0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NB100LVEP56DTG

NB100LVEP56DTG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSSOP-20_6.5X4.4MM

  • 描述:

    MULTIPLEXER, 100LVE SERIES, 2 FU

  • 数据手册
  • 价格&库存
NB100LVEP56DTG 数据手册
2.5 V/3.3 V ECL DUAL Differential 2:1 Multiplexer NB100LVEP56 Description The NB100LVEP56 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or differential data signals. The device features both individual and common select inputs to address both data path and random logic applications. Common and individual selects can accept both LVECL and LVCMOS input voltage levels. Multiple VBB pins are provided. The VBB pin, an internally generated voltage supply, is available to this device only. For single−ended input operation, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 mF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. www.onsemi.com 24 MARKING DIAGRAM* 24 Features • • • • • • • • • • 1 QFN24 MN SUFFIX CASE 485L 1 Maximum Input Clock Frequency > 2.5 GHz Typical Maximum Input Data Rate > 2.5 Gb/s Typical 525 ps Typical Propagation Delays Low Profile QFN Package PECL Mode Operating Range: VCC = 2.375 V to 3.8 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −2.375 V to −3.8 V Separate, Common Select, and Individual Select (Compatible with ECL and CMOS Input Voltage Levels) Q Output Will Default LOW with Inputs Open or at VEE Multiple VBB Outputs These Devices are Pb−Free and are RoHS Compliant A L Y W G N100 VP56 ALYWG G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION Device Package Shipping† QFN24 92 Units / Tube (Pb−Free) QFN24 NB100LVEP56MNR2G 3000 / (Pb−Free) Tape & Reel NB100LVEP56MNG †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2016 May, 2021 − Rev. 12 1 Publication Order Number: NB100LVEP56/D NB100LVEP56 Table 1. PIN FUNCTION DESCRIPTION ÁÁÁÁÁ ÁÁÁÁÁ Pin No. QFN Name I/O Default State 3,9,18,19, 20 VCC − − Positive Supply Voltage. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. 15,24 VEE − − Negative Supply Voltage. All VEE Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. 6,12 VBB0, VBB1 − − ECL Reference Voltage Output 4 D0a ECL Input Low Noninverted Differential Data a Input to MUX 0. Internal 75 kW to VEE. 5 D0a ECL Input High Inverted Differential Data a Input to MUX 0. Internal 75 kW to VEE and 37 kW to VCC. 7 D0b ECL Input Low Noninverted Differential Data b Input to MUX 0. Internal 75 kW to VEE. 8 D0b ECL Input High Inverted Differential Data b Input to MUX 0. Internal 75 kW to VEE and 37 kW to VCC. 10 D1a ECL Input Low Noninverted Differential Data a Input to MUX 1. Internal 75 kW to VEE. 11 D1a ECL Input High Inverted Differential Data a Input to MUX 1. Internal 75 kW to VEE and 37 kW to VCC. 13 D1b ECL Input Low Noninverted Differential Data b Input to MUX 1. Internal 75 kW to VEE. 14 D1b ECL Input High Inverted Differential Data b Input to MUX 1. Internal 75 kW to VEE and 37 kW to VCC. 2 Q0 ECL Output − Noninverted Differential Output MUX 0. Typically Terminated with 50 W to VTT = VCC − 2.0 V. 1 Q0 ECL Output − Inverted Differential Output MUX 0. Typically Terminated with 50 W to VTT = VCC − 2.0 V. 17 Q1 ECL Output − Noninverted Differential Output MUX 1. Typically Terminated with 50 W to VTT = VCC − 2.0 V. 16 Q1 ECL Output − Inverted Differential Output MUX 1. Typically Terminated with 50 W to VTT = VCC − 2.0 V. 23 SEL0 ECL, CMOS Input Low Noninverted Differential Select Input to MUX 0. Internal 75 kW to VEE. 22 COM_SEL ECL, CMOS Input Low Noninverted Differential Common Select Input to Both MUX. Internal 75 kW to VEE. 21 SEL1 ECL, CMOS Input Low Noninverted Differential Select Input to MUX 1. Internal 75 kW to VEE. − EP − Description Exposed Pad. The exposed pad (EP) on the package bottom must be attached to a heat−sinking conduit. The exposed pad may only be electrically connected to VEE. www.onsemi.com 2 NB100LVEP56 D0a R1 D0b R1 R2 1 Q0 Q0 Table 2. TRUTH TABLE 0 D0a R1 SEL0 R2 R1 D0b R1 SEL0 SEL1 COM_SEL Q0, Q0 Q1, Q1 X L L H H X L H H L H L L L L a b b a a a b a a b COM_SEL R1 D1a R1 D1b R1 SEL1 R2 R1 1 Q1 Q1 0 D1a R1 VCC VEE R2 D1b R1 Figure 1. Logic Diagram COM VEE SEL0 SEL SEL1 VCC VCC 24 23 22 21 20 Exposed Pad (EP) 19 Q0 1 18 VCC Q0 2 17 Q1 VCC 3 16 Q1 D0a 4 15 VEE D0a 5 14 D1b VBB0 6 13 D1b NB100LVEP56 7 8 9 10 11 12 D0b D0b VCC D1a D1a VBB1 Figure 2. QFN−24 Lead Pinout (Top View) Table 3. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor (R1) 75 kW Internal Input Pullup Resistor (R2) 37 kW ESD Protection Human Body Model Machine Model Charged Device Model > 2 kV > 150 V > 2 kV Moisture Sensitivity (Note 1) QFN−24 Pb−Free Pkg Level 1 Flammability Rating Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count 354 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. www.onsemi.com 3 NB100LVEP56 Table 4. MAXIMUM RATINGS Symbol Rating Unit VCC Positive Mode Power Supply Parameter VEE = 0 V Condition 1 Condition 2 6 V VEE Negative Mode Power Supply VCC = 0 V −6 V VI Positive Mode Input Voltage Negative Mode Input Voltage VEE = 0 V VCC = 0 V 6 −6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source "0.5 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction−to−Ambient) JEDEC 51−6 (2S2P−Multi Layer Test Board) with Filled Thermal Vias 0 lfpm 500 lfpm QFN−24 QFN−24 37 32 °C/W °C/W qJC Thermal Resistance (Junction−to−Case) Standard Board QFN−24 11 °C/W Tsol Wave Solder (Pb−Free) 265 °C VI v VCC VI w VEE Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 5. DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 2) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 45 55 35 45 55 35 48 58 mA IEE Negative Power Supply Current VOH Output HIGH Voltage (Note 3) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VOL Output LOW Voltage (Note 3) 555 775 900 555 775 900 555 775 900 mV VIH Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) (Note 4) 1335 1335 VCC 1620 1335 1335 VCC 1620 1275 1275 VCC 1620 mV VIL Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) (Note 4) VEE 555 875 875 VEE 555 875 875 VEE 555 875 875 mV Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5) 1.2 2.5 1.2 2.5 1.2 2.5 V 150 mA VIHCMR IIH Input HIGH Current (@VIH) IIL Input LOW Current (@VIL) 150 D D SEL 0.5 −150 −150 150 0.5 −150 −150 0.5 −150 −150 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 2. Input and output parameters vary 1:1 with VCC. VEE can vary −0.125 V to +1.3 V. 3. All loading with 50 W to VCC − 2.0 V. 4. Do not use VBB at VCC < 3.0 V. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. www.onsemi.com 4 NB100LVEP56 Table 6. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 6) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 45 55 35 45 55 35 48 58 mA IEE Negative Power Supply Current VOH Output HIGH Voltage (Note 7) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 7) 1355 1575 1700 1355 1575 1700 1355 1575 1700 mV VIH Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) 2135 2135 VCC 2420 2135 2135 VCC 2420 2135 2135 VCC 2420 mV VIL Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) VEE 1355 1675 1675 VEE 1355 1675 1675 VEE 1355 1675 1675 mV VBB Output Reference Voltage (Note 8) 1775 1975 1775 1975 1775 1975 mV 3.3 1.2 3.3 1.2 3.3 V 150 mA VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9) IIH Input HIGH Current (@VIH) IIL Input LOW Current (@VIL) 1875 1.2 1875 150 D D SEL 1875 150 0.5 −150 −150 0.5 −150 −150 0.5 −150 −150 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +0.5 V to −0.3 V. 7. All loading with 50 W to VCC − 2.0 V. 8. Single−Ended input operation is limited to VCC w 3.0 V in PECL mode. 9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 7. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −3.8 V to −2.375 V (Note 10) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 35 45 55 35 45 55 35 48 58 mA VOH Output HIGH Voltage (Note 11) −1145 −1020 −895 −1145 −1020 −895 −1145 −1020 −895 mV VOL Output LOW Voltage (Note 11) −1945 −1725 −1600 −1945 −1725 −1600 −1945 −1725 −1600 mV VIH Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) −1165 −1165 VCC −880 −1165 −1165 VCC −880 −1165 −1165 VCC −880 VIL Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) VEE −1945 −1600 −1600 VEE −1945 −1600 −1600 VEE −1945 −1600 −1600 VBB Output Reference Voltage (Note 12) −1525 −1325 −1525 −1325 −1525 VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13) IIH Input HIGH Current (@VIH) IIL Input LOW Current (@VIL) −1425 VEE+1.2 0.0 150 D D SEL 0.5 −150 −150 −1425 VEE+1.2 0.0 150 0.5 −150 −150 −1425 VEE+1.2 0.5 −150 −150 mV mV −1325 mV 0.0 V 150 mA mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 10. Input and output parameters vary 1:1 with VCC. 11. All loading with 50 W to VCC − 2.0 V. 12. Single−Ended input operation is limited to VEE from −3.0 V to −5.5 V in NECL mode. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. www.onsemi.com 5 NB100LVEP56 Table 8. AC CHARACTERISTICS VCC = 0 V; VEE = −2.375 V to −3.8 V or VCC = 2.375 V to 3.8 V; VEE = 0 V (Note 14) −40°C Characteristic Symbol VOUTPP Output Voltage Amplitude (See Figure 3) fin v 1 GHz fin = 2 GHz fin = 2.5 GHz tPLH, tPHL Propagation Delay to Output Differential tSkew Pulse Skew (Note 15) Within Device Input Skew (Note 16) Within Device Output Skew (Note 17) Device−to−Device Skew (Note 18) tJITTER RMS Random Clock Jitter (Note 19) @ v1.0 GHz @ v1.5 GHz @ v2.0 GHz @ v2.5 GHz Peak−to−Peak Data Dependent Jitter (Note 20) @ 0.5 GHz @ 1.25 GHz @ 2.488 GHz D to Q, Q SEL to Q, Q COM_SEL to Q, Q VINPP Input Voltage Swing (Differential Configuration) (Note 21) tr tf Output Rise/Fall Times @ 50 MHz (20% − 80%) Q, Q 25°C Min Typ Max Min Typ 525 500 400 700 600 500 550 500 350 700 600 450 375 575 550 500 775 750 625 975 950 400 625 600 525 825 800 10 5 15 50 50 30 50 200 10 5 15 50 0.269 0.306 0.250 0.339 0.4 0.4 0.4 0.8 0.307 0.303 0.305 0.895 4.1 32.2 30.8 16 80 66 150 800 1200 60 110 150 85°C Max Min Typ 500 400 200 700 500 300 450 700 700 575 900 900 700 1100 1100 10 5 15 50 50 30 50 200 0.4 0.4 0.5 2.0 0.371 0.391 0.722 2.443 0.5 0.6 1.2 7.7 4.6 22.6 27.2 15 63 56 4.4 22 24.4 16 53 54 150 800 1200 150 800 1200 60 120 170 90 140 230 650 1025 1000 Max Unit mV ps ps ps mV ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. Input edge rates 150 ps (20% − 80%). 15. Pulse Skew |tPLH − tPHL| 16. Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input. 17. Worst case difference between Q0 and Q1 outputs. 18. Skew is measured between outputs under identical transitions. 19. Additive RMS jitter with 50% Duty Cycle Clock Signal. 20. Additive Peak−to−Peak jitter with input NRZ data at PRBS 231−1. 21. Input voltage swing is a single−ended measurement operating in differential mode. OUTPUT VOLTAGE AMPLITUDE (mV) 850 750 Q AMP (mV) 650 550 450 350 250 0.5 1.0 1.5 2.0 INPUT FREQUENCY (GHz) Figure 3. Output Voltage Amplitude (VOUTPP) vs. Input Frequency (fin) at VCC = 2.5 V, 255C www.onsemi.com 6 2.5 NB100LVEP56 D VINPP = VIH(D) − VIL(D) D Q VOUTPP = VOH(Q) − VOL(Q) Q tPHL tPLH Figure 4. AC Reference Measurement Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 2.0 V Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. www.onsemi.com 7 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS QFN24, 4x4, 0.5P CASE 485L ISSUE B 1 24 SCALE 2:1 D PIN 1 REFEENCE 2X 0.15 C 2X ÉÉÉ ÉÉÉ ÉÉÉ 0.15 C DETAIL A E ALTERNATE CONSTRUCTIONS ÉÉÉ ÉÉÉ ÇÇÇ EXPOSED Cu DETAIL B 0.10 C SEATING PLANE L 24X 7 DIM A A1 A3 b D D2 E E2 e L L1 MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.20 0.30 4.00 BSC 2.70 2.90 4.00 BSC 2.70 2.90 0.50 BSC 0.30 0.50 0.05 0.15 XXXXX XXXXX ALYWG G 13 E2 1 24 A1 A3 GENERIC MARKING DIAGRAM* D2 DETAIL A ÉÉ ÉÉ ÇÇ ALTERNATE TERMINAL CONSTRUCTIONS C A1 SIDE VIEW MOLD CMPD DETAIL B A A3 NOTE 4 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM THE TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L1 TOP VIEW 0.08 C L L A B DATE 05 JUN 2012 19 e e/2 24X b 0.10 C A B 0.05 C BOTTOM VIEW NOTE 3 RECOMMENDED SOLDERING FOOTPRINT 4.30 24X 0.55 2.90 XXXXX = Specific Device Code A = Assembly Location L = Wafer Lot Y = Year W = Work Week G = Pb−Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. 1 4.30 2.90 0.50 PITCH 24X 0.32 DIMENSIONS: MILLIMETERS DOCUMENT NUMBER: DESCRIPTION: 98AON11783D QFN24, 4X4, 0.5P Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NB100LVEP56DTG 价格&库存

很抱歉,暂时无法提供与“NB100LVEP56DTG”相匹配的价格&库存,您可以联系我们找货

免费人工找货