Figure 7. Typical Reverse Current* 25°C 0.7 IF(AV) , AVERAGE FORWARD CURRENT (AMPS) 150°C IF(AV) , AVERAGE FORWARD CURRENT (AMPS) i F , INSTANTANEOUS FORWARD CURRENT (AMPS) 30 TJ = 175°C 100 9.0 10 MUR805G, MUR810G, MUR815G, MUR820G, MUR840G, MUR860G, MURF860G, SUR8820G, SUR8840G 1000 100 TJ = 150°C IR, REVERSE CURRENT (m A) i F , INSTANTANEOUS FORWARD CURRENT (AMPS) MUR860G, MURF860G 100°C 25°C 10 1 10 100°C 1.0 0.6 0.8 1.0 1.4 1.2 1.6 25°C 0.1 0.01 100 0.1 0.4 TJ = 150°C 100 1.8 200 vF, INSTANTANEOUS VOLTAGE (VOLTS) 300 500 400 VR, REVERSE VOLTAGE (VOLTS) 600 Figure 12. Typical Reverse Current* Figure 11. Typical Forward Voltage IF(AV) , AVERAGE FORWARD CURRENT (AMPS) 10 9.0 RATED VR APPLIED 8.0 dc 7.0 6.0 SQUARE WAVE 5.0 4.0 3.0 2.0 1.0 0 140 160 150 170 10 9.0 RqJA = 16°C/W RqJA = 60°C/W (NO HEAT SINK) dc 8.0 7.0 6.0 SQUARE WAVE 5.0 4.0 dc 3.0 2.0 SQUARE WAVE 1.0 0 180 0 20 40 60 80 100 120 140 160 180 200 TC, CASE TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 13. Current Derating, Case Figure 14. Current Derating, Ambient 10,000 14 13 12 11 10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 I FSM , NON-REPETITIVE SURGE CURRENT (A) PF(AV) , AVERAGE POWER DISSIPATION (WATTS) IF(AV) , AVERAGE FORWARD CURRENT (AMPS) * The curves shown are typical for the highest voltage device in the grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR. SQUARE WAVE dc TJ = 175°C 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10 1,000 100 10 100 1,000 10,000 IF(AV), AVERAGE FORWARD CURRENT (AMPS) tp, SQUARE WAVE PULSE DURATION (ms) Figure 15. Power Dissipation Figure 16. Typical Non−Repetitive Surge Current * Typical performance based on a limited sample size. ON Semiconductor does not guarantee ratings not listed in the Maximum Ratings table. http://onsemi.com 5 r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) MUR805G, MUR810G, MUR815G, MUR820G, MUR840G, MUR860G, MURF860G, SUR8820G, SUR8840G 1.0 D = 0.5 0.5 0.2 0.1 0.1 0.05 0.01 ZqJC(t) = r(t) RqJC RqJC = 1.5°C/W MAX P(pk) 0.05 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT T1 TJ(pk) - TC = P(pk) ZqJC(t) t1 t2 SINGLE PULSE 0.02 DUTY CYCLE, D = t1/t2 0.01 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1000 t, TIME (ms) Figure 17. Thermal Response r(t), TRANSIENT THERMAL RESPONSE (NORMALIZED) (°C/W) 10 D = 0.5 1.0 0.1 0.2 0.1 0.05 0.02 P(pk) 0.01 0.01 t1 SINGLE PULSE 0.001 0.000001 0.00001 t2 DUTY CYCLE, D = t1/t2 0.0001 0.001 0.01 t, TIME (s) 1.0 0.1 ZqJC(t) = r(t) RqJC RqJC = 1.6°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) ZqJC(t) 10 100 1000 r(t), TRANSIENT THERMAL RESPONSE (NORMALIZED) (°C/W) Figure 18. Thermal Response, (MURF860G) Junction−to−Case (RqJC) 100 10 D = 0.5 0.2 0.1 0.05 0.02 1.0 0.01 P(pk) 0.1 0.01 0.001 0.000001 t1 SINGLE PULSE 0.00001 t2 DUTY CYCLE, D = t1/t2 0.0001 0.001 0.01 t, TIME (s) 0.1 1.0 ZqJC(t) = r(t) RqJC RqJC = 1.6°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) ZqJC(t) 10 Figure 19. Thermal Response, (MURF860G) Junction−to−Ambient (RqJA) http://onsemi.com 6 100 1000 MUR805G, MUR810G, MUR815G, MUR820G, MUR840G, MUR860G, MURF860G, SUR8820G, SUR8840G 1000 C, CAPACITANCE (pF) 500 TJ = 25°C 200 100 50 20 10 1.0 2.0 10 5.0 20 VR, REVERSE VOLTAGE (V) 50 100 Figure 20. Typical Capacitance ORDERING INFORMATION Device Package Shipping MUR805G TO−220AC (Pb−Free) 50 Units / Rail MUR810G TO−220AC (Pb−Free) 50 Units / Rail MUR815G TO−220AC (Pb−Free) 50 Units / Rail MUR820G TO−220AC (Pb−Free) 50 Units / Rail SUR8820G TO−220AC (Pb−Free) 50 Units / Rail MUR840G TO−220AC (Pb−Free) 50 Units / Rail SUR8840G TO−220AC (Pb−Free) 50 Units / Rail MUR860G TO−220AC (Pb−Free) 50 Units / Rail MURF860G TO−220FP (Pb−Free) 50 Units / Rail http://onsemi.com 7 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TO−220 FULLPACK, 2−LEAD CASE 221AG ISSUE B A E B P E/2 0.14 SCALE 1:1 M B A A H1 M SEATING PLANE A1 4 Q D C NOTE 3 1 2 3 L L1 3X 3X b2 c b 0.25 M B A M C A2 e SIDE VIEW e1 TOP VIEW A NOTE 6 NOTE 6 D DATE 27 AUG 2015 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR UNCONTROLLED IN THIS AREA. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY. 5. DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00. MILLIMETERS DIM MIN MAX A 4.30 4.70 A1 2.50 2.90 A2 2.50 2.90 b 0.54 0.84 b2 1.10 1.40 c 0.49 0.79 D 14.22 15.88 E 9.65 10.67 e 2.54 BSC e1 5.08 BSC H1 6.40 6.90 L 12.70 14.73 L1 --2.80 P 3.00 3.40 Q 2.80 3.20 GENERIC MARKING DIAGRAM* H1 D XX XXXXXXXXX AWLYWWG SECTION A−A A ALTERNATE CONSTRUCTION SECTION D−D 1 A WL Y WW G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. DOCUMENT NUMBER: DESCRIPTION: 98AON52563E Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. TO−220 FULLPACK, 2−LEAD PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TO−220, 2−LEAD CASE 221B−04 ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. C B Q SCALE 1:1 F S T DIM A B C D F G H J K L Q R S T U 4 A 1 U 3 H K L R D J G STYLE 1: PIN 1. 2. 3. 4. DOCUMENT NUMBER: DESCRIPTION: 98ASB42149B TO−220, 2−LEAD CATHODE N/A ANODE CATHODE DATE 12 APR 2013 STYLE 2: PIN 1. 2. 3. 4. INCHES MIN MAX 0.595 0.620 0.380 0.405 0.160 0.190 0.025 0.039 0.142 0.161 0.190 0.210 0.110 0.130 0.014 0.025 0.500 0.562 0.045 0.060 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 MILLIMETERS MIN MAX 15.11 15.75 9.65 10.29 4.06 4.82 0.64 1.00 3.61 4.09 4.83 5.33 2.79 3.30 0.36 0.64 12.70 14.27 1.14 1.52 2.54 3.04 2.04 2.79 1.14 1.39 5.97 6.48 0.000 1.27 ANODE N/A CATHODE ANODE Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
MUR810 价格&库存

很抱歉,暂时无法提供与“MUR810”相匹配的价格&库存,您可以联系我们找货

免费人工找货